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Abstract  39 

Ophryotrocha diadema is an outcrossing, simultaneous hermaphroditic polychaete with 40 

external fertilization. In isolated pairs, mature worms take turn contributing eggs upon the 41 

condition that their partners reciprocate egg donation. In dense populations, these worms do 42 

not reciprocate. Instead, they strongly compete for mating in their preferred male role and 43 

produce few eggs. This plastic sex allocation may result in an overall different reproductive 44 

performance: mean individual reproductive output will be larger in sparse than in dense 45 

populations. We tested this hypothesis by measuring the individual reproductive output 46 

(paternal and maternal offspring) of worms in sparse and dense replicated populations. In 47 

dense populations, mean individual reproductive output was fourfold lower than that in sparse 48 

populations. We hypothesise that such dramatic demographic costs are potentially widespread 49 

in outcrossing simultaneous hermaphrodites with external fertilization and plastic sex 50 

allocation. The reproductive output of hermaphroditic organisms is a function of population 51 

density (i.e., the number of conspecifics) and studies on population growth and reproductive 52 

performance should take this effect into account.  53 

 54 
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 59 
Introduction 60 

        Simultaneous hermaphrodites have two sexual functions and partition their reproductive 61 

resources between them. Sex allocation theory predicts that they plastically adjust the proportion of 62 

resources allocated to each sex as a function of mating group size (Charnov 1982). Theory predicts 63 

that in sparse populations, where monogamous pairs may form, hermaphrodites increase their 64 

investment in eggs and limit the male function to the production of the few sperm needed to fertilize 65 

their partners’ eggs. In dense populations, hermaphrodites divert resources from egg production and 66 

invest more into the male function. Experiments or observations on different hermaphrodites have 67 

tested this theory and have often found overall support for it, although the patterns of resource 68 

allocation adjustments are highly species-specific (Raimondi & Martin 1991; Trouvè et al. 1999; 69 

Schärer & Janicke 2009; Locher & Baur 2002; Hughes et al. 2002; Tan et al. 2004; Brauer et al. 70 

2007). In some model systems, results show that sex allocation in hermaphrodites is plastic (i.e. it 71 

changes as a function of mating opportunities), as predicted by theory. For example, the 72 

hermaphroditic polychaete worms Ophryotrocha diadema Åkesson 1976 (Annelida: Polychaeta: 73 

Dorvilleidae) have plastic female allocation that they adjust to mating opportunities, trading-off 74 

with their investment in the male function. When mating opportunities are common (as in dense 75 

populations), worms  reduce their egg production drastically and compete for mating in the male 76 

role; when mating opportunities are rare (as in sparse populations), they invest proportionally more 77 

resources in egg production and, in the absence of competitors, reduce their investment into the 78 

male function (Lorenzi et al. 2005, 2006). Sex allocation adjustments are the effect of sexual 79 

selection acting on both sexual functions in hermaphrodites (Lorenzi and Sella, 2008; Anthes et al. 80 

2010). These adjustments are typically hermaphroditic traits, and could explain why population 81 

growth rates (as measured in dense, lab populations) are higher in gonochoric than hermaphroditic 82 

species (Prevedelli et al. 2006).    83 
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If we assume a fixed budget for reproductive resources, we expect that hermaphrodites in large 85 

populations would use the same amount of resources for egg production than hermaphrodites in 86 

small populations, devalued of the resources diverted to increase the male function. Then we should 87 

find that hermaphrodites in large populations have a lower mean reproductive success than those in 88 

small populations. This reduced reproductive output should, in turn, affect population growth. We 89 

tested this hypothesis in the outcrossing simultaneously hermaphroditic polychaete worm O. 90 

diadema by measuring individual reproductive output of focal worms in sparse and dense 91 

populations. 92 

 93 

Material and methods 94 

The animal model 95 

O. diadema (Annelida, Polychaeta, Dorvilleidae) is a polychaete worm originally found in the 96 

sediments of Californian harbors. Sampling from natural populations suggests that populations have 97 

low densities (Premoli & Sella 1995). For example, only few O. diadema individuals were isolated 98 

among hundreds of worms of a gonochoric Ophryotrocha species in the Pacific Coast (pers. comm. 99 

by B. Åkesson to G.S.) and 0.1–6.6 individuals per kg−1 of mussel clusters were collected in the 100 

