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1. Introduction

The measure of multivariate association, that is, of the association between groups of components of
a general d-dimensional random vector X = (X1, ..., Xd), is a topic of increasing interest in a series
of application contexts. Among the information measures, the mutual information, a special case of
relative entropy or Kullback-Leibler distance [1], is a quantity that measures the mutual dependence
between the variables considered. Unlike the measures of linear dependency between random variables,
such as the correlation coefficient, the mutual information is particularly interesting as it is sensitive
also to dependencies that are not codified in the covariance. Although this is one of the most popular
dependency measures, it is only one of the many other existing ones, see for example [2].

The extension of mutual information to d–dimensional random vectors is not trivial [3–5].
Considering the distance between the joint distribution of the random vector and the joint distribution of
the random vector with independent univariate components gives the so called total mutual information.
However, in many instances, it is more interesting to study the distance between groups of components
of the random vector, which are again multivariate random vectors of different dimensions. Hence the
mutual information, in its general d–dimensional definition, is a distance of the joint distribution of
the random vector to the joint distribution of groups of components considered independent from each
other. We consider here this general framework with the aim of introducing a good estimator for the
multivariate mutual information.

The problem of statistical estimation of mutual information has been considered by various
authors. Optimized estimators that use adaptive bin sizes have been developed in [6,7]. A very
good estimator based on k–nearest neighbor statistics is proposed in [8]. A computationally efficient
modification of this method appeared recently in [9]. The estimation of mutual information sets in
the broader context of the estimation of information–type measures such as entropy, Kullback–Leibler
distance, divergence functionals, Rényi entropy. The k–nearest neighbor statistics are used to build
an estimator for entropy in [10] and for the more general Rényi entropy in [11,12]. An overview of
nonparametric entropy estimators can be found in [13]. For the case of discrete random variables, see for
example [14]. A variational characterization of divergences allows the estimation of Kullback–Leibler
divergence (and more generally any f–divergence) to turn into a convex optimization problem [15–17].
An interesting application of information–type quantities to devise a measure of statistical dispersion
can be found in [18].

We propose here a new and simple estimator for the mutual information in its general
multidimensional definition. To accomplish this aim, we first deduce an equation that links the mutual
information between groups of components of a d-dimensional random vector to the entropy of the so
called linkage function [19], that reduces to the copula function [20] in dimension d = 2. In this way
the problem of estimating mutual information is reduced to the estimation of the entropy of a suitably
transformed sample of the same dimensions as the original random vector. This topic is hence closely
related to the estimation of the Shannon entropy.

The structure of the paper is as follows: Notation and mathematical background are introduced in
Section 2, where a brief survey on copula function and linkage function is also provided. In Section 3

we expose the method proposed to estimate the mutual information, providing also some details on the
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resulting algorithm and on the implementation care required. Section 4 contains some examples where
the estimator is applied to simulated data and its performances are compared with some other estimators
in literature. Conclusions are drawn in Section 5.

2. Notations and Mathematical Background

Given a d−dimensional random vector X = (X1, . . . , Xd), let us denote F1,...,d(x1, . . . , xd) =

P (X1 ≤ x1, . . . , Xd ≤ xd), for (x1, . . . , xd) ∈ Rd, the joint cumulative distribution function (c.d.f.)
and Fi(x) = P (Xi ≤ x), for i = 1, . . . , d and x ∈ R, the marginal c.d.f. of the i−th component. When
X is absolutely continuous, f1,...,d(x1, . . . , xd) for (x1, . . . , xd) ∈ Rd is the joint probability density
function (p.d.f.) and fi(x) for i = 1, . . . , d and x ∈ R the corresponding marginal p.d.f. of the i−th
component. Furthermore, Fi1|i2,...,il(xi1|xi2,...,xil ) and fi1|i2,...,il(xi1|xi2 , . . . , xil), where each i1, . . . , il

assumes a different value ranging from 1 to d and l = 2, . . . , d, denote respectively the conditional
c.d.f. and the conditional p.d.f. of the variable Xi1 with respect to the variables Xi2 , . . . , Xid . For the
sake of brevity, when α = (α1, . . . , αn) is any multi–index of length n we use the following notation
Fα(xα) = Fα1,...,αn(xα1 , . . . , xαn) denoting the c.d.f. of the random vector Xα = (Xα1 , . . . , Xαn) and
fα(xα) = fα1,...,αn(xα1 , . . . , xαn) denoting the p.d.f. of Xα. Furthermore, when not necessary, we omit
the argument of the functions, i.e., we may write fα in spite of fα(xα).

The mutual information (MI) of a 2-dimensional random vector X = (X1, X2) is given by

MI(X1, X2) =

∫
R2

f1,2(x1, x2) log2

[
f1,2(x1, x2)

f1(x1)f2(x2)

]
dx1dx2 (1)

If X1 and X2 are independent MI(X1, X2) = 0.
The relative entropy (or Kullback-Leibler distance) D between the p.d.f.’s f and g is defined by

D(f ‖g ) =

∫
R2

f(x1, x2) log
f(x1, x2)

g(x1, x2)
dx1dx2 (2)

Hence, MI can be interpreted as the Kullback-Leibler distance of the joint p.d.f. f1,2 from the p.d.f. f1 ·f2
of a vector with independent components, i.e., it is a measure of the distance between X = (X1, X2) and
the random vector with the same marginal distributions but independent components.

