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ABSTRACT

There are several examples in the literature showing that compactness-like

properties of a cardinal κ cause poor behavior of some generic ultrapowers

which have critical point κ (Burke [1] when κ is a supercompact cardinal;

Foreman–Magidor [6] when κ = ω2 in the presence of strong forcing ax-

ioms). We prove more instances of this phenomenon. First, the Reflection

Principle (RP) implies that if �I is a tower of ideals which concentrates

on the class GICω1 of ω1-guessing, internally club sets, then �I is not

presaturated (a set is ω1-guessing iff its transitive collapse has the ω1-

approximation property as defined in Hamkins [10]). This theorem, com-

bined with work from [16], shows that if PFA+ or MM holds and there is

an inaccessible cardinal, then there is a tower with critical point ω2 which

is not presaturated; moreover, this tower is significantly different from the

non-presaturated tower already known (by Foreman–Magidor [6]) to ex-

ist in all models of Martin’s Maximum. The conjunction of the Strong

Reflection Principle (SRP) and the Tree Property at ω2 has similar impli-

cations for towers of ideals which concentrate on the wider class GISω1 of

ω1-guessing, internally stationary sets.

Finally, we show that the word “presaturated” cannot be replaced by

“precipitous” in the theorems above: Martin’s Maximum (which implies

SRP and the Tree Property at ω2) is consistent with a precipitous tower

on GICω1 .

1. Introduction

If the universe V of sets satisfies ZFC, there is no elementary embedding

j : V → N where N is wellfounded and the least ordinal moved by j is “small”

(like ω1 or ω2). Forcing with ideals and towers of ideals are two procedures

that can potentially produce such an embedding j : V → N in some generic

extension of V where the least ordinal moved by j is small. A tower of ideals

is a sequence of ideals �I = 〈Iλ | λ < δ〉 with a certain coherence property (see

Section 2.4). The length of the sequence �I is called the height of �I and, if

each ideal in the sequence has the same completeness,1 this completeness is

called the critical point of �I. If �I is a tower then there is a natural poset

P�I associated with �I, and in the generic extension V P�I there is an embedding

jG : V → ult(V,G) where the least ordinal moved by j equals the critical point

of the tower; this embedding is called a generic ultrapower of V by �I and

ult(V,G) is not necessarily wellfounded.

1 This will hold for all towers considered in this paper.
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Properties of the tower �I and of its height affect the properties of the generic

ultrapower. Woodin proved that if δ is a Woodin cardinal, then many of the

natural “stationary towers” of height δ satisfy a very strong property called

presaturation (see [13] and [18]). Foreman and Magidor [6] proved that if

δ is a supercompact cardinal then there are several natural stationary towers

of height δ which are precipitous (a property weaker than presaturation). For

simplicity let us only consider towers with critical point ω2. Then one key

difference between the Foreman–Magidor stationary towers and the Woodin

stationary towers are that with Woodin’s examples, there are always some V -

regular cardinals which become ω-cofinal in the generic ultrapower, whereas

they remain uncountably cofinal in the generic ultrapower in the Foreman–

Magidor examples.

On the other hand, compactness-like properties of the critical point of the

tower can often prevent nice behavior of the tower. Burke [1] showed that, if

κ is supercompact and δ > κ is inaccessible, then there is a tower of height δ

with critical point κ which is not precipitous. Strong forcing axioms like the

Proper Forcing Axiom and Martin’s Maximum are known to make ω2 behave

much like a supercompact cardinal; so in light of Burke’s theorem we should

expect that strong forcing axioms prevent nice behavior of some towers with

critical point ω2. Foreman and Magidor [6] proved that Martin’s Maximum2

implies that a certain natural tower3 with critical point ω2 is not presaturated

(see Example 9.16 of [5]).4 On a related note, they also showed that the Proper

Forcing Axiom implies that there is no presaturated ideal on ω2.

This paper provides more results along the lines of the Burke and Foreman–

Magidor theorems, that compactness properties of the critical point of certain

towers prevent nice behavior of the tower. We show that under strong forcing

axioms, there are certain towers with critical point ω2 which are not presatu-

rated; these towers are significantly different from the non-presaturated towers

produced in Foreman–Magidor [6] in a very strong sense.5 Specifically:

2 Really, just the saturation of NSω1 .
3 Namely, the stationary tower concentrating on the ω1-internally approachable structures.
4 However, their tower can be precipitous, and in fact always is precipitous if its height is

a supercompact cardinal.
5 Namely, while the Foreman–Magidor tower concentrated on internally approachable

structures, our ideals concentrate on structures which are definitely not internally

approachable.
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Theorem 1: Assume RP (ω2) holds. Whenever �I is a tower which concen-

trates on the class GICω1 of ω1-guessing, internally club sets, then �I is not

presaturated.

In fact we show more: that RP (ω2) implies there is no single ideal J such

that:

• J concentrates on GICω1 ; and

• J bounds its completeness.

The latter is a property introduced by the first author in [2] which is closely

related to saturation and Chang’s Conjecture. See Definition 25 and Theorem

27.

Using Theorem 1 and results from [16], we show:

Theorem 2: Assume either PFA+ or MM , and that δ is inaccessible. Then

there is a tower of height δ with critical point ω2 which is not presaturated (in

fact, this tower even fails to have the weak Chang Property; see Definition 22

and Corollary 24).

The hypotheses of Theorem 1 can be strengthened to obtain a stronger con-

clusion:

Theorem 3: Assume SRP (ω2) and the Tree Property at ω2. Whenever �I

is a tower which concentrates on the class GISω1 of ω1-guessing, internally

stationary sets, then �I is not presaturated.

Again, similarly to Theorem 1 we actually show more: that SRP (ω2) together

with the Tree Property at ω2 implies there is no single ideal which concentrates

on GISω1 and bounds its completeness.

If we require the tower to be definable, then a theorem of Burke [1] together

with the Isomorphism Theorem from [15] yields:

Theorem 4 (ZFC): If 2ω ≤ ω2, then there is no precipitous tower of inaccessible

height δ which concentrates on GICω1 and is definable over (Vδ,∈).
Finally, we prove that in Theorems 1 through 3, the conclusion cannot be

strengthened to say there is no precipitous tower which concentrates on the

relevant class of sets, even if the hypothesis is strengthened to “plus” versions

of Martin’s Maximum:
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Theorem 5: If κ is supercompact and δ > κ is inaccessible, then if P is the

standard iteration to produce a model of MM+ω1, there is a precipitous tower

in V P of height δ concentrating on GICω1 .

The paper is organized as follows. Section 2 provides relevant background

on guessing models (2.1), forcing axioms and reflection principles (2.2), the

key Isomorphism Theorems for ω1-guessing structures from [15] (2.3), towers of

ultrafilters and ideals (2.4), and induced towers (2.5). Those last two subsections

(2.4 and 2.5) are used primarily for the consistency proof in Section 6, though

Definition 18 and Fact 19 are used throughout the paper. Section 3 provides a

brief review of the weak Chang property and relevant theorems from [2] that

will be used in the later proofs in Sections 4 and 5 (but not in Section 6).

Section 4 proves Theorems 1, 4 and 2. Section 5 proves Theorem 3. The results

in Sections 4 and 5 are due to both authors. Section 6 proves Theorem 5, and

is due to the first author. Section 7 ends with some open problems.

2. Preliminaries

2.1. The classes GICω1 , GISω1 and GIUω1. Weiss [17] introduced the no-

tion ISP, which is a significant strengthening of the Tree Property. In this paper

we use the alternative notion of a δ-guessing model from [15]. ZF− denotes

ZF without the Power Set Axiom.

Definition 6: Let H be a transitive ZF− model and δ ∈ REGH . We say that

H has the δ-approximation property iff (H,V ) has the δ-approximation

property as in Hamkins [10]. In other words, for every η ∈ H : whenever A ⊂ η

is such that z ∩A ∈ H for every z ∈ H with |z|H < δ, then A ∈ H .

If M is a set or class which believes “ℵ1 exists’’ and ∈� (M×M) is extensional

(so that M has a transitive collapse)—for example, if M ≺ (Hθ,∈) for some

θ ≥ ω2—we say M is ω1-guessing iff its transitive collapse HM has the ω1-

approximation property.6 We let Gω1 denote the class of M such that |M | =
ω1 ⊂ M and M is ω1-guessing; σM : HM → M will always denote the inverse

of the Mostowski collapse of M .