Mediterranean Sea (Simonini, pers. comm. to M.C.L.) (Schleicherová et al. 2013). 101 

These worms are outcrossing simultaneous hermaphrodites with external fertilization. Before 102 

maturing as hermaphrodites, they have a protandrous phase during which they can fertilize the eggs 103 

laid by hermaphrodites (Sella & Lorenzi 2003). Then, they mature as hermaphrodites, and can both 104 

fertilize their partners’ eggs or lay eggs, but play one single role at each mating event. Eggs are laid 105 

in jelly cocoons and develop into larvae that leave their cocoons 8 days later and mature into 106 

simultaneous hermaphrodites in approx. 45 days. Mature hermaphrodites reproduce iteroparously 107 

for 7-10 weeks (Åkesson 1976, 1982). 108 

In isolated pairs, worms take turns in laying cocoons of 20-25 eggs every third day (Sella 1985, 109 

1988). When more than two worms are present, they adjust their sex allocation by investing 110 
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proportionally more resources into the male function (Lorenzi et al. 2005, 2006), mate 112 

promiscuously (Sella & Lorenzi 2000) and can share the paternity of a single egg-cocoon with other 113 

hermaphrodites (Lorenzi et al. 2013). Sex allocation adjustments are not costly in the short term 114 

(Lorenzi et al. 2008) and polychaetes sense the number of conspecifics and/or potential mates 115 

through waterborne chemical cues (Schleicherová et al. 2006, 2010; Minetti et al., 2013).  116 

 Experimental procedure 117 

Data were gathered from focal worms. The ‘focal’ worms were identified through the colour of 118 

their eggs.  In mature worms, eggs can be easily detected through the transparent body wall as 119 

either yellow or whitish eggs. In these worms, a dominant Y allele determines a yellow-egg 120 

phenotype, while the recessive y allele determines a white-egg phenotype (Sella and Marzona 121 

1983). By means of this genetic marker, we can identify focal worms in a group and ascribe their 122 

progeny. The focal worms had yellow eggs and their mates white eggs.  123 

We carried out the experiment in glass bowls filled with 10-ml artificial sea-water and kept in a 124 

thermostatic chamber at 20°C. Once a week water was replaced in the bowls and worms were fed 125 

with spinach ad libitum.  126 

To obtain a sufficient number of worms for the experiment, 24 pairs of yellow-phenotype worms 127 

and 40 pairs of white ones were cultivated separately and allowed to reproduce. Their offspring 128 

supplied the virgin, newly mature, yellow- and white-phenotype worms of same age to be used for 129 

the experiment. At sexual maturity, two worms from each yellow-phenotype offspring (n = 48 130 

worms, hereafter, ‘focal worms’) were randomly assigned either to sparse populations (population 131 

size = 2; the population consisting of one focal, yellow-phenotype worm and one white-phenotype 132 

partner, n = 24 replicates) or to dense populations (population size = 12, consisting of one focal, 133 

yellow-phenotype worm and 11 white-phenotype potential partners, n = 24 replicates). With such a 134 

matched-sample design, each worm in the sparse population served as a control for its sibling in the 135 

dense population.   136 
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Experimental populations were checked daily for 12 days. At the first check, focal worms’ body 138 

size was measured as the number of chaetigerous segments. At each check, we recorded the number 139 

of yellow (laid by focal worms) and white cocoons (laid by focal partner/s), and the number of eggs 140 

per cocoon. Adult worms were removed from the bowls on day 9. 141 

Reproductive output of focal worms was quantified by rearing offspring until they were sexually 142 

mature. Indeed, in large populations multiple potential “fathers” were present and paternity of the 143 

progeny could be assigned to either the focal worms or one of their rivals only after the progenies 144 

were sexually mature. When these worms matured and had eggs in their coeloms, they expressed 145 

their yellow or white phenotypes and we assessed their paternity (i.e., about 45 days after egg 146 

laying). Following Åkesson (1976), this marker is neutral, since there is no difference in worm 147 

mortality rates before sexual maturity. 148 

 The ratio between the total number of cocoons produced in sparse populations and that produced in 149 

dense populations was approx 1:2, leading to more larvae per unit of volume in the dense 150 

population bowls. Therefore, to standardize rearing conditions, on day 9 the volume of sea water 151 

was doubled in the dense population bowls.  152 

The total reproductive output of focal worms was estimated as the number of offspring (both 153 