The differential entropy of the absolutely continuous random vector X = (X1, . . . , Xd) is defined as

H(X1, . . . , Xd) = −
∫
Rd

f1,...,d(x1, . . . , xd) log2 f1,...,d(x1, . . . , xd)dx1 . . . dxd (3)

MI and entropy in the case d = 2 are related through the well known equation [1]

MI(X1, X2) = H(X1) +H(X2)−H(X1, X2) (4)

The generalization of MI to more than two random variables is not unique [3]. Indeed different
definitions can be given according to different grouping of the components of the random vector
X = (X1, . . . , Xd). More precisely, for any couple of multi-indices (α, β) of dimensions h and k

respectively, with h + k = d and partitioning the set of indices {1, 2, . . . , d}, the MI(X1, . . . , Xd)
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can be defined as the MI(Xα, Xβ), where Xα = (Xα1 , . . . , Xαh) and Xβ = (Xβ1 , . . . , Xβk). Therefore
we have

MI(Xα, Xβ) =

∫
fα,β log2

fα,β
fαfβ

(5)

=

∫
Rd

f1,...,d(x1, . . . , xd) log2

[
f1,...,d(x1, . . . , xd)

fα1,...,αh(xα1 , . . . , xαh)fβ1,...,βk(xβ1 , . . . , xβk)

]
dx1 . . . dxd

More generally, for any n multi-indices (α1, . . . , αn) of dimensions h1, . . . , hn respectively, such that
h1 + · · ·+ hn = d and partitioning the set of indices {1, 2, . . . , d} the following quantities

MI(Xα1 , . . . , Xαn) =

∫
Rd

fα1,...,αn log2

fα1,...,αn

fα1 · · · fαn
(6)

=

∫
Rd

f1,...,d(x1, . . . , xd)×

log2

[
f1,...,d(x1, . . . , xd)

fα1
1,...,α

1
h1

(xα1
1
, . . . , xα1

h1
) · · · fαn1 ,...,αnhn (xαn1 , . . . , xαnhn )

]
dx1 . . . dxd

are all d–dimensional extensions of Equation (1). In the particular case n = d where all the multi-indices
have dimension 1, Equation (6) gives the so called total MI, a measure of the distance of the distribution
of the given random vector to the one with the same marginal distributions but mutually independent
components.

Equation (6) can be rewritten as

MI(Xα1 , . . . , Xαn) =

∫
fα1,...,αn log2 fα1,...,αn (7)

−
∫
fα1,...,αn log2 fα1 − · · · −

∫
fα1,...,αn log2 fαn

and then, integrating each term, it is is easy to prove the following generalization to the d–dimensional
case of Equation (4)

MI(Xα1 , . . . , Xαn) = H(Xα1) + · · ·+H(Xαn)−H(X1, . . . , Xd) (8)

Another approach to the study of dependencies between random variables is given by copula functions
(for example [20]). A d−dimensional copula (or d−copula) is a function C : [0, 1]d → [0, 1] with the
following properties:

(1). for every u = (u1, . . . , ud) ∈ [0, 1]d, C(u) = 0 if at least one coordinate is null and C(u) = uk if
all coordinates are 1 except uk;

(2). for every a = (a1, . . . , ad) and b = (b1, . . . , bd) ∈ [0, 1]d such that a ≤ b, VC([a, b]) ≥ 0.

Here VC is the so called C−volume of [a, b], i.e., the n−th order difference of C on [a, b]

VC([a, b]) = ∆bd
ad

∆bd−1
ad−1

. . .∆b1
a1
C(u) (9)

where

∆bk
ak
C(u) = C(u1, . . . , uk−1, bk, uk+1, . . . , hd)− C(u1, . . . , uk−1, ak, uk+1, . . . , hd) (10)
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Hence, a copula function is a non–decreasing function in each argument.
A central result in the theory of copulas is the so called Sklar’s theorem, see [20]. It captures the role

that copulas play in the relationship between joint c.d.f.’s and their corresponding marginal univariate
distributions. In particular it states that for any d−dimensional c.d.f. F1,...,d of the random vector
X = (X1, . . . , Xd) there exists a d−copula C such that for all x = (x1, . . . , xd) ∈ Rd

F1,...,d(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (11)

where Fi are the univariate margins. If the margins are continuous, then the copula C is uniquely
determined. Otherwise, C is uniquely determined over RanF1 × · · ·×RanFd, where RanFi is the range
of the function Fi. Conversely, if C is a copula and Fi, i = 1, . . . , d are one-dimensional distribution
functions, then the function F1,...,d(x1, . . . , xd) defined in Equation (11) is a d-dimensional distribution
function with margins Fi, i = 1, . . . , d.

In particular, a copula C can be interpreted as the joint c.d.f. of the random vector U = (U1, . . . , Ud),
where each component is obtained through the transformation

Ui = Fi(Xi), i = 1, . . . , d (12)

Indeed

P (U1 ≤ u1, . . . , Ud ≤ ud) = P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud)

= P (X1 ≤ F−11 (u1), . . . , Xd ≤ F−1d (ud))

= F1,...,d(F
−1
1 (u1), . . . , F

−1
d (ud))

= C(u1, . . . , ud) (13)

Moreover, as each component is obtained with Equation (12), the univariate marginal distributions of
the random vector U are all uniform on [0, 1]. An important property that is tightly bound to MI is that
copula functions are invariant under strictly increasing transformations of the margins, see [20].

If a copula C is differentiable, the joint p.d.f. of the random vector X can be written as

f1,...,d(x1, . . . , xd) =
d∏
i=1

fi(xi) · c(F1(x1), . . . , Fd(xd)) (14)

where

c(u1, . . . , ud) =
∂d

∂u1 . . . ∂ud
C(u1, . . . , ud), u ∈ [0, 1]d (15)

is the so called density of the copula C.
As illustrated in [21], it is not possible to use copula functions to handle multivariate distribution

with given marginal distributions of general dimensions, since the only copula that is compatible with
any assigned multidimensional marginal distributions is the independent one. To study dependencies
between multidimensional random variables we resort to a generalization of copula notion. It relies on
the use of the so-called linkage functions introduced in [19].

Let us consider the d-dimensional random vector X and any n multi-indices (α1, . . . , αn) of
dimensions (h1, . . . , hn) respectively, such that h1 + · · ·+ hn = d and partitioning the set {1, 2, . . . , d}.
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For i = 1, . . . , n, let Fαi be the hi-dimensional c.d.f. of Xαi = (Xαi1
, . . . , Xαihi

) and let Fα1,...,αn be
the joint c.d.f. of Xα1 , . . . , Xαn , which is of dimension d as the multi–indices are partitioning the set
{1, 2, . . . , d}.