6 This definition is slightly different but equivalent to the definition in [15]. Further, note

that since we’re assuming M ≺ Hθ and ω1 ⊂ M , then |z|HM = ω iff |z| = ω (for any

z ∈ HM ).
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We use several other common classes of structures (see Foreman and Todor-

cevic [8]). A set M is ω1-internally club iff M ∩ [M ]ω contains a club in

[M ]ω; ω1-internally stationary iff M ∩ [M ]ω is stationary in [M ]ω; and ω1-

internally unbounded iff M ∩ [M ]ω is ⊆-cofinal in [M ]ω. Let

Λ := {M | (M,∈) satisfies ZF−, ω1 ⊆ M , and |M | = ω1}.
We let ICω1 , ISω1 , and IUω1 refer respectively to the class of M ∈ Λ which

are ω1-internally club, ω1-internally stationary, and ω1-internally unbounded.

The classes ICω1 , ISω1 , and IUω1 can be equivalently characterized in ways

analogous to internal approachability:

• M ∈ IAω1 iff there is a ⊆-continuous ∈-chain 〈Nξ | ξ < ω1〉 such that

M =
⋃

ξ<ω1
Nξ and 〈Nξ | ξ < ζ〉 ∈ M for every ζ < ω1;

• M ∈ ICω1 iff there is a ⊆-continuous ∈-chain 〈Nξ | ξ < ω1〉 such that

M =
⋃

ξ<ω1
Nξ and Nξ ∈ M for every ξ < ω1;

• M ∈ ISω1 iff there is a ⊆-continuous sequence 〈Nξ | ξ < ω1〉 such

that M =
⋃

ξ<ω1
Nξ and Nξ ∈ M for stationarily many ξ < ω1. It

is straightforward to see that M ∈ ISω1 iff there is some stationary

TM ⊂ ω1 such that for every ⊆-continuous sequence �N with union M ,

{ξ < ω1 | Nξ ∈ M} =NS TM ;7

• M ∈ IUω1 iff there is a ⊆-continuous sequence 〈Nξ | ξ < ω1〉 such that

M =
⋃

ξ<ω1
Nξ.

Set GICω1 := Gω1 ∩ ICω1 , GISω1 := Gω1 ∩ ISω1 , and GIUω1 := Gω1 ∩ IUω1 .

Note that

(1) Gω1 ∩ {M ≺ (Hθ,∈) | M ∩Hω2 ∈ IAω1} is empty for all θ ≥ ω3.

To see (1): suppose to the contrary that there were some such M , and that
�N = 〈Nξ | ξ < ω1〉 witnessed that M ∩Hω2 ∈ IAω1 . Then for every countable

z ∈ M there is some ξ < ω1 such that z ∩ �N = z ∩ ( �N � ξ) ∈ M . Since this

holds for every countable z ∈ M , and since Hω2 ∈ M and M ∈ Gω1 , this would

imply that �N ∈ M and so M ∩Hω2 =
⋃
range( �N) ∈ M . But it is not possible

that M ∩Hω2 ∈ M , because Hω2 −M = ∅ and M ≺ (Hθ,∈).
Note also that all of the classes mentioned are invariant under isomorphism

(i.e., M is in the class iff its transitive collapse HM is in the class). Viale and

Weiss proved:

7 For A,B ⊂ ω1, A =NS B means that AΔB is nonstationary.
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Theorem 7 (Viale–Weiss [16]): PFA implies that GICω1 ∩℘ω2(Hθ) is station-

ary for all regular θ ≥ ω2.

Their proof actually produced models which were not only in GICω1 , but

persistently so; that is, these models remain in GICω1 in any outer model

which has the same ω1. This used the following generalization of a theorem of

Baumgartner. For a poset R and a possibly non-transitive set M , let us say

that a filter g ⊂ R is (M,R)-generic iff g ∩D ∩M = ∅ for every D ∈ M which

is dense in R.

Theorem 8 (Viale–Weiss [16]): For each regular δ ≥ ω2 there is a proper poset

Rδ such that:

(1) Rδ ∈ Hδ+ ;

(2) �Rδ
Ȟ ∈ GICω1 where H := HV

δ ;

(3) whenever M is a (possibly non-transitive) ZF− model such that |M | =
ω1 ⊂ M and there exists some g which is (M,Rδ)-generic, then:

• M ∩Hδ ∈ GICω1 ;

• if W is any transitive ZF model such that (M, g,Rδ) ∈ W and

ωW
1 = ωV

1 , then W |= “M ∈ GICω1”. (Here W could, for example,

be any outer model of V which has the same ω1.)

Viale proved:

Lemma 9 (Viale): FAω1 implies Gω1 ⊆ IUω1 ; so Gω1 = GIUω1 .

Proof. Viale [15] proved that if M is ω1-guessing and |M | is strictly less than

the so-called pseudo-intersection number, then M ∈ IUω1 ; FAω1 implies that

the pseudo-intersection number is ≥ ω2.

Finally, we point out the standard fact that all of these classes project:

Lemma 10: Let Z be any of the classes Gω1 , IAω1 , ICω1 , ISω1 , or IUω1 . If

M ∈ Z and θ ≥ ω2 is a regular cardinal then M ∩Hθ ∈ Z.

Proof. Here it will be more convenient to work with the following “non-transiti-

vised” characterization ofGω1 : M ∈Gω1 iff for every η∈M and every A⊂η∩M :

if A ∩ z ∈ M for every countable z ∈ M , then there is some A′ ∈ M such that

A′ ∩M = A.
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Now suppose M ∈ Gω1 and θ ≥ ω2 is regular; we want to see that

M ∩Hθ ∈ Gω1 . Let η ∈ M ∩ θ and A ⊂ η ∩M , and suppose z ∩ A ∈ M ∩Hθ

for every countable z ∈ M ∩ Hθ. Then clearly z ∩ A ∈ M for every countable

z ∈ M , since A ⊆ θ. Since M ∈ Gω1 , then there is an A′ ∈ M with A′∩M = A.

Set A′′ := A′ ∩ η ∈ M ∩Hθ. Then A′′ ∩ (M ∩Hθ) = A.

For the other classes, we present the argument for ICω1 ; the rest are similar.

Suppose M ∈ ICω1 as witnessed by a sequence 〈Nξ | ξ < ω1〉 where Nξ ∈ M

for every ξ < ω1. Let θ be a regular uncountable cardinal. Clearly the sequence

〈Nξ ∩ Hθ | ξ < ω1〉 is ⊂-increasing and ⊂-continuous with union M ∩ Hθ; we

just need to see that Nξ ∩ Hθ ∈ M ∩ Hθ for every ξ < ω1. If θ ∈ M this is

trivial. If θ /∈ M then since M ∈ ICω1 , M ∩ORD is an ω-closed set of ordinals

and so sup(M ∩ θ) has uncountable cofinality. Then for each ξ < ω1 there is

some ηξ < θ, ηξ ∈ M , such that Nξ ∩ Hθ = Nξ ∩ Hηξ
; and the latter is in M

since both ηξ and Nξ are in M .

It is interesting to point out that by the argument of Proposition 2.4 of [6], if

Z is any of the classes IAω1 , ICω1 , ISω1 , or IUω1 , then Z also lifts with respect

to the nonstationary ideal; that is, if S is a stationary subset of Z∩℘ω2(Hθ) and

θ′ >> θ, then Z∩{M ∈ ℘ω2(Hθ′) | M ∩Hθ ∈ S} is also stationary. This implies

that 〈NS � (Z ∩ ℘ω2(Hθ)) | θ ∈ ORD〉 forms a tower (see Section 3). On the

other hand, this can trivially fail for the class Z = Gω1 because Gω1 ∩ ℘ω2(Hθ)

might be nonstationary for large θ. Even if Gω1 ∩ ℘ω2(Hθ) is stationary for

every regular θ ≥ ω2 (as is the case under PFA), it is still not clear—and seems

doubtful—that 〈NS � Gω1 ∩ ℘ω2(Hθ) | θ ∈ ORD〉 necessarily forms a tower.

2.2. Forcing Axioms, Projective Stationarity, and Reflection Prin-

ciples. Let Γ be a class of posets and β an ordinal. FA+β(Γ) means that for

every P ∈ Γ, for every ω1-sized collection D of dense subsets of P, and for every

sequence 〈Ṡξ | ξ < β〉 such that �P “Ṡξ ⊆ ω1 is stationary” for every ξ < β,

then there is a filter F ⊂ P meeting every D ∈ D and such that for every ξ < β:

(Ṡξ)F := {α < ω1 | (∃q ∈ F )(q � α̌ ∈ Ṡξ)} is stationary. FA(Γ) means FA0(Γ)

and FA+(Γ) means FA+1(Γ). Martin’s Axiom is FA(ccc posets), the Proper

Forcing Axiom (PFA) is FA(proper posets), and Martin’s Maximum (MM) is

FA(posets preserving stationary subsets of ω1). We caution that elsewhere in

the literature the notation PFA++ and MM++ are sometimes used for what

we call PFA+ω1 and MM+ω1. It is widely known that the standard iteration
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used to produce a model of MM (resp. PFA) actually produces a model of

MM+ω1 (resp. PFA+ω1).

