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Abstract.  

Formation of the first ring structure from small aliphatic molecules is often regarded as the 

rate-determining step (and in any case as a step of paramount importance) in the 

combustive growth of larger aromatic systems and soot lamellae. Among possible 

reactions able to start off this process, the radical addition of the propargyl radical to 

butadiyne (diacetylene) has been recently studied theoretically [G. da Silva, A. Trevitt, 

Phys. Chem. Chem. Phys. 13 (2011) 8940] and shown to lead preferentially to a 5-

membered ring intermediate. The same reaction is here addressed focusing instead on the 

possible formation of 6-membered rings. The large variety of partially intertwined reaction 

pathways is the basis for a subsequent RRKM study (carried out at different combustion 

temperatures). It confirms, on one hand, the favored formation of fulvenallenyl radical 

indicated by Da Silva and Trevitt, but also indicates the possible formation of six-

membered cyclic systems as minor products. In particular, at high pressure, six-membered 
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ring system yields are very low, but at lower pressures a more significant yield of six-

membered ring product is predicted. 
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1. Introduction 

The impact of carbonaceous particulate[1,2] and polycyclic aromatic hydrocarbons 

(PAHs) on the environment in general[3,4] and human health in particular is significant, 

because the former gives a major contribution to the overall mass of atmospheric aerosol, 

and the latter exhibit an ubiquitous presence. PAHs and PAH cations, PAH clusters, and 

amorphous carbon clusters are also of astrophysical interest, since they have been 

identified (to some extent tentatively) out of the terrestrial environment, namely in 

planetary atmospheres,[5] in the envelopes of carbon-rich stars,[6] or in the interstellar 

medium,[7] hence under a large variety of pressure and temperature conditions. This 

interest has recently prompted, for instance, combined experimental-theoretical work on 

cosmic-ray-mediated benzene formation.[8] On the other hand, graphene sheets, graphene 

nanoribbons, and synthetic ways to very large PAH systems[9] have in recent years been 

deemed promising from a technological point of view[10] (to build capacitors,[11] 

sensors,[12] transistors, circuits in general,[13] etc.).  
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 Soot and PAHs share the same nature and origin,[14,15] and the latter are often 

considered as soot precursors, though other opinions have been set forth. Homann, for 

instance, put forward[16] that the reactions leading to PAHs could also bring about the 

formation of more irregular structures, called "aromers" (see ref. 16, pp 2448-2450), starting 

from associations between PAHs and subsequent H2 losses. These intermediate structures 

could grow as cages with a higher or lower H content, and get some curvature.  

 Since the growth mechanisms and association modes of PAHs and soot platelets are 

not completely clarified, we have recently attempted to give some contribution, possibly 

complementary to the experiment. [17,18,19]. Now, the formation of the very first (possibly 

aromatic) ring molecule from small aliphatics has been often seen as the rate-determining 

step of soot growth, and appears in any case particularly interesting.[20,21] 

Since formation of aromatics and soot particles (in particular the issue of first ring 

formation, which is our present focus) has been reviewed and discussed by Richter and 

Howard in 2000,[20] and by Frenklach in 2002,[21] we will not deal at length with earlier 

mechanistic proposals. Among these, Bittner and Howard[22] suggested benzene 

formation via the butadienyl (CH2=CHCH=CH. or CH2=CHC.=CH2) plus ethyne 

reaction. This idea was partly supported by an experiment  in which butadienyl formation 

in a 1,3-butadiene flame was observed.[23] Then, similar mechanisms were also 

proposed,[24,25,26,27] such as, for instance, the sequence triggered by vinyl (CH2=CH.) 

addition to (a) ethyne [C2H3
.+ C2H2  n-C4H5

.;  n-C4H5
. + C2H2  n-C6H7

.; n-C6H7  C6H6 

+ H.] or (b) to vinylacetylene (CH2=CHCCH), or also (c)  [CH2=C.CCH + C2H2  

C6H5
.] the latter being however deemed unlikely in a later study.[28] Some flame studies 

indicated that the recombination of the propargyl radicals (H2C.CCH) can be the dominant 
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pathway to first ring formation.[27,29,30]  Furthermore, theoretical studies by Miller and 

Melius[28] and, more recently, by Miller and Klippenstein[31]  showed that the addition of 

two propargyl radicals accounts satisfactorily for several experimental results concerning 

either benzene or phenyl radical formation.  