Define the transformation Ψαi : Rhi → [0, 1]hi , i = 1, . . . , n as

Ψαi(xαi1 , . . . , xαihi
) = (Fαi1(xαi1), Fαi2|αi1(xαi2|xαi1), . . . , Fαihi |αi1,...,αihi−1

(xαihi
|xαi1 , xαi2 , . . . , xαihi−1

)) (16)

for all xαi in the range of Xαi .
Then the vectors

Uαi = (Uαi1 , . . . Uαihi
) = Ψαi(Xαi1

, . . . , Xαihi
) = Ψαi(Xαi) (17)

are hi-dimensional vectors of independent uniform [0, 1] random variables, see [19].
The linkage function corresponding to the d-dimensional random vector (Xα1 , . . . , Xαn) is defined as

the joint p.d.f. L of the vector

(Uα1 , . . . , Uαn) = (Uα1
1
, . . . , Uα1

h1
, . . . , Uαn1 , . . . , Uαnhn ) = (Ψα1(Xα1), . . . ,Ψαn(Xαn)) (18)

Notice that for d = 2 the linkage function reduces to the copula function. Analogously to the
two–dimensional case, linkages are invariant under strictly increasing functions, that is a d–dimensional
function with components strictly increasing real univariate functions, see Theorem 3.4 in [19].

The information regarding the dependence properties between the multivariate components of the
random vector (Xα1 , . . . , Xαn) is contained in the linkage function, that is independent from the
marginal c.d.f.’s. Linkage functions can then be successfully employed when one is interested in
studying the dependence properties between the random vectors (Xα1 , . . . , Xαn) disregarding their
single components. On the other hand, linkage functions allow to study the interrelationships not
only between all the components of a random vector, but also between given chosen sets of not
overlapping random components of the vector. They contain the information regarding the dependence
structure among such marginal vectors, while the dependence structure within the marginal vectors is
not considered explicitly. It must be underlined that different multivariate c.d.f.’s Fα1,...,αn can have the
same linkage function but different marginal distributions.

In the next Section we will discuss the use of linkage functions for the computation of the MI between
random vectors.

3. The Method

We propose here a method to estimate the MI of a d-dimensional random vector defined in
Equation (6) by means of a random sample drawn from the corresponding d-dimensional joint
distribution. We assume that neither the joint c.d.f. nor the marginal c.d.f.’s of the components of
the random vector are known. The estimation approach proposed is then completely non parametric.

3.1. MI of a d–Dimensional Random Vector and Entropy of the Linkage

The method we are presenting is based on the equation between the MI of a d–dimensional random
vector and its entropy deduced in the next theorem.
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Theorem 1. Let X = (X1, . . . , Xd) be a d–dimensional random vector. For any n multi-indices
(α1, . . . , αn) of dimensions (h1, . . . , hn) respectively, such that h1 + · · · + hn = d and partitioning
the set of indices {1, 2, . . . , d}, it holds

MI(Xα1 , . . . , Xαn) = −H(Uα1 , . . . , Uαn) (19)

where (Uα1 , . . . , Uαn) = (Ψα1(Xα1), . . . ,Ψαn(Xαn)) and the function Ψαi , i = 1, . . . , n are defined in
Equation (16).

Proof. According to Equation (16) the random vector (Uα1 , . . . , Uαn) is obtained from (X1, . . . , Xd) by
means of the following transformations:

Uα1
1

= Fα1
1
(Xα1

1
)

Uα1
2

= Fα1
2|α1

1
(Xα1

2
|Xα1

1
)

...
Uα1

h1
= Fα1

h1
|α1

1,α
1
2,...,α

1
h1−1

(Xα1
h1
|Xα1

1
, Xα1

2
, . . . , Xα1

h1−1
)

Uα2
1

= Fα2
1
(Xα2

1
)

Uα2
2

= Fα2
2|α2

1
(Xα2

2
|Xα2

1
)

...
Uαn1 = Fαn1 (Xαn1

)
...

Uαnhn = Fαnhn |α
n
1 ,...,α

n
hn−1

(Xαnhn
|Xαnh1

, . . . , Xαnhn−1
)

(20)

where the elements of the vector (X1, . . . , Xd) are grouped according to the multi–indices (α1, . . . , αn).
The corresponding Jacobian matrix is given as follows

J =



∂u
α11

∂x
α11

0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0

∂u
α12

∂x
α11

∂u
α12

∂x
α12

. . . 0 0 0 . . . 0 . . . 0 0 . . . 0

...
... . . . ...

...
... . . . ... . . .

...
... . . . ...

∂u
α1
h1

∂x
α11

∂u
α1
h1

∂x
α12

. . .
∂u

α1
h1

∂x
α1
h1

0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0
∂u

α21

∂x
α21

0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0
∂u

α22

∂x
α21

∂u
α22

∂x
α22

. . . 0 . . . 0 0 . . . 0

...
... . . . ...

...
... . . . ... . . .

...
... . . . ...

0 0 . . . 0
∂u

α2
h2

∂x
α21

∂u
α2
h2

∂x
α22

. . .
∂u

α2
h2

∂x
α2
h2

. . . 0 0 . . . 0

...
...

...
...

...
...

...
... . . . ...

...
...

...

0 0 . . . 0 0 0 . . . 0 . . .
∂uαn1
∂xαn1

0 . . . 0

0 0 . . . 0 0 0 . . . 0 . . .
∂uαn2
∂xαn1

∂uαn2
∂xαn2

. . . 0

...
... . . . ...

...
... . . . ... . . .

...
... . . . ...

0 0 . . . 0 0 0 . . . 0 . . .
∂uαn

hn

∂xαn1

∂uαn
hn

∂xαn2
. . .