For a regular cardinal θ ≥ ω2, RP (θ) means that whenever S ⊂ [θ]ω is

stationary, then there is an X such that ω1 ⊆ X , |X | = ω1, and S ∩ [X ]ω is

stationary in [X ]ω. It is well-known that FA+(σ-closed) implies RP (θ) for all

regular θ ≥ ω2 (so in particular RP follows from PFA+); and by [7] this is

also implied by MM. A set P ⊂ [X ]ω is projective stationary iff for every

stationary T ⊂ ω1, {Y ∈ P | Y ∩ ω1 ∈ T } is stationary in [X ]ω. For θ ≥ ω2,

the Strong Reflection Principle at θ (SRP (θ)) is the statement: for every

projective stationary P ⊂ [Hθ]
ω, there is a ⊆-continuous elementary ∈-chain

〈Nξ | ξ < ω1〉 of countable models such that every Nξ is an element of P (i.e.,

there is some ω1-sized subset X of θ such that P ∩ [X ]ω contains a club in

[X ]ω). It was shown in [3] that Martin’s Maximum implies SRP (θ) for all

regular θ ≥ ω2. Extending a result of Gitik [9], Veličković proved the following

theorem (see Section 3 of [14]):

Theorem 11: Whenever C ⊂ [ω2]
ω is club, x ∈ R, and T ⊂ ω1 is station-

ary, then there are a, b, c ∈ C such that a ∩ ω1 = b ∩ ω1 = c ∩ ω1 ∈ T and

x ∈ Lω2 [a, b, c].

Corollary 12: If W is a transitive ZF− model with ω2 ⊆ W and R−W = ∅,
then [ω2]

ω −W is projective stationary.

Proof. Let T ⊂ ω1 be stationary; we need to show that

{d ∈ [ω2]
ω | d /∈ W and d ∩ ω1 ∈ T }

is stationary in [ω2]
ω. Suppose not; then there is a club C ⊂ [ω2]

ω such that

C ↘ T := {d ∈ C | d∩ω1 ∈ T } ⊂ W . Let x ∈ R be arbitrary and let a, b, c ∈ C

be as in Theorem 11, so that x ∈ Lω2 [a, b, c] and a ∩ ω1 = b ∩ ω1 = c ∩ ω1 ∈ T ;

so a, b, c ∈ C ↘ T ⊂ W . Since ω2 ⊆ W |= ZF− and a, b, c ∈ W then

Lω2 [a, b, c] ⊆ W . So x ∈ W ; since x was arbitrary we’ve shown R ⊂ W ,

contrary to the assumptions.

2.3. Isomorphism Theorems for GICω1 and GISω1. We use the Isomor-

phism Theorems from Viale [15]. For transitive ZF− models H and H ′, we say
that H is a hereditary initial segment of H ′ iff H = H ′ or there is some

λ ∈ CardH
′
such that H = (Hλ)

H′
. We provide a slight simplification of both

the formulation and the proof of the Isomorphism Theorems from Viale [15]:
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Theorem 13 (Viale [15]): Assume H and H ′ are transitive ZF− models such

that:

(a) H ∩ R = H ′ ∩ R;

(b) for every transitive A ∈ H ∩H ′: the set

(2) H ∩H ′ ∩ {d | (d,∈) is extensional}

is ⊆-cofinal in both ([A]ω)H and in ([A]ω)H
′
;8

(c) H , H ′ are in Gω1 .

Then one of H , H ′ is a hereditary initial segment of the other.

Proof. Note that since H and H ′ are transitive ZF− models, then item (a) of

the hypothesis of the theorem is equivalent to saying that H ∩Hω1 = H ′∩Hω1 ;

the latter equality will be more convenient for the current proof.

We first prove the following, by induction on η:

(3) Vη ∩H = Vη ∩H ′ for every η ≤ min(ht(H), ht(H ′)).

If η is any limit ordinal and (3) holds at all η′ < η, then it clearly holds at η

as well. So we only need to show the successor step of the induction: assume

(3) holds at some ordinal η < min(ht(H), ht(H ′)), and prove that (3) holds

at η + 1. Set A := Vη ∩ H = Vη ∩ H ′. Since H is a transitive ZF− model,

its rank function is correct, and so (since we’re assuming η < ht(H)) then

Vη ∩H = (Vη)
H ; similarly for H ′. In particular, A ∈ H ∩H ′.

We show ℘(A) ∩ H ⊆ H ′; the proof that ℘(A) ∩ H ′ ⊆ H is similar. Let

Z ∈ ℘(A) ∩H . Since A ∈ H ′ and H ′ is ω1-guessing, then to show that Z ∈ H ′

it suffices to show that Z ∩ d ∈ H ′ for ⊂-cofinally many d in ([A]ω)H
′
. By

assumption b in the hypothesis of the theorem and the fact that A is transitive,

it in turn suffices to show that Z ∩ d ∈ H ′ for every d ∈ H ∩ H ′ ∩ ([A]ω)H
′

such that (d,∈) is extensional. Pick any such d, let d̄ be its transitive collapse,

and πd : (d,∈) → (d̄,∈) be its Mostowski collapsing isomorphism; note that

πd ∈ H ∩ H ′. Then Z̄d := πd“(Z ∩ d) ∈ H ∩ Hω1 = H ′ ∩ Hω1 . And Z ∩ d =

π−1
d “Z̄d. Since πd and Z̄d are both in H ′, this implies that Z ∩ d ∈ H ′ and

concludes the proof of (3).

8 Recall that by Mostowski’s Collapsing Theorem, every d in the set from (2)

has the property that there is a unique transitive d̄ and a unique map πd such that

πd : (d,∈) → (d̄,∈) is an isomorphism.
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Suppose now that H and H ′ have different heights; without loss of generality
assume β := ht(H) < ht(H ′). Then β is a cardinal in H ′; suppose it were not,

and let ζ := |β|H′
< β. Then there is some b ∈ H ′ ∩ ℘(ζ) which codes (via

Gödel pairing) a bijection between ζ and β. Since β is a limit ordinal then

ζ + 1 < β = ht(H); so Vζ+1 ∩ H = Vζ+1 ∩ H ′ by (3) and thus b ∈ H . Since

H is a ZF− model it can compute the ordertype coded by b and so β ∈ H , a

contradiction.

Essentially the same argument of the last paragraph shows that H = HH′
β : if

a ∈ HH′
β , then there is some ζ < β and a b ∈ H ′ ∩℘(ζ) = H ∩℘(ζ) which codes

a in a way that is absolute across transitive ZF− models, so, in particular,

a ∈ H .

Note that if 2ω = ω2, φ is some wellorder of R in order-type ω2, and M , M ′

are elementary substructures of (Hθ,∈, φ) for some θ ≥ ω2 such that M ∩ ω2 =

M ′ ∩ ω2 =: α > ω1, then the pair HM and HM ′ (the transitive collapses of

M and M ′, respectively) satisfy item (a) from the hypothesis of Theorem 13

(because HM ∩ R = φ“α = HM ′ ∩ R).

Corollary 14 (Viale [15]): Assume H andH ′ are transitive ZF− models such

that H ∩ R = H ′ ∩ R.

(1) Suppose that H andH ′ are in GISω1 where TH ⊂ ω1 and TH′ ⊂ ω1 wit-

ness that H,H ′ are ω1-internally stationary (respectively). If TH ∩ TH′

is stationary, then one of H,H ′ is a hereditary initial segment of the

other. (See Section 2.1 for the meaning of the notation TH and TH′ .)

(2) Suppose thatH andH ′ are in GICω1 . Then one ofH,H ′ is a hereditary

initial segment of the other.

Proof. We first prove part (1); let H and H ′ be as in the hypothesis. We

will show that H , H ′ satisfy requirement (b) of the hypothesis of Theorem 13.

Fix any ⊂-increasing and ⊂-continuous sequence 〈Nξ | ξ < ω1〉 of countable

elementary substructures of (H,∈) such that H =
⋃

ξ<ω1
Nξ; similarly fix a

sequence 〈N ′
ξ | ξ < ω1〉 of substructures of (H ′,∈). Let TH , TH′ witness

(respectively) that H , H ′ are in ISω1 (i.e., TH is stationary and Nξ ∈ H for

every ξ ∈ TH ; similarly for TH′). Let A be any transitive set which is an element

of H ∩ H ′. Set B := {Nξ ∩ A | ξ ∈ TH ∩ TH′}. Then B ⊂ H ∩H ′ and B is a

stationary—in particular ⊂-cofinal—subset of [A]ω (in the sense of V ). So then

clearly B is also ⊂-cofinal in each of ([A]ω)H and ([A]ω)H
′
. Note that for each
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ξ < ω1, (Nξ,∈) is extensional.9 Since (Nξ,∈) is extensional and A is transitive,

then (Nξ ∩ A,∈) is extensional. So B consists entirely of extensional sets. So

we have shown that item b of the hypothesis of Theorem 13 holds for the pair

H,H ′, which completes the proof of part (1).