First ring formation has also been the subject of more recent experimental and 

theoretical investigations of different ring closure processes, such as the formation of (i) 

several 5- and 7-membered rings in a cyclopentene flame,[32] or (ii) the phenyl radical 

through C2 + buta-1,3-diene (C4H6) reactions.[33] Similar studies focused also on the 

formation of slightly larger systems (such as naphthalene[34,35], or indene[36,37]), or 

consider in general the mechanism of PAH growth.[38] Along this line, we have already 

considered[39] the first growth steps of aromatic systems through the ring closure-radical 

breeding polyyne-based mechanism proposed by Krestinin[40] (polyynes had already been 

considered at an earlier time by Homann and Wagner[41]).  

In the present paper we explore, under combustion conditions, the possible formation 

of 5-, 6-, or 7-membered ring intermediates, which could be involved in subsequent PAH 

or soot platelet growth processes. The reacting  system examined is defined by the radical 

addition of propargyl  to butadiyne (HCCCCH). Propargyl was considered 

originally in the mentioned studies[28,31] as a species capable in itself of generating 

benzene through self-addition. Other reactions, e.g. between propargyl and alkynes, are 

likely to play an important role in the hydrocarbon growth process. We can mention for 

instance that the kinetics of the related reaction between the propargyl radical and ethyne 

has been investigated both experimentally[42] and theoretically.[43] Both the propargyl 

radical and some polyynes have been recently reported to reach rather high concentrations 
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in the oxidation zone of premixed ethyne,[44] benzene,[45] toluene,[46] or gasoline[47] 

flames. Butadiyne has been detected as the highest concentration of polyyne molecules in 

pyrolisis or combustion.[48] The decomposition of fulvalene and fulvalenyl radical, which 

are expected to play an important role in the formation of PAH and soot, was recently 

studied both theoretically,[49] and experimentally:[50] it leads mainly to propargyl radical 

+ butadiyne and C5H3 + ethyne. 

This study is an extension of the da Silva and Trevitt’s study[51] concerning the 

reactions between propargyl radical and butadiyne. We focused our attention on the 

formation of 6-membered rings, which could be seen as possible precursors of benzene 

molecules. da Silva and Trevitt calculated the energy of only one 6-membered ring 

(structure 6 in their work)  and the transition structure for its formation. However, their 

computations located this intermediate 25.9 kcal mol-1 above the reactants, and they 

consequently concluded that formation of 6-membered rings was not favored.  

In our study, we show several other pathways bringing to more or less stable 6-

membered rings, having energies close or well below that of the reactants. For this reason, 

we believe that the present investigation results in an interesting extension of the da Silva 

and Trevitt’s work. 

2. Theoretical Method 

All stationary points on the energy hypersurface, i.e. minima and first order saddle 

points, corresponding to transition structures (TS), were determined by gradient 

procedures[52] within the Density Functional Theory (DFT),[53] and making use of the  

M06-2X[54] functional. This recent global hybrid meta GGA functional has shown to 
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successfully predict a wide range of molecular properties (energies barriers, 

thermochemistry and geometries).[55]  The cc-pVTZ basis set[56] was used throughout in 

the DFT optimizations. The nature of the critical points was checked by vibrational 

analysis, which allowed us also the thermochemistry assessment. The optimizations were 

followed by CCSD(T)/cc-pVTZ[57] single-point energy computations. The DFT 

thermochemical corrections gave estimates of the zero point vibrational energy, by which 

the CCSD(T) relative energies were corrected to obtain the ΔEZPE values reported in the 

schemes and discussed in the text. The thermochemistry was assessed in all cases at 

temperatures ranging from room T up to those typical of combustion (T in Kelvin, 

energetics in kcal mol-1).  