∂uαn
hn

∂xαn
hn



.



Entropy 2013, 15 5161

It is evident that the Jacobian matrix is a block diagonal matrix having as main diagonal blocks lower
triangular matrices. Its determinant can be calculated as the product of the determinants of the main
diagonal blocks, and hence

|J | =
∂uα1

1

∂xα1
1

. . .
∂uα1

h1

∂xα1
h1

∂uα2
1

∂xα2
1

. . .
∂uα2

h2

∂xα2
h2

∂uαn1
∂xαn1

. . .
∂uαnhn
∂xαnhn

(21)

Recalling the transformations given in Equation (20) we have

|J | =
∂uα1

1

∂xα1
1

. . .
∂uα1

h1

∂xα1
h1

∂uα2
1

∂xα2
1

. . .
∂uα2

h2

∂xα2
h2

∂uαn1
∂xαn1

. . .
∂uαnhn
∂xαnhn

=
n∏
j=1

∂Fαj1
∂xαj1

hj∏
i=2

∂Fαji |α
j
1,...,α

j
i−1

∂xαji


=

n∏
j=1

fαj1
hj∏
i=2

fαji |α
j
1,...,α

j
i−1


=

n∏
j=1

fαj1,...,α
j
hj

= fα1 . . . fαn (22)

where the second to the last equality is obtained using iteratively the definition of conditional probability
density function, i.e.,

fαj1|α
j
2

=
fαj1,α

j
2

fαj2
, fαj3|α

j
1,α

j
2

=
fαj1,α

j
2,α

j
3

fαj1,α
j
2

, . . . , fαjhj |α
j
1,...,α

j
hj−1

=
fαj1,...,α

j
hj

fαj1,...,α
j
hj−1

As the random variables (Uα1 , . . . , Uαn) are the transformation of the vector (X1, . . . , Xd) given in
Equation (20), their joint p.d.f. can be deduced as

fUα1 ,...,Uαn (uα1 , . . . , uαn) =
f1,...,d(x1, . . . , xd)

|J |
(23)

where f1,...,d is the joint p.d.f. of (X1, . . . , Xd) and |J | is given in Equation (22). The last equation
can be further simplified by renaming (Uα1

1
, . . . , Uα1

h1
, Uα2

1
, . . . , Uα2

h2
, Uαn1 ,...,αnhn ) = (U1, . . . , Ud),

and we get

fU1,...,Ud(u1, . . . , ud) =
f1,...,d(x1, . . . , xd)

|J |
(24)

From the d–dimensional definition of mutual information given in Equation (6) and applying the
change of variables given in Equation (20) we have

MI(Xα1 , . . . , Xαn) =

∫
Rd

f1,...,d(x1, . . . , xd) log2

f1,...,d(x1, . . . , xd)

fα1(xα1) . . . fαn(xαn)
dx1 . . . dxd

=

∫
Rd

fU1,...,Ud(u1(x1, . . . , xd), . . . , ud(x1, . . . , xd)) |J |

× log2 [fU1,...,Ud(u1(x1, . . . , xd), . . . , ud(x1, . . . , xd))] dx1 . . . dxd

=

∫
[0,1]d

fU1,...,Ud(u1, . . . , ud) log2 fU1,...,Ud(u1, . . . , ud)du1 . . . dud
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Just rewriting the last line of the previous equation using Equation (3), we get the thesis

MI(Xα1 , . . . , Xαn) = −H(Uα1 , . . . , Uαn) (25)

Theorem 1 proves that the MI of a random vector can be computed without resorting to the marginal
distributions, but rather transforming the components by means of Equation (20) into one-dimensional
uniform [0, 1] random variables and then computing the Shannon entropy of the resulting vector.
Remark: Linkage functions do not change for monotone transformations. This property reflects the
well know invariance property of MI under reparametrization.

In the particular case d = 2 the definition of mutual information is simpler, see Equation (1) and the
linkage functions reduce to the well known copula functions, as shown in the following

Corollary 1. The MI of the 2-dimensional random vector X = (X1, X2) can be obtained as

MI(X1, X2) = −H (U1, U2) (26)

where U1 = F1(X1) and U2 = F2(X2).

Proof. For d = 2 the only non trivial choice of multi–indices partitioning the set {1, 2} is α1 = 1 and
α2 = 2, hence h1 = 1 and h2 = 1. The transformations given in Equation (20) reduce to Equation (12)
for d = 2 {

U1 = F1(X1)

U2 = F2(X2)
(27)

Let us notice that the joint c.d.f. of the couple (U1, U2) is the copula function, see Equation (13). Hence
their p.d.f. is obtained as

f1,2(x1, x2) =
∂2

∂x1∂x2
C(F1(x1), F2(x2)) = c(F1(x1), F2(x2))f1(x1)f2(x2) (28)

where c(u1, u2) is the copula density defined in Equation (15). In this special case Equation (22)
reduces to

|J | = f1(x1)f2(x2) (29)

and the definition given in Equation (1) can be rewritten as

MI(X1, X2) =

∫
R2

f1(x1)f2(x2)c(F1(x1), F2(x2)) log2 c(F1(x1), F2(x2))dx1dx2

=

∫
[0,1]2

c(u1, u2) log2 c(u1, u2)du1du2

= −H (U1, U2)

Hence, the MI between two one-dimensional random variables can be computed without resorting
to the marginal distributions of the two variables, but transforming them into the corresponding
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one-dimensional uniform [0, 1] variables according to Equation (12) and then computing their Shannon
entropy. Equation (26) can be equivalently rewritten as

MI(X1, X2) = EC [log2 c(U1, U2)] (30)

where EC denotes the expectation with respect to the copula distribution. Note that the result concerning
d = 2 has already been obtained in [22,23] and one of the more impactful studies that exploits this
equality is [24].

