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Abstract 

 

Risk Assessment is the systematic study of decisions subject to uncertain consequences. 

An increasing 

interest has been focused on modeling techniques like Bayesian Networks since their 

capability of (1) combining in the probabilistic framework different type of evidence 

including both expert judgments and objective data; (2) overturning previous beliefs in 

the light of the new information being received and (3) making predictions even with 

incomplete data. In this work, we proposed a comparison among Bayesian Networks and 

other classical Quantitative Risk Assessment techniques such as Neural Networks, 

Classification Trees, Random Forests and Logistic Regression models. Hybrid 

approaches, combining both Classification Trees and Bayesian Networks, were also 

considered. Among Bayesian Networks, a clear distinction between purely data-driven 

approach and combination of expert knowledge with objective data is made. The aim 

of this paper consists in evaluating among this models which best can be applied, in the 

framework of Quantitative Risk Assessment, to assess the safety of children who are 

exposed to the risk of inhalation/insertion/aspiration of consumer products. The issue 

of preventing injuries in children is of paramount importance, in particular where product 

design is involved: quantifying the risk associated to product characteristics can be of 

great usefulness in addressing the product safety design regulation. Data of the European 

Registry of Foreign Bodies Injuries formed the starting evidence for risk assessment. 

Results showed that Bayesian Networks appeared to have both the ease of 

interpretability and accuracy in making prediction, even if simpler models like logistic 

regression still performed well. 

 

Keywords 

Bayesian Network, children, classification trees, foreign body injuries, quantitative risk 

assessment 
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Introduction 

 

Quantitative risk assessment (QRA) is the systematic study of decisions subject to 

uncertain consequences by means of tools and techniques of probability theory and 

statistics.
1 One of the key features of QRA is its effort to look at whole systems 

and not isolated parts. Each possible adverse event is followed through to its 

consequences and at the same time the consequences of different adverse outcomes 

can be combined. 

A wide range of techniques have been developed to address the risk assessment 

problem. They can roughly be classified as engineering, statistical or causal modeling 

techniques.
2 The engineering approach is based on the idea that risk objectively exists 

and risk analysis is a tool to express it by probabilities and expected values.
3 

Engineering techniques are mainly devoted to simulate the behavior of the system 

which is going to be assessed. In health risk assessment, Compartmental flow models 

and other continuous simulation models, Monte Carlo uncertainty models, Discrete- 

event simulation models are among the most common techniques, while Fault trees and 

Event trees are a major tool in safety and reliability analysis.
4–7

 

Statistical risk modeling relies on observed data, on covariates and responses, rather 

than attempting to simulate the causal process that leads to the adverse outcome. 

The task is challenging because typically it is not known (1) which aspects of 

covariates are relevant to the response; (2) the mathematical form of the relation 

among variables and response probabilities; (3) how unobserved variables can affect 

the observed relation.2 Among the techniques that have successfully been applied in 

risk analysis across various disciplines, there are logistic regression, artificial neural 

network and classification and regression trees.
8,9

 

While statistical and engineering approaches are complementary, causal modeling 

can combine elements of both. The risk assessment problem has been successfully 

addressed in a wide range of application domains using Bayesian Networks (BNs),
10,11 

which offer the benefit of explicitly model causal factors. The success of BNs in QRA 

is mainly due to their capability of: (1) combining in the probabilistic framework 

different types of evidence including both subjective beliefs and objective data, (2) 

overturning previous belief in the light of the new information received and (3) 

making predictions with incomplete data. The compositional modeling characteristic 

of the engineering approach is captured by the ingoing-outgoing relations in the 

network, while the conditional probability distribution of each variable may be 

determined by machine-learning algorithms. 

In this paper, the comparison of different statistical modeling techniques developed 

in the framework of QRA is proposed. Unsafe consumer products are involved in 



 

thousands of injuries in children, which can be caused for example by ingestion of 

batteries or broken plastic parts of toys and can have severe consequences.
12 The aim 

of this work consists thus in evaluating which modeling techniques, among those 

presented, can be better applied to assess the risk of such foreign bodies (FB) 

injuries in children. In general, probabilistic methods enable the characterization of 

the risk posed by products’ characteristics such as their size or shape.
13-15 In this 

paper, we focused on the application of statistical modeling techniques for the 

assessment of the risk to experience a severe injury. In particular, we were aimed at 

characterizing consumer and product’s features and the surrounding circumstances 

that lead to hospital admissions. 

In order to achieve this objective, data from the European Registry of Foreign 

Bodies Injuries ‘‘Susy Safe’’ was used. The ‘‘Susy Safe’’ Registry is a European 

Union funded registry, which has been established for the collection of FB injuries in 

children aged 0–14 and it is aimed at describing the clinical pattern and the public 

health burden of those injuries. 