Geometry optimizations and thermochemistry calculations were carried out by using 

the GAUSSIAN 09 system of programs.[58]  

The Rice Ramsperger Kassel Marcus (RRKM) theory,[59,60] fundamental development 

of the unimolecular kinetic theory elaborated by Lindemann[61] and Hinshelwood[62], 

was then used to obtain the distribution of reaction products. In order to obtain these 

distributions as functions of time, RRKM and Master Equation (RRMK-ME) calculations 

were carried out by using Multiwell program suite.[63,64,65]  It allows calculating sum and 

densities of states, then obtains microcanonical rate constants according to RRKM theory, 

and finally solves the master equation. We have used the same parameters used in the da 

Silva and Trevitt’s paper, for sake of comparison.[51]  Corrections for quantum tunneling 

were included for all hydrogen transfer reactions (not H dissociations) by incorporating 

the corrections for one-dimensional unsymmetrical Eckart barriers.[66] Internal rotations 

were treated as unsymmentrical hindered rotations, by using the lamm program, supplied 
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with MultiWell. The potential energy and the reduced moment of inertia as a function of 

dihedral angles were fitted to eight parameter functions and sum and density of states 

were estimated by using Meyer’s algorithm.[67] 

MultiWell stores densities and sums of states in double arrays: the lower part of the array 

consisted of 999 array elements which ranged in energy from 0 cm-1 to 9990 cm-1. The 

higher energy part of the double array consisted of 1001 elements ranging in energy from 0 

cm-1 to 150000 cm-1 with an energy spacing of 150 cm-1.  

The Lennard-Jones parameters necessary for the collision frequency calculations were 

assumed to be the same for all the structures, were: σ= 5.9 Å, and ε/kB = 488 K.  

Energy transfer was treated by assuming the exponential-down model for collision step-

size distributions: Edown =1000 cm-1, constant and independent from the temperature.[68]   

Rate constants were calculated in the range 600-2000 K. In the present work, the number of 

stochastic trials was set to 106, for 200 collisions, which should be sufficient to reach the 

Boltzmann energy distributions.  Simulations were carried out at P= 1 atm of N2 buffer gas 

for room pressure combustions and P= 0.01 and 40 atm to simulate combustions under 

low[69]  and high pressure[70] conditions.  

 
 
3. Results and discussion 

3.1 Potential energy surface 

We present briefly the initial reaction steps, already discussed in the paper by da Silva and 

Trevitt,[51] because they are introductory to the original part of our investigation. Four 
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entrance channels, due to the addition of the (to some extent) delocalized propargyl radical 

to the two unique positions of butadiyne are conceivable. 

H

H

H

H

H

H

 

Resonance in the propargyl radical 

 

However, two of them (additions to C2) have significantly higher energy barriers (ΔEZPE = 

16.8 and 19.4 kcal mol-1) compared to the C1 additions (ΔEZPE = 11.5 and 13.4 kcal mol-1). 

For this reason they were ruled out and no longer explored.   

Scheme 1 shows the possible pathways and relative energies (ΔEZPE) involving the 

intermediates originated by addition in C1 of butadiyne. Two intermediates could be 

formed, 1 and 2, located at -19 and -21 kcal mol-1, respectively, with respect to the reagents. 

They have similar linear structures with one delocalized unpaired electron, and formation 

barriers (11.5 and 13.4 kcal mol-1, respectively). Intermediate 2 could cyclize to form the 5-

ring 3 (step a in Scheme 1). The intermediate 1 could follow a similar path (cyclization to 4, 

via step d). Also another cyclization is possible (step f), leading to the 6-ring 5 (+21 kcal 

mol-1). All these steps were already considered by da Silva and Trevitt. It has to be noted 

that 5 has a radical+biradical character (see a detailed analysis of its electronic structure in 

the Appendix).    

According to da Silva and Trevitt,[51] formation of a 7-membered ring is possible but 

the energy barrier for this cyclization is too high (ΔEZPE = +13.6 kcal mol-1). The 5-ring 

isomers 3 and 4 have similar energies (-39 kcal mol-1) and could both form, via a 1,2 H 
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shifts having barriers of ca. 12 kcal mol-1, the very stable 1-ethynylcyclopentadienyl  radical 

intermediate (6, at -77 kcal mol-1),  central to the da Silva and Trevitt’s paper (where is 

called fulvenallenyl).[51] The electron delocalization occurring in   

1-ethynylcyclopentadienyl (6) had been assumed by da Silva and Bozzelli as the major 

reason for its molecular stability.[71]  The reaction pathways presented so far (Scheme 1: 

part out of the dashed box) are those proposed by da Silva and Trevitt, and our energetics 

are in fairly good agreement with their.[51] This is not the case for  structure 5, see 

Appendix. 