Example. In the particular case where X = (X1, X2, X3) and the multi–indices are chosen such that
Xα1 = X1 and Xα2 = (X2, X3) we have

MI(Xα1 , Xα2) = −H(U1, U2, U3) (31)

where 
U1 = F1(X1)

U2 = F2(X2)

U3 = F3|2(X3|X2)

(32)

Let us remark that the choice of the multi–indices grouping the elements of the random vector X
uniquely determines the transformation given in Equation (32) required to properly get the random
vector U1, U2, Ue such that Equation (31) holds true. Different choices of multi–indices give different
transformations and different random vectors U ’s.

3.2. The Estimation Procedure

Let (X1, . . . , XN) be a random sample of size N drawn from the multivariate distribution F1,...,d of
the random vector X . Using Theorem 1, we propose here a method to estimate the mutual information
of the random vector X in its general definition, i.e., the MI(Xα1 , . . . , Xαn) for any n multi-indices
(α1, . . . , αn) of dimensions (h1, . . . , hn) respectively, such that h1 + · · · + hn = d and partitioning the
set 1, 2, . . . , d.

Let us proceed as follows:

1. estimate the conditional c.d.f.’s in Equation (20). Denote these functions as Ψ̂αi =

(F̂αi1 , F̂αi2|αi2 , . . . , F̂αihi |α
i
hi−1

), for i = 1, . . . , n;

2. for k = 1, . . . , N calculate Uk = (Uk
α1 , . . . , Uk

αn), where Uk
αi =

(Ψ̂α1(Xk
α1), . . . , Ψ̂αn(Xk

αn)), for i = 1, . . . , n;

3. estimate the MI(Xα1 , . . . , Xαn) as the Shannon entropy in Equation (19) of the
transformed sample (U1, . . . , UN).

For the particular case when d = 2 the procedure becomes the following:
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1. estimate the c.d.f.’s in Equation (27). Denote the estimated functions as (F̂1, F̂2);

2. calculate Uk = (F̂1(X
k
1 ), F̂2(X

k
2 )), for k = 1, . . . , N ;

3. estimate MI(X1, X2) as the Shannon entropy in Equation (26) of the transformed
sample (U1, . . . , UN).

Let us now enter the details of the above illustrated procedure. The performances of the proposed
method strongly depend on the estimators used for the c.d.f.’s and conditional c.d.f.’s at step 1 and the
entropy at step 3 of the above proposed algorithm.

Step 1 of the procedure: estimating c.d.f’s. Let us compare the performances of the estimation
algorithm for three different choices of the estimator for the c.d.f.’s, namely the empirical distribution
function, the kernel density estimator and the k–nearest neighbor density estimator.

The most natural estimator for the c.d.f is the empirical distribution function, that for (X1, . . . , XN)

a univariate random sample of size N is defined as

F̂N(t) =
1

N

N∑
i=1

1(−∞,t](X
i) (33)

Despite its good asymptotic properties, the empirical distribution function exhibits a slow rate of
convergence, see for example [25] where it is shown that the empirical distribution function is a deficient
estimator with respect to a certain class of kernel type estimators. It could be then necessary to resort to
more reliable techniques to estimate the c.d.f.’s.

As suggested in [25], we could consider kernel–based density estimators, both to estimate the
univariate c.d.f.’s and the conditional c.d.f.’s, where the conditioning random variable could be
multivariate, see Equation (20). Let us recall that, given X1, . . . , XN a random sample of size N drawn
from a law with p.d.f. f , the univariate kernel density estimator for f is obtained as

f̂ker(x) =
1

Nh

N∑
i=1

K

(
x−X i

h

)
(34)

where K is a suitable function called kernel, that is required to be a normalized probability density, and
h is a positive number called the bandwidth, see [26,27]. One of the most commonly used kernel is the
Gaussian kernel

f̂ker(x) =
1

Nh

N∑
i=1

1√
2π

exp

(
−(x−X i)2

2h2

)
(35)

However, depending on the properties of the density to be estimated, it can be convenient to consider
different kernels. For example the rectangular kernel and the Gamma kernel can be recommended to
estimate the uniform and the exponential distributions respectively. The bandwidth h has to be chosen
carefully as too small values can give rise to spurious fine structures of the estimate, while too large
values can hide all the details in the estimated density curve. The choice of a possible optimal bandwidth
usually falls on the one that minimizes the mean integrated square error. When it is assumed that the
underlying distribution is Gaussian, the optimal bandwidth hopt is given by

hopt =

(
4

3N

) 1
5

σ ∼= 1.06 σN−
1
5 (36)
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where σ denotes the standard deviation of the sample values, see [26]. Let us remark that having no
parametric hypothesis on the distribution of the random vector considered, in our method the choice of
the kernel function and of the bandwidth should be made by visual inspection of the histograms of the
involved distributions.

A third choice to estimate the c.d.f.’s could rely on the nearest neighbor density estimator, see [27,28].
Let us recall that, given X1, . . . , XN a random sample of size N drawn from a law with p.d.f. f , the
nearest neighbor density estimator for f is obtained as

f̂knn(x) =
k

NV
(37)

where k is fixed and V is the volume of the sphere that contains precisely k data points, the k−nearest
to x. A possible generalization of the nearest neighbor estimator provides an estimator of the kernel
type again, as in Equation (34) but with bandwidth h equal to the distance between x and its k−nearest
neighbor. As actually the generalized nearest neighbor is a kernel estimator with a suitable choice of
the bandwidth parameter, we are calling nearest neighbor density estimator only the simple one given
in Equation (37).

For the estimation of conditional densities, some papers propose methods improving the naive kernel
estimator obtained as the ratio of the multidimensional kernel estimators for the joint p.d.f. and the joint
p.d.f. of the conditioning variables, see [29–31]. In this paper we use the estimator proposed in [30] and
successively improved in [31], based on a locally polynomial regression.

The performances of our estimator for the three different choices of c.d.f.’s estimations are compared
in Figure 1. The samples are drawn from a bivariate gaussian distribution with standard marginal
distributions and correlation coefficient ρ = 0.9 for different sample sizes N . The accuracy of the
estimation increases with increasing sample size, but the best performance is definitely obtained with the
kernel density estimator (black).