Following a short presentation of the data source, the implementation of the 

modelling techniques for QRA was described. Performance of the models (area under 

the ROC curve, sensitivity and specificity) were compared and a sensitivity analysis 

was carried out in order to 

 

determine which explanatory variables have the most influence on the injury severity, 

thus giving an insight on how different modelling techniques may provide different 

explanation of the phenomenon under study. Finally, results were summarized and the 

benefit and limitations of each approach were discussed. 

 

 

  2. Materials  and  methods 

   

2.1 Data source 

The European Registry of Foreign Body Injuries ‘‘Susy Safe’’
16 collected data on 

FB injuries in children aged 0–14 according to the International Classification of 

Disease ICD9-CM 931-935. A total of 7296 cases were registered in 28 European 

hospitals at the end of March 2007. Data encompassed four main aspects of the 

FB injuries: (1) the characteristics of the children (age, gender); (2) the 

characteristics of the object (shape, rigidity and dimensions); (3) the circumstances 

of injury (presence of parents; activity performed by the child immediately before 

the accident); (4) hospitalization’s details. 

With regard to the FB dimensions, volume (calculated as the volume of the 

smallest regular geometrical solid containing the FB) and ellipticity (representing the 
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ratio between the maximum and the minimum size reported) were considered. 

In order to analyze data in QRA’s framework, children’s age and gender were 

considered as control variables whereas  FB  characteristics (volume, ellipticity, shape 

and pliability) and  the circumstances of the injury (adult presence or absence and 

the activity performed by the child) were considered as the key variables of interest, 

since they are key factors weighing on prevention strategies to avoid injuries or 

mitigate their severity. 

 

2.2 Statistical methods 

 

BNs and four other predictive models were implemented to quantify the risk of 

experiencing a severe injury. According to the report drafted from the e Consumer 

Affairs (CA) Directorate of the Department of Trade and Industry (DTI),
17 an injury 

was  defined  ‘‘severe’’  when  the  injured child was hospitalized for at least 1 day. 

After building the models, a 10-fold cross validation repeated 20 times was 

performed to evaluate their performance, which was summarized by the area under the 

ROC curve, the sensitivity and the specificity.
18,19 Model fitting and model validation, 

with the exception of BNs, were carried out using R version 2.8.1.
20

 

Furthermore, for each model the  mutual  information  (MI)  was  used  to  identify  

the variables that have the greatest influence on  the  risk  of  severe  injury.  MI  

allowed measuring the  effect  of  each  variable  on  the  Hospitalization  (yes/no)  

outcome  variable  and it  was  calculated  as 

 
 
𝐼(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛; 𝑌)

= ∑ ∑ 𝑝(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖 , 𝑦) log
𝑝(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖, 𝑦)

𝑝(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖)𝑝(𝑦)
𝑦∈𝑌ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖∈{0,1}



 

 

Where 𝑝(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖, 𝑦) is the joint distribution of  the binary  outcome  and  

the  variable  Y and 𝑝(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑖𝑜𝑛) and 𝑝(𝑦) their marginal probability 

distribution.
21,22 Continuous variables were discretized. Age was binned into 5 

bins and volume and ellipticity  were binned  into  10  bins.  The  number  of  bins  

was  chosen  in  order  to  range  between  1 + log2 𝑛 a n d  √𝑛2 3 .  It  has  been  

shown  that  when  the  number  of  bins  is  within  this  range,  the  MI 

outperforms other distance measures.
24  Finally, the MI of each variable was 

normalized by the entropy of  the  outcome: 

 

𝐻(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) =  − ∑ 𝑝(ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖) log 𝑝(𝑥𝑖)

𝑖∈{0,1}

 

 

 

  2.2.1 Bayesian Networks 

 

A BN is a graphical representation of the joint probability distributions over a set 

of random variables. It consists of a series of nodes representing variables connected 

by arrows forming a graph that has no cycles. The arcs specify the independent 

assumptions holding between random variables. 

The resulting network is known as a directed acyclic graph (DAG).
25,26  Each node 

in a BN is associated with a set of probability tables. For those nodes without ingoing 

arcs, the probability distribution is a prior distribution which requires supplying a set 

of initial values. 

Different strategies can be adopted to build BNs
27

: (1) both structure and probability 

tables can be generated from data; (2) both structure and probability tables are elicited 

from experts; (3) expert knowledge and objective frequency data can be combined, for 

example BN’s structure can be defined by domain experts and probability tables can be 

learned from the data. 

In this work, two BNs were implemented: (1) a first one (BN1) was completely 

generated from data; (2) a second one (BN2) was built using causal knowledge from 

otorhinolaryngologist physicians to model the structure
28–30 

and data to learn 

probabilities. 

For BN1, the Greedy thick-thin algorithm
31 was performed for learning the 

structure of the network. Since the software requires discrete variable, continuous 

variables were discretized on the basis of quintiles (Age and Volume variables) and 

tertiles (Ellipticity variable). Structure learning was carried out using GeNie.
32
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The learning of probability tables and the validation phase were both carried out 

using Netica,
33 which allowed for specifying a fading factor in order to treat more 

recent cases with a higher weight than older ones. 