Now notice that part (2) of the corollary is just a special case of part (1):

if H and H ′ are in ICω1 , then TH and TH′ each contain a closed unbounded

subset of ω1. So in this case TH ∩ TH′ in fact contains a club, so part (1) of the

corollary applies.

Finally we state a corollary which will only be used in the proof of Theorem

4:

Corollary 15 (Viale [15]): Let B ⊂ R. Set

GICB
ω1

:= {H ∈ GICω1 | H is a transitive ZF− model and H ∩ R = B}.
Then GICB

ω1
is totally ordered by the “hereditary initial segment’’ relation.

Proof. This follows immediately from Corollary 14.

2.4. Towers of measures and towers of ideals. Suppose Z is a set and

F ⊂ ℘(Z) is a filter. The support of F (supp(F )) is the set
⋃
Z. For all

instances in this paper, the support of a filter will always be a transitive set

(typically some Hθ) and Z will always be of the form ℘κ(Hθ) for some regular

κ ≤ θ. (Ultra) filter will always mean a normal,10 countably complete, fine11

(ultra) filter. If F is a filter then F̆ denotes its dual ideal; similarly if I is

an ideal then Ĭ denotes its dual filter. If Γ is a class, we say that a filter F

concentrates on Γ iff there is an A ∈ F such that A ⊆ Γ; if I is an ideal

we say that I concentrates on Γ iff its dual filter concentrates on Γ. A set

S ⊂ ⋃
I is I-positive (written S ∈ I+) iff S /∈ I.

Definition 16: If Z ⊆ Z ′, I ⊂ ℘(Z) and I ′ ⊆ ℘(Z ′) are ideals, we say that I is

the canonical projection of I ′ to Z iff for every A ⊆ Z,

A ∈ I ⇐⇒ {M ′ ∈ Z ′ | M ′ ∩
⋃

Z ∈ A} ∈ I ′.

9 Because (H,∈) is extensional (by transitivity of H) and (Nξ ,∈) ≺ (H,∈).
10 F is normal iff for every regressive g : Z → V there is an S ∈ F+ such that g � S is

constant.
11 Namely, for every b ∈ supp(F ) there is an A ∈ F such that b ∈ M for all M ∈ A. Note

if F is fine then its support is equal to
⋃⋃

F .
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For filters F ⊂ ℘(Z) and F ′ ⊂ ℘(Z ′), we say that F is the canonical projection

of F ′ to Z iff F̆ is the canonical projection of F̆ ′ to Z. For filters, this is

equivalent to saying

F = {{M ′ ∩
⋃

Z | M ′ ∈ A′} | A′ ∈ F ′}.
Suppose W is a transitive model of set theory and U is a (possibly external)

W -normal,12 fine ultrafilter, say U ⊂ ℘(Z) where Z ∈ W (for example, Z might

be ℘W
κ (HW

λ )). It is a standard fact that if jU : W →U ult(W,U) = (ZW∩W )/U

is the ultrapower and
⋃
Z is transitive, then:

(4)

• jU“(
⋃
Z) is an element of ult(W,U) and is represented by

[idZ ]U ;

• if the wellfounded part of ult(W,U) has been transitivized,

then j � (
⋃

Z) is an element of ult(W,U) and is represented

by [f ]U where f(M) :� the inverse of the Mostowski col-

lapse map of M .

Of course if U ∈ W then ult(W,U) is wellfounded, but the comments above

show that
⋃
Z is always an element of the (transitivised) wellfounded part

of ult(W,U), even when U is external to W . One common example of this

“external” case is generic ultrapowers. Suppose I ⊂ ℘(Z) is an ideal,13 and

let PI := (I+,⊂). If G is (V,PI)-generic, then G is an ultrafilter on ℘V (Z)

which is normal14 with respect to sequences from V . In particular, (4) holds

and jG � (
⋃
Z) ∈ ult(V,G).

Now consider generalizations of these notions to sequences of filters which

cohere via the “canonical projection” relation in Definition 16.

Definition 17: LetW be a transitive model of set theory, and δ a regular cardinal

in W . Let 〈Zλ | λ < δ〉 ∈ W and, for simplicity, assume each
⋃
Zλ ∈ V W

δ and

each
⋃
Zλ is transitive, and

⋃
λ<δ

⋃
Zλ = V W

δ . Suppose 〈Uλ | λ < δ〉 is a

(possibly external to W ) sequence of W -normal ultrafilters, where Uλ ⊂ ℘(Zλ)

for each λ < δ. Also assume there is a fixed κ < δ such that each Uλ has

completeness κ. We will call �U a tower of W -normal measures iff for every

λ ≤ λ′ < δ, Uλ is the canonical projection of Uλ′ to Zλ (as in Definition 16).

12 Namely, normal with respect to sequences from W .
13 Recall we are assuming all ideals are normal, fine, and countably complete.
14 By a density argument and the fact that I was a normal ideal.
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If �U is a tower of W -normal measures, then there is a commutative system

of maps obtained by the various ultrapower maps jUλ
: W →Uλ

ult(W,Uλ) and

for λ ≤ λ′, maps kUλ,Uλ′ : ult(W,Uλ) → ult(W,Uλ′) given by

[f ]Uλ
�→ [M ′ �→ f(M ′ ∩

⋃
Zλ)]Uλ′ .

The direct limit map of the system is denoted j�U : W →�U N�U . If
�U ∈ W , then

this direct limit will always be wellfounded and closed under < δ sequences

from W ; so if in addition j�U (κ) = δ, then j�U can witness the almost-hugeness

of cr(j�U ) in W .15

A (possibly external) direct limit embedding j�U : W →�U N�U can also be

viewed as an ultrapower embedding as follows. Given a (partial) function

f : V W
δ → W with f ∈ W , let supp(f) denote the least cardinal λ ≤ δ such

that f(x) only depends on x ∩Hλ. Let

BW
<δ := {f ∈ W | f : V W

δ → W and supp(f) < δ}.
Define an equivalence relation ��U on BW

<δ by: f ��U g iff

{M ∈ Zλ | f(M ∩Hλ) = g(M ∩Hλ)} ∈ Uλ

for all sufficiently large λ < δ. Define a relation ∈�U on BW
<δ/ ��U in the obvious

way (this will be well-defined). Then the direct limit (N�U , E�U ) will be isomor-

phic to (BW
<δ/ ��U ,∈�U ); for this reason we will write ult(W, �U) for this direct

limit. The Los Theorem will hold in the following form: for each f0, . . . , fn in

BW
<δ and each formula φ, N�U |= φ([f0]�U , . . . , [fn]�U ) iff

{M ∈ Zλ | W |= φ(f0(M), . . . , fn(M))} ∈ Uλ

for every sufficiently large λ < δ. The following analogues of (4) always hold

when taking (possibly external) ultrapowers by a tower of W -normal measures:

(5)

For every transitive X ∈ V W
δ :

• j�U“X is an element of ult(W, �U) and is represented by the

function [M �→ M ∩X ]�U ;

• j�U � X is an element of ult(W, �U) and is represented by

M �→ the inverse of the Mostowski collapse map of M ∩X .

Just as forcing with the positive sets of an ideal gives rise to external ul-

trapowers of V by a single V -normal measure, forcing with a tower of ideals

15 See Theorem 24.11 of Kanamori [12] for technical criteria on �U which will guarantee that

j�U is an almost huge embedding.
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(defined below) gives rise to an external ultrapower of V by a tower of V -normal

measures.

Definition 18: A sequence 〈Iλ | λ < δ〉 is called a tower of ideals of height δ

iff for every λ ≤ λ′ < δ, Iλ is the canonical projection (in the sense of Definition

16) of Iλ′ to Zλ.

We will also require for simplicity that for each λ, if Zλ is such that

Iλ ⊂ ℘(Zλ), then
⋃
Zλ = Hλ. In this paper Zλ will always be of the form

℘κ(Hλ).

For a class Γ, we say that �I concentrates on Γ iff every ideal in the sequence

concentrates on Γ.