Figure 1. 95% confidence intervals of the estimated MI of a bivariate gaussian distribution
as the sample size N increases. True value of MI = 1.1979 bits. Cumulative distribution
functions are estimated by the empirical distribution function given in Equation (33) (blue),
the kernel density estimator given in Equation (34) (black) and the k−nearest neighbor
density estimator given in Equation (37) (red).
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Step 3 of the procedure: estimating entropy. The second important point that requires some care,
is the estimation of the differential entropy of the transformed sample at step 3 of our method. Also in
this case the estimation can be performed using a kernel type estimator or a nearest neighbor one.

The unbinned nearest-neighbor method proposed in [10,32] seems to have good properties. It is
based on nearest–neighbor Euclidean distances and it has been shown to be asymptotically unbiased and
consistent, provided that the underlying p.d.f. obeys certain conditions that control the convergence
of the integrals for the differential entropy, see [10]. Given a random sample of size N from the
d−dimensional random vector X = (X1, . . . , Xd), the estimator proposed for the differential entropy is
given by

Ĥknn =
d

N

N∑
j=1

log2 (λj) + log2

[
Sd(N − 1)

d

]
+

γ

ln(2)
(38)

where γ = −
∫∞
0
e−v ln vdv ∼= 0.5772156649 is the Euler-Mascheroni constant, λj is the Euclidean

distance of each sample point to its nearest neighbor and

Sd =
dπd/2

Γ(d
2

+ 1)

with Γ the gamma function is the area of a unit d-dimensional spherical surface (for example S1 = 2,

S2 = 2π, S3 = 4π, . . . ).
Another choice could be an estimator of the kernel type, see [13]. The so called resubstitution estimate

proposed in [13] is of the form

Ĥker = − 1

N

N∑
i=1

log f̂ker(Xi) (39)

where f̂ker is a kernel density estimate.

Figure 2. 95% confidence intervals of the estimated MI of a bivariate gaussian distribution
as the sample size N increases. True value of MI = 1.1979 bits. Entropy is estimated by the
k− nearest neighbor given in Equation (38) (black) and the kernel type entropy estimator
given in Equation (39) (green).
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The performances of our estimator for the two different choices of entropy estimators are compared
in Figure 2. Again, the samples are drawn from a bivariate gaussian distribution with standard marginal
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distributions and correlation coefficient ρ = 0.9 for different sample sizes N . The best performance is
definitely obtained with the k− nearest neighbor entropy estimator (black).

Hence we come to the conclusion that the best results are obtained using a kernel type density
estimator at the step 1 of the method and with a k–nearest neighbor entropy estimator at the step 3
of the method. This is the chosen procedure for the examples proposed in the next Section.

4. Examples and Simulation Results

In this Section we show the results obtained with the estimator proposed in Section 3. The examples
cover the cases d = 2, 3, 4. We choose cases for which the MI can be computed either in a closed form
expression or numerically, so that we can easily compare our results with the exact ones.

Several methods have been already proposed in the literature to estimate the MI between multivariate
random vectors from sample data. One of the most efficient seems to be the binless method exposed
in [8], based on estimates from k–nearest neighbor statistics. We refer from now on to this method as
“KSG” from the names of the authors. On the other hand, a straightforward way to estimate MI could
be to estimate separately the entropy terms in Equation (8) by means of a suitable estimator as the one
proposed in [10,32] and sum them up. Let us notice that this procedure is not recommended as the errors
made in the individual estimates of each entropy term would presumably not cancel. We refer to this
methodology as the “plain entropy” method. The results obtained with our estimator are here compared
both to the KSG and to the “plain entropy”.

As mutual information is a particular case of Kullback–Leibler divergence, we could use the
estimators proposed in [15,17]. However let us remark that our estimator is based on one single sample
of size N drawn from f1,...,d, the multivariate joint law of the random vector (X1, . . . , Xd). On the other
side, the estimators proposed in [15,17] and adapted to the case of mutual information are based on two
samples: one drawn from the multivariate joint law and the other from fα1 · · · fαn , the product of the
n marginal laws. We could build the missing sample from the given one, but it is not obvious that the
estimators will keep their good properties. Indeed in our setting the samples are no more independent as
some resampling procedure should be devised to make the method suitable for our particular case. From
a preliminary numerical study it seems that the performances of the estimators proposed in [15,17] are
not comparable to the performances of our estimator. Hence we skip this comparison.

The examples illustrated in the next two Subsections are chosen to test our approach on distributions
that could be troublesome for our approach. Following the discussion introduced in the previous Section,
the delicate point of the method is the estimation of the (conditional) cumulative distribution functions
in Equation (20). Hence we consider an example where the density to be estimated has bounded support
as for the Uniform r.v. (Example 2) and an example where the density is positive valued and with an
early steep peak as for the Exponential r.v. (Example 3). To address the problem of tails in estimation of
information–theoretic quantities, we present two examples of heavy-tailed distributions: the lognormal
(Example 4) and the Levy (Example 5). Note that the lognormal distribution is heavy tailed but with
finite all order moments, while the Levy is an alpha–stable distribution with power law tail probability
and no finite moments.
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We rely on simulated data, while we reserve to a future work the application of the estimator to data
coming from real experiments. For each example we performm = 100 simulation batches of the random
vectors involved for each of the following sample sizes N = 100, 500, 1000, 2000, 3000.

4.1. Two-Dimensional Vectors

Let us consider the following five cases of two-dimensional random vectors X = (X1, X2).