maternal and paternal offspring) that on maturity had the yellow phenotype. Focal worms without 154 

offspring were included in the calculations.  155 

In order to control for the potentially confounding effect of differential egg-mortality in sparse and 156 

dense populations, we estimated egg mortality as the average proportion of eggs that disappeared 157 

from the cocoons in each bowl (with respect to the laid eggs).  158 

 159 

Statistical analyses 160 

Some replicates were excluded from calculations for various reasons (e.g., some worms died 161 

altering population size). By using related worms in sparse and dense populations, we reduced the 162 

overall variability due to genetic differences (Howell 2010). We used a linear mixed model (LMM) 163 
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to assess the significance of the differences in reproductive output between pairs of siblings in  165 

sparse and dense populations (dependent variable: reproductive output; within-subject factor: 166 

population size; random factor: family ID; covariate: body size). 167 

Probabilities were two-tailed. Statistical analyses were performed using SPSS 20.0 statistical 168 

package (SPSS Inc, Chicago, IL). 169 

 170 

Results 171 
 172 
Reproductive output of focal worms 173 

Focal worms had a dramatically lower reproductive rate in dense populations, compared to that in 174 

sparse populations, with a fourfold reduction in their reproductive output (mature maternal + 175 

paternal offspring) (Fig 1). The difference was highly significant, indicating that reproductive 176 

output in simultaneous hermaphrodites was strongly affected by population size (LMM, population 177 

size: F1,35.79 = 55.557, P < 0.0001; body size: F1,34.99 = 4.721, P = 0.037). The significant relationship 178 

between body size and reproductive output which emerged in the LMM occurred only in dense 179 

populations (Spearman’s rho, in dense populations: rho = 0.496, P = 0.022; in sparse populations: 180 

rho = 0.133, P = 0.545). Body size advantage in dense populations was not associated with the 181 

female function (correlation between body size and egg production in dense populations: rho = 182 

0.180, P = 0.460; in sparse populations: rho = 0.288, P = 0.231). This suggests that larger 183 

hermaphrodites in dense populations might have a higher reproductive output because they were 184 

more successful in the competition for the male role.      185 

Egg mortality was not significantly different between sparse and dense populations (Wilcoxon test, 186 

Z = 73.00, total n = 20, P = 0.376), suggesting that it did not affect the results (median proportion of 187 

eggs which disappeared in sparse populations: 5.56 % vs 4.86% in dense populations). 188 

 189 

Discussion  190 
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In this study we document that population size (i.e. the number of conspecifics) affects the 194 

reproductive output of simultaneous hermaphrodites as they produce four times more offspring in 195 

sparse than in dense populations. We interpret these results as a consequence of the fact that 196 

hermaphrodites have a plastic sex allocation which they adjust to mating opportunities. As 197 

population size increases, mating opportunities increase as well and hermaphrodites adjust their sex 198 

allocation in favour of the male function at the expense of the female function. 199 

The reduced reproductive output of the worms in dense vs. sparse populations could be the result of 200 

uncontrolled density-dependent effects (e.g., mortality, oophagy, etc.) rather than a response to 201 

population size (e.g., the number of conspecifics). However, this hypothesis is not supported by 202 

evidence. First, egg mortality did not differ between sparse and dense populations. Second, a 203 

previous study documented that O. diadema worms had a higher egg production in sparse than in 204 

dense populations, irrespective of any density-dependent effects such as metabolite accumulation or 205 

encounter probability (Lorenzi et al. 2005). Furthermore, in other experiments, we simulated large 206 

population size, so that pairs of worms perceived cues as if population size were larger than two, 207 

and they reduced their egg output according to the perceived, and  not the real, population size 208 

(Schleicherovà et al. 2006, 2010). All these observations support the hypothesis that worms reduce 209 

their egg output as population size increases.  210 

It could be argued that, if worms decrease egg production in dense populations, the competition for 211 

mating as males should increase and worms with more female-biased allocation will gain higher 212 

reproductive success. Whilst this might be true in the short term, it might be disadvantageous in the 213 

long term, because fecundity often trades off with lifespan (Stearns & Hoekstra 2000). Indeed, 214 

hermaphrodites which skip the female role for long time periods live longer (Di Bona et al. 2010).  215 