We turn now to describe, making reference to the box in Scheme 1, other cyclizations, new 

with respect to the previous study. Starting from 1, a 4-ring closure (step c) would lead to 

7. A 6-ring closure is also possible (step e) to form a precursor of the ortho-benzyne-like 

structure 8. The last reaction does not seem promising, because of the high energy barrier 

(22.5 kcal mol-1). In addition, structure 8 is less stable than the reactants.  

 

More interesting is the ring closure from intermediate 2: the reaction b would 

produce a stable ortho-benzyne 9 (-49 kcal mol-1) with an unpaired electron delocalized in a 

benzyl-like πsystem. Its formation barrier is above the reactants (about 8 kcal mol-1). 

Though 9 is very stable, a direct concerted formation pathway from propargyl radical and 

butadyine (0-9) does not exist. Any attempt to define it crosses a second order saddle point 

dominium (the second order saddle point itself is located at 47.1 kcal mol-1). Therefore the 

only way to reach 9 is going through two transition structures TS 0-2, and TS 2-9, (see 

Scheme C in the Supplementary material). 
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The H losses from 1 and 2, which were already taken into account by da Silva and Trevitt, 

are shown in Scheme 3 here and in more detail in Scheme A in the Supplementary 

material.  

 

3.1.1  Other 6-membered rings formation mechanisms. 

Starting from the very stable intermediate 6, some additional pathways leading to 6-

rings are conceivable (Scheme 2). The ring closure to form the bicyclic intermediate 10 (at -

26 kcal mol-1) has a barrier slightly above the reactants (+1 kcal mol-1).   From 10, two 

distinct pathways g and g’, either via a carbene intermediate (11) or a 7-ring (12), with all 

relevant transition and intermediate structures well below the reference level, converge 

both onto the 6-ring 13, which is a stable carbene radical (-45 kcal mol-1). Its stability can be 

related to one of the two resonance structures, which is of the Kekulé type (another one 

can of course be drawn).  The transition structure connecting 11 and 13 corresponds to a 

concerted step which requires some explanation. The breaking of the bond 1 in 11 would 

form a bicyclic intermediate with condensed 6- and 3-rings). However, such a hypothetical 

structure is not a stable minimum, and the bond 3  is cleaves concertedly 13. From 13, a H 

shift concerted with a 3-ring closure leads, through a TS well below the reference level, to 

the stable intermediate 14, which carries an aromatic 6-membered ring. It can be 

interesting to recall that also Kaiser et al.[72] mentioned the presence of 12 and 14 (as the 

most stable isomer) in binary collisions between one carbon atom, C(3P), with benzene.  

Alternatively (pathway h) the breaking in 10 of the bond labeled as 1, together with 

the formation a new  bond (2), leads to a sequence of other 6-ring intermediates (15 and 
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16). Then, the recoupling of two electrons in 16 produces again 14 which could 

subsequently interconvert to 13  or lose a hydrogen to produce the carbene 19 (not very 

stable). Alternative H losses from the aromatic ring of 14 were considered, but the 

products were even less stable. The intermediate 14 could be reached through still another 

pathway i, the sequence 6-17-18, which entails a CCH group shift, followed by the 

closure of a 4-membered ring. 

 Some of the pathways just discussed could be promising: TS 6-17 (-7 kcal mol-1;  

compare -8, already computed by da Silva and Trevitt),  TS 17-18 and TS 18-14, though 

high, are still below the reference level.  The H loss from 14 is high (+10 kcal mol-1). With 

this last exception they might be seen, at least in principle, as potentially competitive with 

losses of C2H2 and other H losses from the C7H5 radical systems (see next paragraph).  

11, 13 and 16 are carbene radicals [adequately described by the CCSD(T)  method, see 

Appendix].  

 

The mechanisms of C2H2 or H losses from the intermediates 1, 2 and 6 are shown in 

Scheme 3 (more details in Schemes A of the Supplementary material). Abstraction and 

loss of one hydrogen have been considered in other studies as realistic competitors of ring 

closures under combustion or pyrolisis condition.[73] 

 

3.1.2  Minor pathways. Several other reactions could take place as a consequence of 

the reaction between propargyl radical and butadiyne, which involve other 4, 5, and 6-

membered rings, bicycles, or linear intermediates. They have been the subject of a thesis 

work.[74]   However, these structures and the related transition structures are characterized 
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by high energy barriers which make them non competitive with the pathways discussed 

above. For this reason, they were not included in the RRKM/master equation simulations. 