If �I is a tower, there is a natural poset P�I associated with �I. Conditions are

pairs (λ, S) where λ < δ and S ∈ I+λ . A condition (λ, S) is strengthened by

increasing λ to some λ′ and refining the lifting of S to Hλ′ . More precisely:

(λ′, S′) ≤ (λ, S) iff λ′ ≥ λ and

S′ ⊆ SZλ′ := {M ′ ∈ Zλ′ | M ′ ∩Hλ ∈ S}.

If G is generic for P�I , let

proj(G, λ) := {S ∈ ℘V (Zλ) | (λ, S) ∈ G};

this is an ultrafilter on ℘V (Zλ) which is normal with respect to sequences from V

(though proj(G, λ) need not be (V,PIλ)-generic!) and 〈proj(G, λ) | λ < δ〉 is a
tower of V -normal measures as in Definition 17; in particular, (5) holds and one

can prove the following general facts (in the case of towers, we use the notation

jG : V →G ult(V,G) to denote the ultrapower embedding j�U : V →�U ult(V, �U)

where �U = 〈proj(G, λ) | λ < δ〉):
Fact 19: If �I is a tower of height δ where δ is inaccessible and G is generic for
�I, then:

(1) For every D ∈ Vδ, jG � D ∈ ult(V,G).

(2) For every θ < δ: proj(G, θ) = {S ∈ ℘V (Zθ) | jG“Hθ ∈ jG(S)}. This

fact, combined with item 1 and the assumption that δ is (strongly)

inaccessible, implies that proj(G, θ) ∈ ult(V,G) for every θ < δ.

(3) For every θ < δ and every Y ∈ Vδ, the relations =proj(G,θ)� (HθY )V

and ∈proj(G,θ)� (HθY )V are elements of ult(V,G) (this follows from the

previous bullets: both (HθY )V and proj(G, θ) are elements of ult(V,G)).
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(4) If �I concentrates on {M | λ ⊂ M and M ∩ λ+ ∈ λ+} and

jproj(G,θ) : V → ult(V, proj(G, θ)) is the ultrapower map by proj(G, θ),

then kproj(G,θ),proj(G,θ′) � jproj(G,θ)(λ
+) = id.

A tower �I is called precipitous iff ult(V,G) is wellfounded for every generic

G ⊂ P�I . We refer the reader to Foreman [5] for the general theory of towers,

and to Larson [13] and Woodin [18] for the specific cases where all the ideals Iθ

in the tower are of the form NS � Zθ (towers of this form are called stationary

towers).

2.5. Induced towers of ideals. We adjust Example 3.30 from [5] to towers:

Definition 20: Suppose Q is a poset, δ is inaccessible, and 〈U̇λ | λ < δ〉 is a

sequence of Q-names such that Q � “ �̇U is a tower of V -normal ultrafilters”.

For each λ < δ, let Iλ be the collection of A such that for every (V,Q)-generic

object H , A /∈ (U̇λ)H . The sequence 〈Iλ | λ < δ〉 will be called the tower of

ideals derived from the name �̇U .

It is straightforward to check that this indeed forms a tower of ideals.

Recall that if j : V → N is an embedding with critical point κ and P ∈ V is a

poset such that j � P : P → j(P) is a regular embedding,16 then j(P) is forcing

equivalent to P ∗ j(P)/j“Ġ where Ġ is the canonical P-name for the P-generic.

Further, whenever G ∗ H is generic for P ∗ j(P)/j“Ġ then j can be lifted (in

V [G][H ]) to an elementary jG∗H : V [G] → N [G][H ]; the map jG∗H is defined

by

(6) τG �→ j(τ)Ĝ,

where Ĝ ⊂ j(P) is the generic obtained from G ∗H by the forcing equivalence

of j(P) with P ∗ j(P)/j“Ġ. Suppose δ is a V -cardinal such that for every λ < δ,

j“Hλ ∈ N . Then for every λ < δ,

(7) UG∗H
λ := {A | A ∈ V [G] and jG∗H“Hλ[G] ∈ jG∗H(A)}

is a V [G]-normal ultrafilter. Then from the point of view of V [G], the poset

j(P)/G forces that 〈U̇G∗Ḣ
λ | λ < δ〉 is a tower of V [G]-normal measures (external

to V [G], of course). Then in V [G], let 〈Iλ | λ < δ〉 be the tower of normal ideals

derived from the name 〈U̇G∗Ḣ
λ | λ < δ〉 as in Definition 20 (here V [G] is playing

the role of V and j(P)/G is playing the role of Q from Definition 20).

16 Namely, whenever A ⊂ P is a maximal antichain then j“A is a maximal antichain in j(P).
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Definition 21: The tower �I ∈ V [G] described in the last paragraph will be called

the tower induced by j.

We caution that if j�U : V → N�U is an embedding by a tower of V -normal

measures, j�U � P : P → j�U (P) is a regular embedding, G is (V,P)-generic,

and �I ∈ V [G] is the tower induced by j�U as in Definition 21, then for each

λ < δ it will not in general be the case that the dual of Iλ extends Uλ. This

is because of the way that the measure UG∗H
λ is defined in (7): the measure

UG∗H
λ concentrates on elementary substructures of Hλ[G], not on elementary

substructures of Hλ. This is only a minor technical issue, however; generally

N�U ∩ jG∗H
�U

“Hλ[G] = j�U“Hλ, and it follows that for every λ < δ there are

UG∗H
λ -many M ≺ Hλ[G] such that M ∩ V ∈ V (see Corollary 32 for the use of

derived towers in this setting).

3. The weak Chang property and ideals which bound their complete-

ness

In this section we discuss presaturation of towers and some concepts introduced

by the first author in [2] which will be used in the proofs of Theorems 27 and

29. These concepts are related to Chang’s Conjecture, bounding by canonical

functions, and saturation. For the reader’s convenience all relevant proofs are

included here.

A tower of height δ is called presaturated iff δ always remains a regular

cardinal in generic extensions by the tower. Such a tower is always precipitous

and ult(V,G) is closed under < δ sequences from V [G] (see Proposition 9.2 of

[5]). Woodin showed that if δ is a Woodin cardinal, there are several stationary

towers of height δ which are presaturated. We use the following weakening of

presaturation introduced in [2]:

Definition 22 (Cox [2]): A tower of inaccessible height δ has the weak Chang

property iff whenever G is generic for the tower, then δ is an element of the

wellfounded part of ult(V,G) and is regular in ult(V,G) (though not necessarily

in V [G]).

Lemma 23: Let μ = λ+. If a tower �I of height δ concentrates on

Γ := {M | |M | = λ ⊂ M}, then �I has the weak Chang property iff it forces

that jG(μ) = δ.
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Proof. The fact that �I concentrates on Γ implies that μ will be the critical point

of jG and jG(μ) ⊇ δ for any generic G (see [5]). Since jG(μ) is the successor of

λ in ult(V,G), the equivalence follows easily.

Corollary 24: Let μ = λ+ and assume �I is a tower of height δ which con-

centrates on Γ := {M | |M | = λ ⊂ M}. If �I is presaturated then it satisfies the

weak Chang Property.

For the next lemma we will use the following definition, which is also related

to saturation properties of ideals (see [2]):

Definition 25 (Cox [2]): Let J be a normal ideal over ℘(H) where

μ = completeness(J) ⊆ H.

We say J bounds its completeness iff for every f : μ → μ there are J̆-many

M such that otp(M ∩ORD) > f(M ∩ μ).

Lemma 26: Suppose �I = 〈Iθ | θ < δ〉 is a tower of inaccessible height δ, has

completeness μ := λ+, concentrates on {M | |M | = λ ⊂ M}, and has the weak

Chang property. Then:

(1) For every generic G and every θ < δ, jproj(G,θ)(μ) < δ.

(2) There is a restriction of some ideal in the tower which bounds its com-

pleteness.

Proof. Part 1: Suppose not; let μ := λ+ and let G and θ be such that

jproj(G,θ)(μ) ≥ δ. By assumption, jG(μ) = δ; so in fact δ = jproj(G,θ)(μ) =

{[f ]proj(G,θ) | f ∈ (Zθμ)V }. By Fact 19, {[f ]proj(G,θ) | f ∈ (Zθμ)V } is an

element of ult(V,G); moreover

|{[f ]proj(G,θ) | f ∈ (Zθμ)V }|ult(V,G) ≤ |(Zθμ)V |ult(V,G) ≤ |(Zθμ)V |V < δ

(by inaccessibility of δ in V ). This contradicts that δ is regular in ult(V,G).

Part 2: By part 1 with θ := μ, there is a condition (α,A) in the tower which

decides the value of jproj(Ġ,μ)(μ) as some η < δ. Without loss of generality,

assume

(8) η < α.