Mating in sparse populations is associated with small mating groups, i.e., low numbers of partners 216 

and few or no rivals over the male role. In small mating groups, hermaphrodites invest large 217 

proportions of their reproductive resources into eggs, trade eggs with their partners and take turns in 218 

the two sexual roles (Sella, 1985; Sella & Ramella 1999). This is an evolutionary solution to the 219 
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conflict on sex roles, since both partners prefer to play the cheaper male role than the expensive 224 

female role (Leonard 1993, 2005, 2006; Di Bona et al. 2010). In natural contexts, outcrossing 225 

hermaphrodites may be constrained to monogamous mating regimes when they live in very sparse 226 

populations, as O. diadema (Sella & Ramella 1999; Simonini, personal communication). In other 227 

hermaphroditic species, the sizes of the populations are large but hermaphrodites are trapped in 228 

monogamous mating regimes by other life-history traits. For example, the serranid fish, 229 

Hypoplectrus nigricans is an outcrossing hermaphrodite which mates monogamously (Fischer 230 

1980). Here, monogamy is constrained by the short spawning period (few hours per day), which 231 

reduces the chances that paired partners desert: reproductive gains from deserting the partner may 232 

be low, if most partners are paired. 233 

In present study, worms in dense populations reduced their reproductive output to less than 30% 234 

when compared to worms in sparse populations. Similarly, Plasmodium chabaudi adjust their sex 235 

allocation in response to the presence of unrelated conspecifics. Reece et al. (2008) directly 236 

manipulated mating-group sex ratio of these malaria parasites and measured the resulting 237 

reproductive output as the number of zygotes produced. As predicted by sex allocation theory, 238 

mating output was maximized at intermediate sex ratios, indicating that sex allocation in this 239 

malaria parasite is likely to be under stabilizing selection and reproductive output was maximized at 240 

female-biased sex ratios.  241 

Overall, our study shows that the potential individual advantages in fitness due to opportunistic sex 242 

allocation are countered at the population level when populations are dense; opportunistic sex 243 

allocation is advantageous to the individual, but disadvantageous to the population, whose 244 

reproductive rate declines. Accordingly, Prevedelli et al. (2006) found that dense populations of 245 

hermaphrodites had a demographic disadvantage compared to gonochorists. Here, we highlight that 246 

the demographic disadvantage of hermaphrodites is mainly due to their adaptive ability to adjust 247 

their sex allocation to mating group size and, ultimately, to population size. In this perspective, our 248 

study is an example of the tragedy of the commons (Hardin 1968), where traits which are 249 
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advantageous at the individual level reduce population fitness. For example, strong cannibalism of 250 

larvae and pupae by adult flour beetles is adaptive at individual level but impairs population growth 251 

(Wade 1977). Similarly, hyperaggressive water-strider males gain a slightly higher mating success 252 

than less aggressive males but reduce overall group mating in their pond (Chang & Sih 2013). More 253 

specifically, sexual selection can diminish population reproductive rates of Drosophila populations 254 

by imposing a “reproductive load” (Holland & Rice 1999). The reproductive load highlighted in 255 

Drosophila was caused by antagonist sexual selection and intersexual conflicts inherent to 256 

promiscuity. Similarly, sex allocation adjustments are promoted by sexual selection acting on the 257 

two sexes of simultaneous hermaphrodites (Lorenzi & Sella 2008; Anthes et al. 2010; Leonard 258 

2013).  259 

We highlight that the demographic advantage of hermaphroditism in sparse populations (relative to 260 

dense populations) is the bare outcome of sex allocation adjustments in hermaphrodites where the 261 

two sexual functions interfere with each other and resources are traded off between the male and 262 

female function (Lorenzi et al. 2006). Therefore, we expect that the results we obtained here could 263 

be obtained in other hermaphroditic systems as well, where the two sexual functions act in 264 

opposition and resources are partitioned between the male and the female function on the basis of 265 

population size. We hypothesise that such dramatic demographic costs of sex allocation are 266 

potentially widespread in outcrossing simultaneous hermaphrodites with external fertilization. If the 267 

reproductive output of hermaphroditic organisms is a function of population size, population growth 268 

studies (and their practical applications) should take the effect of sex allocation into account.  269 

270 
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Figure legend 372 

Figure 1. The reproductive output of focal worms (maternal and paternal offspring) in sparse and 373 

dense populations (mean ± s.e.).                                                                                                                                                                                                                                                                                                                                                                                              374 