The full representation of the intertwined reaction pathways which originate from these 

radical additions is reported in the Supplementary material (Scheme B). Since the RRKM 

phase of this study (see below) reveals that the main products can be expected to come 

from a subset of reaction pathways, only these have been shown here in Schemes 1 and  2, 

for clarity.   

3.2  Master equation simulations. 

The reaction yields are expressed relative to the net amount of alkyne consumed in the 

simulation. The simulations often show back-reaction that re-forms the original reactants 

from the initial adducts.[75] However, in the experiments, the effect of the back-reaction is 

obviously not recognizable in itself, since only the final outcome is observable.  The effect 

of the back-reaction has been removed a posteriori. To this end, the yields reported in 

Figures 1-5 have been set (back reaction excluded) equal to 1, in order to allow a direct 

comparison with experimental results.  

For each of the two entrance channels we carried out two simulations separately, then 

the total yields were calculated by weight-averaging [76] the two individual channels. In 

order to access the wide ranges of combustion or pyrolysis temperatures, the kinetic 

simulation was carried out at temperatures from 600 to 2000 K. 

In low pressure flames (P= 0.01 atm) up to 1700 K, the 1-ethynylcyclopentadienyl  

radical 6 formation is the the main outcome (see Figure 1). Intermediates with yields below 

1% were not reported in the plots. Upon rising T, yields of 1 and 2 immediately drop 
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because of the fast cyclization reactions through TS 1-4 and TS 2-3, followed by 1,2 H shifts 

(TS 3-6 and TS 4-6 respectively). Above 800 K, no traces of the initial adducts 1 and 2 are 

found. 6 is located in a very deep well, and is consequently produced in noticeably high 

yield.  At temperature higher than 1600 K, H (29 and 30) and C2H2 (27 and 28) losses 

(Scheme 3) become the dominant channels.  As shown in Scheme A (supplementary 

material) an open-chain intermediate 23 can form from 6. 23, in turn, can undergo C2H2 

loss and give 28,  which is the main product. Also in the range 1000-1700 K it is produced 

in significant yield. H loss products 29 and 30 approach 21% and 25% respectively, only at 

2000 K. Yield of 27 (C2H2 loss from 23) raises up to 1800 K, then remains almost constant. 

Though the six-ring 9 (Scheme 1, left) is very stable (-49 kcal mol-1), it is not competitive 

and does not accumulate, because of its energy barrier of 8 kcal mol-1. Moreover low 

pressure promotes the back-reaction to 2. The other 6-ring intermediates of Scheme 1, 5 

and 8, have barriers which are too high compared to the other competitive steps and are 

not formed. A fraction of 6-ring structures is formed starting from the intermediate 6, 

passing through the intermediates 11, 12, 15 and 17 reported in Scheme 2, which in the end 

contribute with about the same weight to the population of structure 14. Then, H loss from 

14 causes the formation of the 6-membered ring 19. Notwithstanding the rather high 

energy, at T  1800 K, 19 forms as ca. 3% of the total. The yield decreases rapidly at higher 

and lower temperatures.  

 

In atmospheric pressure flames (P=1 atm, Figure 2) the behavior is different.  1 and 2 

are efficiently thermalized and are present with relevant yields up to 1200 K. From 900 K 

to 2000 K, the intermediate 6 is  the main product. The importance of H (29, and 30) or 
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C2H2 (27 and 28) losses rises slowly: they represent at most 20% of the total product (T 

=2000 K). 6-rings 9 and 19 are produced with yields of 0.2% at T=1600 K, and 1% at T=2000 

K respectively (not reported in the Figure 2).     It is apparent that the pressure of the buffer 

gas plays a relevant role on the kinetics, and product yields and distribution. 

Estimated absolute rate constants for the main products (H and C2H2 losses, and 19) 

are plotted in Figure 3. The rate constants were calculated by multiplying the yields of 

each species by  k∞(T), the high pressure limit rate constant for propargyl + butadiyne 

recombination reaction.  Rate constants for each of the two channels were summed to 

obtain the overall rate constants reported below.  In the Supplementary material (Table A) 

the rate constants were fitted by using a modified Arrhenius equation k= A Tn  exp (-

Ea/RT). 