We show that Iα � A bounds its completeness; a similar argument shows that

Iβ � AZβ bounds its completeness for every β ∈ [α, δ).
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Let f : μ → μ. Suppose for a contradiction that there were some A′ ⊆ A

such that A′ is Iα-positive and for every M ∈ A′, otp(M ∩ORD) ≤ f(M ∩ μ)

(note also that M ∩ ORD = M ∩ α for all M ∈ A′). Let G be generic for the

tower with (α,A′) ∈ G. Then A′ ∈ proj(G,α) and so

η < α = [M �→ otp(M ∩ α)]proj(G,α) ≤ [M �→ f(M ∩ μ)]proj(G,α).

Now f maps into μ, so

[f ]proj(G,μ) < jproj(G,μ)(μ) = η.

Hence by part 4 of Fact 19, [f ]proj(G,μ) is not moved by kproj(G,μ),proj(G,α):

[f ]proj(G,μ) = kproj(G,μ),proj(G,α)([f ]proj(G,μ)) = [M �→ f(M ∩ μ)]proj(G,α).

But this implies η < η, a contradiction.

4. RP and towers on GICω1

In this section we prove Theorems 1, 4 and 2.

4.1. Proof of Theorem 1. Theorem 1 follows from Corollary 24, Lemma 26,

and the following:

Theorem 27: Assume RP (ω2). Then there is no ideal I which bounds its

completeness and concentrates on GICω1 .

Proof. Todorcevic proved that RP (ω2) implies 2ω ≤ ω2 (see Theorem 37.18 of

[11]). If CH holds, then for every θ ≥ ω2 the set of ω1-guessing submodels of

Hθ is nonstationary (see [15]) and the theorem holds trivially.

So suppose from now on that 2ω = ω2. Suppose for a contradiction that I is a

normal ideal concentrating on some stationary subset S of GICω1 (at some Hθ),

and that I bounds its completeness (which is ω2). Without loss of generality we

assume that for every M ∈ S, M ≺ (Hθ,∈,Δ, φ) where φ is some enumeration

of the reals of order-type ω2. For each α ∈ proj(S, ω2) := {M ∩ ω2 | M ∈ S}
let T (α) be the collection of all transitive sets of the form HM , where M ∈ S

and M ∩ ω2 = α.

Let Ī be the projection of I to ω2.

Claim 27.1: For Ī-measure-one many α, sα := sup{ht(H) | H ∈ T (α)} is at

least ω2.
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Proof of Claim 27.1. Suppose not; so there is some S′ which is I-positive and

for every M ∈ S′, sM∩ω2 < ω2. Let f : ω2 → ω2 be defined by sending α �→ sα

if sα < ω2, and f(α) = 0 otherwise. Since I bounds its completeness, there is

some C ∈ Ĭ such that for every M ∈ C, otp(M∩ORD) = ht(HM ) > f(M∩ω2).

Then for every M ∈ C∩S′, f(M∩ω2) = sM∩ω2 < ht(HM ). Fix any M̂ ∈ C∩S′

and let α̂ := M̂ ∩ ω2; then

(9) sα̂ < ht(HM̂ )

yet HM̂ ∈ T (α̂); this is clearly a contradiction to the definition of sα̂.

Fix any α such that sα = ω2, and let W :=
⋃
T (α). Now S ⊆ GICω1 , so by

Corollary 14, whenever H and H ′ are elements of T (α) and ht(H) < ht(H ′),
then H is a hereditary initial segment of H ′; this implies that W is a transitive

ZFC model (of height ω2). Since H ∈ ICω1 for every H ∈ T (α), then:

(10) For every β < ω2, W ∩ [β]ω contains a club.

To see why (10) holds, let β < ω2. Pick an H ∈ T (α) such that β < H ∩ORD,

and let 〈Nξ | ξ < ω1〉 witness that H ∈ ICω1 . Then {Nξ ∩ β | ξ < ω1} is a

closed unbounded subset of [β]ω , and each Nξ ∩ β is an element of H ⊂ W .

Now R∩W = φ[α]; in particular R−W = ∅. By Theorem 11, R := [ω2]
ω−W

is stationary (in fact projective stationary). By RP (ω2), there is a β < ω2 such

that R ∩ [β]ω is stationary.17 This contradicts (10).

4.2. Proof of Theorem 4. Now we prove Theorem 4; that is, if RP is omit-

ted from the hypothesis of Theorem 1, the Isomorphism Theorem for GICω1

prevents precipitous towers on GICω1 which are definable.

Proof. If CH holds there are no Gω1 structures so the theorem is trivial. So

assume 2ω = ω2 and let Δ be a wellorder of R of order-type ω2. Suppose
�I = 〈Iθ | θ < δ〉 were such a tower. By Lemma 4.3 of Burke [1], a precipitous

tower is not an element of the generic ultrapower.18 Since we are assuming the

tower is definable over Vδ, to obtain a contradiction it suffices to show that Vδ

17 This uses the fact that {β | ω1 ≤ β < ω2} is a club subset of [ω2]ω1 and that RP (ω2)

implies the following apparently stronger statement (see Theorem 3.1 of Feng–Jech [4]):

for every stationary R ⊂ [ω2]ω, there are stationarily many Z ⊂ [ω2]ω1 such that ω1 ⊂ Z

and R ∩ [Z]ω is stationary.
18 If the generic embedding moves δ, which is always the case if the tower concentrates on

{M | |M | = λ ⊂ M}.
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is an element of some generic ultrapower by the tower. Let G be generic for

the tower, let B := R
V = jG(Δ)“ωV

2 ∈ ult(V,G), and let (GICB
ω1
)ult(V,G) be as

in Corollary 15, i.e., (GICB
ω1
)ult(V,G) is the collection of transitive ZF− models

in ult(V,G) which are GICω1 (from the point of view of ult(V,G)) and whose

intersection with R
ult(V,G) equals B.

By Fact 19, jG“H
V
θ ∈ ult(V,G) for each θ < δ. Since �I concentrates onGICω1

and ω1 < cr(jG), then by the Los Theorem, ult(V,G) |= “jG“H
V
θ ∈ GICω1”

for each θ ∈ REGV ∩ [ωV
2 , δ). Also note that R ∩ jG“H

V
θ = R∩HV

θ = B, so in

particular by Corollary 15 we have

(11) ∀θ ∈ REGV ∩ [ωV
2 , δ): ult(V,G) |= HV

θ ∈ GICB
ω1
.

Note that (11) is from the point of view of V [G]; we do not know yet that

〈HV
θ | θ ∈ REGV ∩ δ〉 is an element of ult(V,G). Let

W :=
⋃

(GICB
ω1
)ult(V,G) ∈ ult(V,G).

Fix any V -regular θ ∈ [ωV
2 , δ); by (11) and Corollary 15, HV

θ = HW
θ . Working

inside V [G] (not inside ult(V,G)) it follows that HW
δ =

⋃
θ∈REGV ∩δ H

V
θ = Vδ.

Since HW
δ ∈ ult(V,G) this implies that Vδ ∈ ult(V,G), a contradiction.

4.3. Proof of Theorem 2. Finally we prove Theorem 2. It is well-known

that either MM or PFA+ implies RP ; so Theorem 2 will follow from Theorem

1 and the following:

Lemma 28: Assume PFA and let δ be inaccessible. Then there is a tower of

height δ which concentrates on GICω1 .

Proof. In [16] it was shown that PFA implies that GICω1∩℘ω2(Hθ) is stationary

for all regular θ ≥ ω2.

For each λ < δ set Zλ := {M ∩ Hλ | M ∈ GICω1 ∩ ℘ω2(Vδ)} and set

Iλ := the projection of NS � GICω1 ∩ ℘ω2(Vδ) to a normal ideal on Zλ. It

is straightforward to check that a sequence of ideals defined in this way is a

tower. By Lemma 10, each Zλ ⊂ GICω1 ∩ ℘ω2(Hλ).

Alternatively, one can check that the sequence 〈Zλ | λ < δ〉 satisfies Lemma

9.49 of [5], and then use Burke’s “stabilization” technique to produce a tower

of ideals concentrating on the Zλs. It is not clear whether this yields the same

tower as the previous paragraph.
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5. SRP and towers on GISω1

In this section we prove Theorem 3. We actually prove a slightly stronger

theorem, namely, the assumption SRP (ω2) from Theorem 3 can be weakened

to the conjunction of RP (ω2) with saturation of NSω1 (these are both implied

by SRP (ω2); see Theorems 37.22 and 37.23 of Jech [11]). Recall the Tree

Property at κ (TP (κ)) is the statement that every tree of height κ and width

< κ has a cofinal branch, and saturation of NSω1 means that ℘(ω1)/NSω1 has

the ω2-chain condition.