Example 1. Let X = (X1, X2) be a gaussian random vector with standard normal components
and correlation coefficient ρ = 0.9. Denoting as σ the covariance matrix of X , the MI between X1

and X2 is given as

MI(X1, X2) = −1

2
log2 [det (σ)] = 1.1980 bit

The numerical results are illustrated in Figure 3. The horizontal line indicates the exact value
MI = 1.1980. Both plots reveal that our estimator of the MI is centered around its true value. The
interquartile range considerably decreases with increasing sample size, becoming minimal for n = 3000.
The comparison of the performances with the KSG and “plain entropy” estimators shows that our
method performs comparably with KSG except for very small sample sizes (n = 100), where it has
a larger dispersion, see Figure 3—right panel—bottom right inset. It results even better for the highest
sample sizes. However its variance quickly decreases to the values attained by the KSG estimator that
are sensibly smaller that the variances of the “plain entropy” method. Actually, the “plain entropy”
estimator leads to poorer performances such as larger interquartile range and less marked centering of
the confidence interval around the true value.

Figure 3. (Example 1) Left panel: Boxplots of the estimated MI grouped according to
different sample sizes. Right panel: mean error as a function of 1/(Sample Size). Insets
to the right panel: 95% confidence interval for the estimated MI (bottom left) and standard
deviations (bottom right) versus Sample Size. Color map: black and white for the estimator
we propose in Section 3.2, red for KSG and blue for “plain entropy”.
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Example 2. Let X1 and X2 be linearly dependent random variables, related through the
following equation

X2 = 5X1 +X3

where X1 is uniformly distributed on the interval [0, 1] and X3 is a standard gaussian random
variable. In this case the mutual information is proved to be MI = 0.7961 bit, see [33].

The numerical results are illustrated in Figure 4. Similar observations as for the previous example
can be deduced for this case. The dispersion is clearly highly reduced as the sample size increases,
but the estimated MI is always centered with respect to the true value. The “plain entropy” method is
again less performing with respect to the others both in terms of dispersion and of centering the true
value. The standard deviations of the estimates obtained with our method appear always lower than the
ones obtained with the “plain entropy” method and comparable with those obtained by KSG method
except for very small sample sizes N = 100.

Figure 4. (Example 2) Left panel: Boxplots of the estimated MI grouped according to
different sample sizes. Right panel: mean error as a function of 1/(Sample Size). Insets
to the right panel: 95% confidence interval for the estimated MI (bottom left) and standard
deviations (bottom right) versus Sample Size. Color map: black and white for the estimator
we propose in Section 3.2, red for KSG and blue for “plain entropy”.
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Example 3. Let X1,X2 have joint c.d.f. given in the following equation

F1,2(x1, x2) =

{
(x1+1)(ex2−1)
x1+2ex2−1

(x1, x2) ∈ [−1, 1]× [0,∞]

1− e−x2 (x1, x2) ∈ (1,∞]× [0,∞]

with components that are respectively a uniform random variable on the interval [−1, 1] and an
exponential random variable with unitary parameter. In this case the copula function can be
obtained in closed form (see [20])

C(u1, u2) =
u1u2

u1 + u2 − u1u2
(40)
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which corresponds to the copula density function

c(u1, u2) =
2u1u2

(u1 + u2 − u1u2)3

A numerical integration then allows to obtain the mutual information MI = 0.2787 bit.

Both the boxplots and the confidence intervals in Figure 5 show that the values of MI obtained with
our estimator are centered around the true value even for the smallest sample sizes n = 100 and n = 500.
The comparison with KSG and “plain entropy” methods in Figure 5—right panel shows that the method
proposed allows to obtain results that are comparable with the first one apart only for n = 100 and is
always better performing than the second one. This last method produces not centered estimates for small
sample sizes such as n = 100 and n = 500. The standard deviations behave as in the previous example.

Figure 5. (Example 3) Left panel: Boxplots of the estimated MI grouped according to
different sample sizes. Right panel: mean error as a function of 1/(Sample Size). Insets
to the right panel: 95% confidence interval for the estimated MI (bottom left) and standard
deviations (bottom right) versus Sample Size. Color map: black and white for the estimator
we propose in Section 3.2, red for KSG and blue for “plain entropy”.
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Example 4. Let (X1, X2) be a bivariate lognormal random vector with zero mean and covariance
matrix given by

Cov(X1, X2) =
1− e−2βT

2β
Σ =

1− e−2βT

2β

(
1 0.9

0.9 1

)
with β = 0.1 and T = 2. Let us notice that the random vector (X1, X2) can be interpreted as
a two–dimensional geometric Ornstein–Uhlenbeck (OU) process at the time T = 2, see [34].
The numerical value of the mutual information in this case is again MI(X1, X2) = 1.1980 bit,
as in the Example 1. Indeed the random vector (X1, X2) can be obtained as the exponential of
the bivariate OU process at time T = 2, that is a Gaussian random vector. As MI is invariant
under reparametrization of the marginal distributions and in the Gaussian case (with components
with equal variances) depends only on the covariance structure, we get the same value as in the
previous example.



Entropy 2013, 15 5171

The results are illustrated in Figure 6. The methods are applied to samples drawn from the
joint distribution of (X1, X2) with no pre–processing. Our approach gives good results both in
terms of centered confidence intervals and standard deviations. Hence the method is robust to this
kind of heavy–tailed distributions. The KSG estimator gives bad results for smaller sample sizes
(N = 100, 500, 1000) as the corresponding confidence intervals do not include the true value of MI.
The “plain entropy” method seems to behave perfectly in this case.

Figure 6. (Example 4) Left panel: Boxplots of the estimated MI grouped according to
different sample sizes. Right panel: mean error as a function of 1/(Sample Size). Insets
to the right panel: 95% confidence interval for the estimated MI (bottom left) and standard
deviations (bottom right) versus Sample Size. Color map: black and white for the estimator
we propose in Section 3.2, red for KSG and blue for “plain entropy”.
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Example 5. Let (X1, X2) be a random vector with Levy distributed margins, i.e., with p.d.f.
given by

f(x, µ, c) =

√
c

2π

e−
c

2(x−µ)

(x− µ)3/2

with µ = 0 and c = 0.5 and coupled by the same copula function introduced in Equation (40).
Hence the mutual information is again MI = 0.2787 bit.