Due to the uncertainty on the barrier calculations, the rate constants estimated by 

RRKM/ME have to be considered only qualitatively. 

In the range 800-2000 K our rate constants (ka) for the H losses (formation of 29 and 30) are 

similar to those calculated by da Silva and Trevitt (kb): the ratio ka/kb is in between 5.6 (30,  

600 K) and 0.4 (30, 2000 K). The rate constant for the C2H2 losses (formation of 27 and 28) 

are almost identical (ratio =1.7) at 2000 K but at low temperature they are significantly 

different (up to 3 orders of magnitude). As concerns the 5-ring 6, it shows an opposite 

behaviour: the rate constants agree at 600 K, but they are dissimilar [77] at high 

temperature.   

In high pressure flames (Figure 4), which simulate the situation of the combustion 

chamber in modern engines, thermalization is even more effective: 1 and 2 are found in 
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relevant yields up to 1800 K. The yield of intermediate 6 becomes dominant over 1500 K  

and the importance of H losses (labeled as 29 and 30) raises, over 1700 K.  

Other products are present in traces only. In particular, 6-rings 9 and 19 are produced 

with yields of only  0.4% and 0.1% respectively within the range 1800 K- 2000 K. 

Cumulative 6-ring yields (for 5, 8, 9, 14 and 19) at different pressures are shown in 

Figure 5. Relatively higher yields (close to 3%) are found under low pressure conditions, 

whereas at pressure of 1 atm or above, 6-rings represent only 0.6-1% of the total reaction 

products. Structures 19 and 9, which have aromatic character, are the main 6-ring 

intermediates, and have aromatic character. 

 

4. Conclusions  

The present study on the propargyl + butadiyne reaction focuses on the combustion 

pathways leading to the formation of 6-membered rings (aromatic or non aromatic). 

Several pathways are found, at first sight promising when ΔEZPE is considered, since keep 

below the reference EZPE level defined by the reagents. However, the subsequent RRKM 

part of this study shows that only some of them could play a role in the reaction, and that 

this role is of limited importance. Structure 9 (Scheme 1), which bears an aromatic ring, 

forms directly from the adduct 2, and is a very stable structure (-52 kcal mol-1). However, 

its formation barrier is close to the EZPE reference level and its formation results 

consequently marginal. Structures 5 and 8 (non-aromatic 6-rings, see Scheme 1) lie above 

the reactants and do not play any role.  Other 6-membered ring intermediates like 13 (-45 

kcal mol-1) and 16 (-15 kcal mol-1), which present some aromatic character, or 15 (-23 kcal 
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mol-1), non-aromatic, (all in Scheme 2) could form during the combustion process, but they 

quickly transform to the more stable aromatic structure 14 (-62 kcal mol-1). This one is 

connected, through H loss, to the closed shell aromatic product 19 (10 kcal mol-1).  

According to the kinetic study, at room pressure, the 5-membered ring 6 is the main 

product, as already stressed by da Silva and Trevitt, along with some amount of the initial 

adducts 1 and 2, and the products of H and C2H2 losses, depending on the temperature 

range. Under these conditions, the formation of the intermediate 19 is still possible but in 

low yield (about 1% at 2000 K). On the other hand, in low pressure flames, the 

intermediates 1 and 2 react to form about 3% of the 6-membered ring 19, and only 0.1% of 

9. At high pressure, 9 reaches about 0.1%; 1, 2 and 6 are the main products. 
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5. Appendix  

Some intermediates (5, 13 and 16) seem to present complex electronic structures that 

could be not properly treated by CCSD(T) and require a multireference method.  

Therefore, their energies were recalculated by the CASPT2 method which includes both 

the dynamical and non-dynamical electron correlation energies and consequently provides 

a reliable reference.  Moreover, through the inspection of the occupation number of the 

active orbitals, whether a structure presents some diradicaloid character can be assessed.  

So, the energies of the intermediates cited above, and of 1 (added for sake of comparison) 

where calculated with respect to the intermediate 6 at the CASPT2(13,13)[78]/cc-

pVTZ//M06-2X/cc-pVTZ level.  The active space [n electrons in m orbitals define the label 

(n,m)] derives from that of the reactants, which must include all the Pi orbitals of the 

butadiyne (8,8), the Pi orbitals (5,5) of the propargyl radical [79].  The calculations were 

performed by the MOLCAS 7 [80] program.  