Theorem 3 follows from Corollary 24, Lemma 26, and the following theorem:

Theorem 29: Assume RP (ω2), NSω1 is saturated, and TP (ω2). Then there

is no ideal concentrating on GISω1 which bounds its completeness.

First we prove:

Lemma 30: Assume RP (ω2), NSω1 is saturated, and W is a transitive ZF−

model of height ω2 such that W ∩ [β]ω is stationary for all19 β < ω2. Then

R ⊂ W .

Proof. For each β<ω2, fix any⊂-increasing and continuous sequence 〈aβi |i<ω1〉
in [β]ω whose union is [β]ω , and set Tβ := {i < ω1 | aβi ∈ W}; note that our

assumptions on W imply that each Tβ is stationary.20 Also, if β < β′ then

Tβ ≥NS Tβ′ . Since 〈Tβ | β < ω2〉 is a ≤NS-descending sequence of a stationary

subset of ω1 and NSω1 is saturated, then the sequence stabilizes, i.e., there is

some β < ω2 such that T := Tβ =NS Tβ′ for all β′ ∈ [β, ω2).

Now suppose for a contradiction that R − W = ∅. Then by Corollary 12,

R := [ω2]
ω−W is projective stationary; so in particular, R ↘ T is stationary.21

By RP (ω2), there is some β′ ∈ [β, ω2) such that (R ↘ T ) ∩ [β′]ω is stationary.

But

(R ↘ T ) ∩ [β′]ω =NS{aβ
′

i | aβ′
i ∈ R and i = aβ

′
i ∩ ω1 ∈ T }

=NS{aβ
′

i | aβ′
i /∈ W and i ∈ Tβ′}

which, by the definition of Tβ′ , is nonstationary. Contradiction.

19 Equivalently, cofinally many.
20 Also, modulo NSω1 , Tβ does not depend on the particular sequence �aβ . This is not

needed in the current proof, however.
21 Recall R ↘ T denotes {N ∈ R | N ∩ ω1 ∈ T}.
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Now back to the proof of Theorem 29. Suppose for a contradiction that I

concentrates on some stationary S ⊆ GISω1 and bounds its own completeness

(which is ω2). Without loss of generality we can assume that for every M ∈ S,

M ≺ (Hθ,∈, φ) where φ is some wellorder of the reals of order-type ω2 and

Hθ is the support of I. For each M ∈ S let TM ⊆ ω1 be the stationary set

witnessing that M ∈ ISω1 . For each α ∈ proj(S, ω2) define

T (α) := {HM | M ∈ S and α = M ∩ ω2};
the downward closure of T (α) under the hereditary initial segment relation22

forms a tree of height ≤ ω2.

Claim 30.1: For each α ∈ proj(S, ω2), the tree T (α) has width < ω2.

Proof. Fix such an α and a level η < ω2 of the tree T (α). Note that if

H is at the η-th level, then there is some M ∈ S such that H = (Hλ)
HM

where λ is the η-th regular cardinal of HM (or λ = HM ∩ ORD). With-

out loss of generality we assume η ≥ 2; then it is straightforward to show

that σM [H ] = M ∩HσM (λ) ∈ GISω1 and that the set TM—which witnesses that

M ∈ ISω1—also witnesses that M ∩HσM (λ) ∈ ISω1 .

Suppose for a contradiction that level η had at least ω2-many distinct nodes

〈Hξ | ξ < ω2〉, and say Tξ ⊂ ω1 witnesses that Hξ ∈ ISω1 . Note all the

Hξs have the same intersection with the reals (namely φ[α]; so they have the

same intersection with Hω1 as well). For any distinct pair ξ and ξ′, since

Hξ = Hξ′ then Tξ∩Tξ′ is nonstationary by Corollary 14. But then {Tξ | ξ < ω2}
would be an ω2-sized antichain for NSω1 , contradicting the fact that NSω1 is

saturated.

Let Ī be the projection of I to ω2.

Claim 30.2: For Ī-measure-one many α < ω2, the tree T (α) has height ω2.

Proof. The proof of Claim 27.1 can be repeated verbatim.

So by Claims 30.1 and 30.2, for Ī-measure-one many α < ω2, T (α) is a thin

tree of height ω2. Fix such an α. By TP (ω2), T (α) has a cofinal branch.

The union of this branch is a transitive ZFC model W of height ω2 such that

R ∩W = φ“α (so in particular R −W = ∅) and cofinally many proper initial

22 Namely, the nodes of T (α) consists of transitive models of the form HM and models of

the form (Hλ)
HM where λ ∈ REGHM .
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segments of W are in ISω1 ; so in particularW ∩[β]ω is stationary for all β < ω2.

This contradicts Lemma 30.

6. Consistency of MM+ with a precipitous tower on GICω1

Now we prove Theorem 5. First, we need a “tower” version of Proposition 7.13

from [5].

Theorem 31 (modification of Proposition 7.13 from [5] for towers): Suppose

Q ∈ V is a poset and 1Q � “δ remains inaccessible, 〈U̇λ | λ < δ〉 is a tower

of V -normal measures, and ult(V, �̇U) is wellfounded”. Suppose also that in V

there are functions Q, h, and for each q ∈ Q a function fq such that:

• Q, h, and each fq each have bounded support in Vδ;

• for every Q-generic object H :

– [Q] �̇UH
= Q;

– [h] �̇UH
= H ;

– for every q ∈ Q, [fq] �̇UH
= q.

If �I ∈ V is the tower derived from the name �̇U as in Definition 20, then P�I is

precipitous, forcing equivalent to Q, and generic ultrapowers by �I are exactly

those maps of the form j �̇UH
: V → ult(V, �̇UH) where H is (V,Q)-generic.

Proof. First, we note that if �I is a tower where each ideal Iλ ⊂ ℘(Zλ), then the

poset P�I (as defined in Section 2.4) is forcing equivalent to the poset obtained

as follows: Define an equivalence relation on P�I = {(λ, S) | λ < δ and S ∈ I+λ }
by

(12)
(λ, S) � (β, T ) iff SZη � TZη ∈ Iη for some (equivalently: every)

η ≥ max(λ, β).

Let P′
�I
:= P�I/ � and partially order P′

�I
in the natural way inherited from the

partial ordering of P�I .
23

Now let �I be the tower derived from the name �̇U as in the statement of the

theorem. Similarly to the way Proposition 7.13 from [5] is proved, we define a

23 Another way to view the poset P′
�I
is to consider the directed system of “canonical liftings”

ιλ,λ′ : ℘(Zλ)/Iλ → ℘(Zλ′)/Iλ′ (for λ ≤ λ′) defined by [S]Iλ 
→ [SZλ′ ]Iλ′ . Then P
′
�I
is

the direct limit of this system.
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map φ : P′
�I
→ ro(Q) by

(13) [(λ, S)]� �→
∥
∥
∥j �̇UH

“
(⋃

Zλ

)
∈ j �̇UH

(S)
∥
∥
∥
ro(Q)

.

It is straightforward to check that this map is well-defined and preserves order

and incompatibility. Further, identifying Q with its isomorphic copy in ro(Q),

the assumptions of the theorem imply that Q ⊆ range(φ): given q ∈ Q, let fq

be as in the statement of the theorem, and let λq < δ be the support of fq (and

without loss of generality assume λq is also greater than the support of h and

Q). Then φ maps the condition [(λq, {M ∈ Zλq | fq(M) ∈ h(M)})]� to q.

Finally, we show why generic ultrapowers by �I are exactly those embeddings

of the form j �̇UH
for some H which is (V,Q)-generic; we thank the referee for

pointing out a simpler proof than our original proof. Let G and H be generics

for P′
I and Q, respectively, such that φ“G = H (more precisely, such that H is

the upward closure of φ“G). Then for each λ < δ and each S ⊆ Zλ,

S ∈ proj(G, λ) ⇐⇒ [λ, S]� ∈ G ⇐⇒ φ([λ, S]�) ∈ H ⇐⇒ S ∈ (U̇λ)H .

It follows that 〈proj(G, λ) | λ < δ〉 = 〈(U̇λ)H | λ < δ〉, and so they yield the

same ultrapower.

Corollary 32: Suppose �U ∈ V is a tower of normal ultrafilters of inaccessible

height δ and j�U : V →�U N�U is the ultrapower. Suppose P ∈ Vδ and that

j�U � P : P → j�U (P) is a regular embedding. Let G be (V,P)-generic, and let
�I ∈ V [G] be the tower of height δ induced by j�U as in Definition 21.