All the three methods fail in estimating MI in this case. The results are totally unreliable. The errors
are very large even for larger sample sizes. Concerning our method the problem relies in the estimation
of the density of the margins when the tail has strongly power law behavior. In this very ill–served
example, the tails are so heavy that it is frequent to have values very far from those corresponding to
the largest part of the probability mass and the kernel estimate is poor as it would need too many points.
The kernel method fails and so the estimation of MI.

However we propose here to exploit the property of MI of being invariant under reparametrization of
the margins. This trick allows to get rid of the heavy tail problems at least in some cases. For example,
when the random variables are positive valued, we could apply a sufficiently good transformation of
the values in order to improve the estimates. Such a transformation should be strictly monotone and
differentiable and able to lighten and shorten the tails of the distribution, as the logarithm function.
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In Figure 7 we illustrate the results obtained on samples drawn from the couple (X1, X2) with Levy
margins and pre–processed applying a log–transformation to the values. Such a procedure will not
affect the estimated value, as it can be seen in the figure. All the three methods now give correctly
estimated values.

Figure 7. (Example 5) Left panel: Boxplots of the estimated MI grouped according to
different sample sizes. Right panel: mean error as a function of 1/(Sample Size). Insets
to the right panel: 95% confidence interval for the estimated MI (bottom left) and standard
deviations (bottom right) versus Sample Size. Color map: black and white for the estimator
we propose in Section 3.2, red for KSG and blue for “plain entropy”.
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Hence the method is shown to be only partly robust to heavy–tailed distributions, as KSG and “plain
entropy”. In particular it succeeds when applied to distributions with tail behavior as in the log–normal
case and fails on strong power law tailed distributions as the Levy one. However, in the latter case, our
proposal is to take advantage of the invariance property of MI and to pre–process data in order to reduce
the importance of the tails. This comment holds good for any dimension d > 2, as the examples shown
in the next section.

4.2. Three-Dimensional Vectors

We tested our estimator also in the case d = 3, considering the multi–indices given in Equation (31).
Let X = (X1, X2, X3) be a gaussian random vector with standard normal components and pair
correlation coefficients ρX1,X2 = ρX2,X3 = ρX1,X3 = 0.9. The exact MI can be evaluated by means
of the following equation

MI =
1

2
log2

(
det
(
σ(X2,X3)

)
det (σX)

)
where σY denotes the covariance matrix of the random vector Y . In the specific case we get
MI = 1.3812 bit.
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In Figure 8—left panel we show the boxplots of the estimated MI values as the sample size increases.
From both plots the unbiasedness of the estimator even for small sample sizes can be clearly detected.
Our estimator always leads to better results than the others both for unbiasedness and for the dispersion,
cf. Figure 8—right panel. Both the KSG and the “plain entropy” estimator do not center the exact value
of the MI for the largest sample sizes (n = 2000 and n = 3000), even though the standard deviations are
comparable with the ones obtained with our method.

Figure 8. (Gaussian d = 3) Left panel: Boxplots of the estimated MI grouped according
to different sample sizes. Right panel: mean error as a function of 1/(Sample Size). Insets
to the right panel: 95% confidence interval for the estimated MI (bottom left) and standard
deviations (bottom right) versus Sample Size. Color map: black and white for the estimator
we propose in Section 3.2, red for KSG and blue for “plain entropy”.
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4.3. Four-Dimensional Vectors

For the case d = 4 we considered a multivariate Gaussian random vector with mean and covariance
matrix given as

µ = (0, 0, 0, 0) Σ =


1 0.9 0.9 0.9

0.9 1 0.9 0.9

0.9 0.9 1 0.9

0.9 0.9 0.9 1


We chose the following multi–indices to group the components: α1 = (1, 2) and α2 = (3, 4). The results
are illustrated in Figure 9. As already noticed for the three dimensional Gaussian case, the KSG and
“plain entropy” estimators seems biased while the estimator here presented centers the true value for all
the explored sample sizes.
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Figure 9. (Gaussian d = 4) Left panel: Boxplots of the estimated MI grouped according
to different sample sizes. Right panel: mean error as a function of 1/(Sample Size). Insets
to the right panel: 95% confidence interval for the estimated MI (bottom left) and standard
deviations (bottom right) versus Sample Size. Color map: black and white for the estimator
we propose in Section 3.2, red for KSG and blue for “plain entropy”.
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5. Conclusions

In this paper, we have presented a new estimator for the mutual information between subsets of
components of d-dimensional random vectors. It exploits the link between the mutual information and
the entropy of the linkage function here proved. Hence the problem of estimating mutual information
is reduced to the computation of the entropy of a suitably transformed sample of uniformly distributed
random variables on the interval [0, 1], that can be easily performed by the k–nearest neighbor technique
illustrated in [10].

The method gives very good performances in terms both of unbiasedness and variance of the
estimates. For the 2–dimensional case, the results are comparable to the KSG and “plain entropy”
estimates. However, for higher dimensions (we tested on examples up to dimension 4), our method is
preferable as it keeps being centered while KSG and “plain entropy” both show a bias. All the tested
estimators are shown to be robust for mild heavy tailed distributions, such as the lognormal distribution,
but they fail on distributions with power law tail probabilities and no finite moments, such as the Levy
distribution. However, we suggest to overcome the problem using the invariance property of MI under
reparametrization of the margins and hence pre–processing the data with a suitable transformation of the
univariate components before estimation.

The fact that the estimator gives unbiased results for small sample sizes and larger dimensions
allows a wide use, also in applications where the availability of big data sets from real experiments
is extremely rare.
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concerning some numerical issue. RS is grateful to Michael I. Jordan for a short but valuable comment
on KL–divergence estimators. Work partially supported by “AMALFI” project (ORTO119W8J) and by
“Stochastic Processes and Applications 2012” project.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience (John
Wiley & Sons): Hoboken, NJ, USA, 2006.
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