Intermediate 5 might be seen as a triradical. It actually exhibits a radical+diradicaloid 

character.  In fact its doublet wavefunction is strongly contaminated by the quartet 

multiplicity. The contamination is testified by the UHF total spin operator expectation 

value S2 = 2.59 (for the uncontaminated doublet wavefunction  S2 = 0.75).   The CCSD(T) 

method does not completely eliminate spin-contamination.[81]  Multireference methods 

allow a more instructive inspection of its electronic structure.   

At the CASPT2 level, 5 is located 92.9 kcal mol-1 above 6 (see Table 1). Populations of 

the three singly occupied orbitals are 1.00, 1.37 and 0.63, (the other ten orbitals are 

substantially doubly occupied or empty) and testify the radical+diradicaloid character.  In 

fact, CCSD(T) overestimates the energy by 7 kcal mol-1 and seems inadequate to describe 
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triradical structures with non-negligible static (structure dependent)  correlation.  Anyway, 

even using multireference methods, 5 formation remains not competitive compared to the 

other processes.  

Intermediates 13 and 16 are carbene radicals. However, in these cases, the 

diradicaloid character is less marked (the populations of the active orbitals are close to 2, 1 

or 0), in such a way that they can be treated by single reference wavefunction methods. In 

fact, for these structures, as for the adduct 1, CCSD(T) energies are close to the 

CASPT2(13,13) energies.   By comparing single point CASPT2 energies based on M06-

2X/cc-pVDZ geometries with CASPT2/cc-pVDZ//CASPT2/cc-pVDZ for some structures 

(Table 2), the agreement between the two sets of data is apparent. Therefore we deduced 

that DFT(M06-2X) gives reasonably reliable geometries for CASPT2 calculations. For this 

validation cc-pVDZ basis set was used because CAS(13,13)PT2/cc-pVTZ optimizations 

were computationally too demanding. 

Thermodynamic and kinetic data were used to validate the computational level 

chosen for this study [CCSD(T)/cc-pVTZ//DFT(M06-2X)/cc-pVTZ for energies; 

DFT(M06-2X)/cc-pVTZ for geometries and thermochemistry]. Five reactions were first 

considered, and a comparison between the relevant experimental and computational 

reaction enthalpies drawn (Table 3). Reaction #1 is the formation of the benzyl radical from 

propargyl and but-1-ene-3-yne. Reaction #2 is the formation of benzene starting with two 

propargyl radicals (see the studies reported in the Introduction). Reaction #3 is ethyne 

trimerization to give benzene.[82]  Reaction #4 sees seven ethyne molecules put into 

relation with two benzyl radicals: it is not to be considered as a real reaction, yet it allows a 
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“reaction” enthalpy comparison. Reaction #5 is the radical coupling of propargyl with 

atomic hydrogen, to get propyne.   

Then, the rate constants for the propargyl radical + ethyne reaction were calculated at 

the same level by using TST theory, at four different temperatures, and compared to 

experimental data.[83] Calculated rate constants show a very good agreement with the 

experimental rate constants, as reported in Table 4.  
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Scheme 1. The prominent steps of the propargy radical (C3H3) + butadiyne (C4H2) reaction.  ΔEZPE 
energies in kcal mol-1. In parentheses the energies reported in ref 51.   
 
Scheme 2.  6-Membered rings formation from the intermediate 6. ΔEZPE energies in kcal mol-1. 
Figures in parentheses are energies reported in Ref 51. 
 
Scheme 3. C2H2 or H losses. ΔEZPE energies in kcal mol-1. In parentheses the energies reported in 
ref 51. 
 
Figure 1. Product distribution of the propargyl radical + butadiyne at P =0.01 atm as a function of T.  
27 and 28 are open chain products from C2H2 loss. 29 and 30  are H loss open-chain products.  19 is 
a  H loss 6-membered ring products from 14 (both are 6-rings). 1 is the open-chain initial 
intermediate. 6 is a 5-membered ring. 
 