Then in V [G], �I is precipitous, P�I is forcing equivalent to j�U (P)/j�U“G,

and generic ultrapowers of V [G] by �I are exactly those maps of the form

jG∗H
�U

: V [G] → N�U [G][H ] where H is j�U (P)/j�U“G-generic over V [G].

Proof. Let G be (V,P)-generic. We check the conditions of Theorem 31; here

V [G] will play the role of the V from Theorem 31 and j�U (P)/j�U“G will play

the role of the Q from Theorem 31.

Work in V [G]. For all H which are (V [G], j�U (P)/j�U“G)-generic, for every

λ < δ, there are UG∗H
λ -many M ′ such that:

(1) M ′ ∩ V ∈ V ;24 denote this set M .

(2) V |= “M ∩ P is a regular subposet of P”.

24 This holds for UG∗H
λ -many M ′ because N�U

∩ jG∗H
�U

“Hλ[G] = j�U“Hλ.
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Since we assume P ∈ Vδ, there is some λP < δ such that P ∈ HλP
. Now consider

the following functions defined in V [G] on

Aδ := {M ′ ≺ Vδ[G] | M ′ ∩ V ∈ V and M ′ ∩ P is a regular subposet of P} :

• Q(M ′) := P/(G ∩M ′); note this equals P/(G ∩M ′ ∩HV
λP
).

• h(M ′) := the generic for P/(G ∩M ′) obtained from G and the forcing

equivalence between P and (M ′ ∩ P) ∗ (P/(Ġ ∩ M ′)). Note this only

depends on M ′ ∩HV
λP
.

• For any q ∈ j�U (P)/G, note that q ∈ V and there is some fq : Vδ → V

with support λq < δ such that q = [fq]�U . Then define (in V [G]) the

function f ′
q by M ′ �→ fq(M

′ ∩HV
λq
).

Note that each of these functions has bounded support in Vδ (Q and h have

support λP, and f ′
q has support λq). Now we check that for every H which is

(V [G], j�U (P)/j�U“G)-generic:

(1) [Q]�UG∗H = j�U (P)/j�U“G;

(2) [h]�UG∗H = H ;

(3) for each q ∈ j�U (P)/j�U“G, [fq]�UG∗H = q.

We will show (1) to give the reader the idea of how this is done; the others

are similar. Let j := j�U and let Ĝ ⊂ j(P) be the (V, j(P))-generic obtained from

G ∗H via the forcing equivalence of j(P) with P ∗ j(P)/j“Ġ. By the definition

of jG∗H (see (6)) and the fact that P ⊂ HλP
(so Ĝ ⊂ j(HλP

)),

jG∗H(G) = Ĝ and jG∗H“G = j“G = Ĝ ∩ j“Hλ.

Let idλP
denote the function with domain Aδ and support λP defined by

M ′ �→ M ′ ∩ HV
λP
. Then (in what follows, the equivalence classes are with

respect to the equivalence relation ��UG∗H for the tower �UG∗H ; see Section 2.4):

j“G =Ĝ ∩ j“Hλ = Ĝ ∩ [idλP
] = jG∗H(G) ∩ [idλP

]

=[M ′ �→ G] ∩ [idλP
] = [M ′ �→ G ∩M ′ ∩HλP

].

Note also that G ⊂ V so [M ′ �→ G ∩M ′ ∩HλP
] = [M ′ �→ G ∩M ′]. Hence we

have shown

(14) j“G = [M ′ �→ G ∩M ′]�UG∗H .

Now combining (14) with the fact that j(P) = [M ′ �→ P] yields that

[Q]�UG∗H = [M ′ �→ P/(G ∩M ′)] = [M ′ �→ P]/[M ′ �→ G ∩M ′] = j�U (P)/j�U“G
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which is what we wanted to show. The other equalities are proved in a similar

manner. The conclusion then follows by Theorem 31.

It is interesting to note that if �I ∈ V [G] is as in Corollary 32 and δ is always

moved by generic embeddings of V by �I,25 then generic ultrapowers of V [G] by
�I do not have P�I as an element (by Lemma 4.3 of [1]). However, these generic

ultrapowers do have a poset—namely j�U (P)/j�U“G—which, from the point of

view of V [G], is forcing equivalent to P�I (and all the generic ultrapowers even

have a V [G]-generic for that poset).

Now back to the proof of Theorem 5. Suppose κ is supercompact and δ > κ

is inaccessible. Let Lav : κ → Vκ be a Laver function for κ, and P the standard

RCS iteration of length κ which yields a model of Martin’s Maximum as in [7];

this actually produces a model of MM+ω1 . In V let U be a normal measure

on ℘κ(Hη) for some regular η ≥ δ such that jU (Lav)(κ) = Ṙδ, where Rδ is

the poset from Theorem 8 and Ṙδ is the canonical P-name for (Rδ)
V P

. Let
�U := 〈Uλ | λ < δ〉 be the tower of normal measures produced from projections

of U to ℘κ(Hλ) for λ < δ. Let j�U : V → N�U ; recall N�U is closed under < δ

sequences so in particular j�U � Hλ ∈ N�U for every λ < δ. Since P has the κ-cc,

then j�U � P = id : P → j�U (P) is a regular embedding, so the discussion before

Definition 21 applies. Fix some G which is (V,P)-generic, and in V [G] let �I be

the tower of ideals induced by j�U as in Definition 21. By Corollary 32

(15) �I is precipitous.

So we only have left to show that �I concentrates on GICω1 . First we note:

Claim 33: j�U (Lav)(κ) = Ṙδ

Proof. By standard arguments there is a k : N�U → ult(V, U) such that k ◦
j�U = jU and k � δ = id. Now Ṙδ = jU (Lav)(κ) = k ◦ j�U (Lav)(k(κ)) =

k(j�U (Lav)(κ)); so Ṙδ ∈ range(k). Recall from Theorem 8 that the poset Rδ is

always an element of Hδ+ ; so the canonical P-name Ṙδ for RV P

δ is an element of

HV
δ+ = H

ult(V,U)
δ+ . Hence |Ṙδ|ult(V,U) = δ. Then since Ṙδ ∈ range(k), we have

δ = |Ṙδ|ult(V,U) ∈ range(k). This implies that cr(k) > δ (equivalently, that

j�U (κ) > δ) and that k−1(Ṙδ) = Ṙδ.

Consider an arbitrary H which is (V [G], j�U (P)/G)-generic. Let H∗ denote

the κ-th component of H . Now N�U [G][H∗] |= Vδ[G] ∈ GICω1 because H∗

25 This is always the case if each Uλ in the original tower concentrates on ℘κ(Hλ).
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is (N�U [G],R
N�U [G]

δ )-generic (note Vδ = V
N�U

δ because N�U is closed under < δ

sequences from V ). Since N�U [G][H ] is an outer model of N�U [G][H∗] with the

same ω1, then Theorem 8 implies

(16) N�U [G][H ] |= Vδ[G] ∈ GICω1 .

By (16) and (the transitivised variant of) Theorem 10:

(17) For every V -regular λ ∈ [κ, δ]: N�U [G][H ] |= Hλ[G] ∈ GICω1 .

Since jG∗H
�U

� Hλ[G] is an element of N�U [G][H ] for every λ < δ and the class

GICω1 is closed under isomorphism, then (17) implies:

(18)
For every V -regular λ ∈ [κ, δ), N�U [G][H ] |= “jG∗H

�U
“Hλ[G] is an

element of GICω1”.

Since (18) holds for arbitrary generic H , then by the definition of each Iλ:

(19) For each λ < δ, Iλ concentrates on GICω1 .

This concludes the proof of Theorem 5.

7. Questions

We end with some questions.

We proved that under RP ([ω2]
ω), there is no presaturated tower which con-

centrates on GICω1 . This suggests a couple of questions:

Question 34: Is it consistent with RP ([ω2]
ω) that there is a presaturated tower

concentrating on GISω1?

Question 35: Is it consistent with ZFC to have a presaturated tower which

concentrates on GICω1?

One way to produce a presaturated tower on GISω1 is to perform a “Mitchell

collapse” so that an almost-huge cardinal becomes ω2; however, RP [ω2]
ω fails

in this model, so it does not provide an affirmative answer to Question 34.

We also showed that MM implies there is no presaturated tower on GISω1 ,

which suggests:

Question 36: Is it consistent with MM that there is a presaturated tower con-

centrating on GIUω1?
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Question 37: If the answer to either of the previous questions is “yes”, can this

tower be a stationary tower? Or any other kind of “natural” tower?

Finally, in Theorem 4 we showed there is no precipitous tower on GICω1

which is definable over Vδ (where δ is the height of the tower).

Question 38: Suppose NSω1 is saturated. Does this imply that there is no

precipitous tower on GISω1 which is definable over Vδ (where δ is the height of

the tower)?
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