Figure 2. Product distribution of the propargyl radical + butadiyne in function of T, at P = 1 atm.  27 
and 28 are C2H2 loss open-chain products. 29 and 30  are H loss open-chain products. 1 and 2 are 
the open-chain initial intermediates. 4 and 6 are 5-membered rings. 
 
Figure 3. Calculated rate constants in  molec-1 cm3 s-1  of the most relevant products as a  function 
of T, at P =1 atm. 6 is a 5-membered ring. 27 and 28 are C2H2 loss opne-chain products. 29 and 30  
are H loss open-chain products. 19 is a 6-ring produced by H loss products from 14. 
 
Figure 4. Product distribution of the propargyl radical + butadiyne as a function of T, at P = 40 atm. 
29 and 30  are H loss open-chain products. 1 and 2 are the open-chain initial intermediates. 3, 4 and 
6 are 5-membered rings.   
 
Figure 5. Total 6-membered ring formation (cumulative yield of 5, 8, 9, 14 and 19) as a function of 
T, at three pressures (0.01, 1 and 40 atm).  
 

Table 1.  Comparison of the CASPT2 and CCSD(T) energies for structures with diradicaloid 
character.a  

 

Table 2.  Effect of the M06-2X geometries on the CASPT2 energies.a 
 
 
Table 3. Experimental vs. theoretically assessed reaction enthalpies for cases 1-5. 

 

Table 4.  Experimental vs. theoretically assessed rate constants for the propargyl radical + ethyne 
reaction. 
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 CASPT2b CCSD(T)c 

 6 0.0 0.0 

 1 61.9 60.5 

 5 92.9 99.5 

 13 28.7 30.5 

 16 61.0 60.7 
a ΔE in kcal mol-1, with respect the intermediate 6.  
b CAS(13,13)PT2/cc-pVTZ//M06-2X/cc-pVTZ   
c CCSD(T)/cc-pVTZ//M06-2X/cc-pVTZ  

 



 M06-2Xb CASPT2//M06-2Xc CASPT2d 

 6 0.0 0.0 0.0 

 5 93.3e 89.4 89.1 

 13 28.6 26.2 26.5 

 16 57.6 57.5 57.7 

a ΔE in kcal mol-1, with respect the intermediate 6  b M06-2X/ 

cc-pVDZ optimization. c CAS(13,13)PT2/cc-pVDZ//M06-2X/ 

cc-pVDZ.  d CAS(13,13)PT2/cc-pVDZ optimization.  e Spin-

Projected energy.[81] 
 



 
 
 
 

Reaction 

H(exp.)/kcal mol-1 
 

      H(theor.)/kcal mol-1 

 DFT(M06-2X)g CCSD(T)h 

1 -101.9 ± 1.5 a,b,d  -103.7 -101.9 
2 -142.20 ± 1.43 a,c  -148.2 -147.8 
3 -142.77 ± 0.22 f,c  -148.1 -144.9 
4 -280 ± 1 f,d  -290.7 -282.1 
5 -88.78  ± 1.02a,e,f  -91.1   -90.9 
 

Mean Signed Error 
 

-5.23 -2.39 
 Mean Unsigned Error  5.23 2.39 

apropargyl radical: ref 84; bbut-1-ene-3-yne: ref 85;  
c benzene: ref 86; dbenzyl radical: ref 84;  epropyne: ref 87; 
fhydrogen atom and ethyne: ref  88; ggeometry optimization and 
thermochemistry at this level of theory; hCCSD(T)/cc-
pVTZ//M06-2X/cc-pVTZ energy plus M06-2X/cc-pVTZ 
thermochemistry. 

 



 k / molec-1 cm3 s-1 

T /K experimenta DFT(M06-2X)b CCSD(T)c 

800 7.25 x 10-16 3.04 x 10-16 1.53 x 10-16 

900 1.46 x 10-15 9.40 x 10-16 5.11 x 10-16 

1000 2.55 x 10-15 2.38 x 10-15 1.38 x 10-15 

1100 4.03 x 10-15 5.21 x 10-15 3.16 x 10-15 

a ref 83; bgeometry optimization and thermochemistry at DFT(M06-

2X)/cc-pTVZ level; csingle-point energy at CCSD(T)/cc-pVTZ 

//DFT(M06-2X)/cc-pVTZ, plus M06-2X/cc-pVTZ thermochemistry. 
 