For BN2, the implementation was entirely carried out using Netica.
33

 

 

2.2.2 Artificial neural networks 

 

Artificial Neural Networks denote a set of information processing paradigm inspired 

on the biological nervous system behaviour. The multilayer perceptron (MLP) is the 

most popular neural architecture where neurons are grouped in layers and only forward 

connections exist.
34

 

Several feed-forward neural networks architectures with back-propagation learning 

method were implemented.
34 All neural networks contained from 10 to 25 neurons 

in a single layer and one neuron in the output layer. In all calculations, the layers 

were fully connected. The least number of misclassifications given as the average on 

the validation datasets was obtained for the network with 17 neurons in the hidden 

layer. 

 

2.2.3 Classification trees 

 

Classification tree (CT) is a nonparametric method based on recursive partitioning of 

a sample into subgroups. At each step the most significant predictor is used to split the 

sample into subset until no improvement is achieved in the classification accuracy.
35

 

Two classification trees have been implemented. A first one (CT1) was developed 

by the standard  binary  recursive  partitioning  using  all  predictor  variables  

described  in  Table  1.
36

 



 
 

Table 1. Definition of variables and their states in the Bayesian network. Continuous variables were 

discretized on the basis of quintile (Age and Volume nodes) and tertile (Ellipticity node). 
 

 

 
Node description 

Variable 

description State description 
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Age Continuous Age class: 0–1, 2, 3–4, 5–6, 6–14 

Gender Discrete Female, male 

Location Discrete ICD931-935 

Hospitalization Discrete No, Yes 

Complications Discrete No, Yes 

Extraction technique Discrete Aspiration, bronchoscopy, endoscopy, operation, 

microotoscopy, otoscopy, other 

Foreign body type Discrete Accessorize, arthropod, battery, bean and pea, bone, 

button, capo, coins; cotton, earplug, fruit and stone; 

jewelers; metal; nut; other inorganic; other organics; 

papers; pearl, ball and marble; pebble; pins and 

needle; 
 

 

Shape 
 

Discrete 
plastic; stationery; stick, sweet, toys 

2D circle; 3D; cylinder; needle shape; other; spherical 
Rigidity 

Ellipticit

y 

Volume 

Discrete 

Continuous 

Continuous 

Pliable, stiff, semi-stiff 

1, score from 1 to 2, greater than 2 

Score up to 33.5, score from 33.5 to 65.4, score from 65.4 

 
Adult Presence 

Activity before accident 

 
Discrete 

Discrete 

to 140, score from 140 to 400, up to 4710 

Adult absent, Adult present 

Eating, playing, other 

 

To avoid over-fitting, 10-fold cross validation was used to determine the optimal size 

of the tree. The best size was selected according to the 1SE rule, by which the largest 

tree with cross-validated error within one standard deviation of the minimum was 

chosen.
37

 

A second classification tree (CT2) was implemented by means of a hybrid 

approach, exploiting a BN. Following Cox’s establishments,
38 a BN was 

implemented and sensitivity analysis was carried out. All variables whose MI had 

the outcome node (Hospitalization) fully explained by other variables or 

inconsistent with the hypothesis of causality were discarded. Finally a 

classification tree considering the outcome node and its minimal set of predictors, 

consisting in outcome node’s parents, its children and children parents, was 

implemented. These pre-processing data procedures allowed to eliminate variables 

statistically associated with the outcome variable only due to confounding. In 

fact, in a causal graph 𝑋 ← 𝑍 → 𝑌, the parent node Z is a confounder since 

it explains away an apparent association between X and Y. Thus, including 

outcome nodes’ parents in the classification tree permitted to avoid these 

situations.
38

 

 

 

  

2.2. 4 Logistic regression 

 



 

Logistic regression (LR) model is a statistical tool widely used to fit probability of 

an event by a linear function of the explanatory variables.
39

 

A logistic regression model was constructed using backwards variable elimination 

at a significant level of 0.05. The backward variable elimination was based on 

sequential elimination of variables from an initial model consisting of all the 

predictor variables. At each step the variable which resulted in the greatest 

reduction of the AIC criterion was removed from the model. The rule of eliminating 

variables followed on until no further significant reduction of the AIC was 

obtained.
19 Interaction among variables was checked in a similar way. 

 

 2.5 Random Forest 

 

Random forest (RF) is a collection of classification trees.
40 Each tree is grown using 

a bootstrap sample from the original data. About two-thirds of the data are used to 

construct the classification tree, whereas the remaining Out-Of-Bag (OOB) data, 

which is left out, is used to obtain unbiased estimates of correct classification rates 

and variable importance. 

Bootstrapping procedures are carried out for building an ensemble of trees with 

a reduced dependence among them. When building a classification tree, for each 

node of the tree, the RF algorithm selects some variables (the number of variables to 

select is usually taken to be the square root of the total number of variables) and uses 

only them to determine the best possible split at a single node – which is determined 

by the independent variable that best divides the sample in that node into two 

subgroups, each with the most pure membership using the Gini index as the splitting 

criterion. 

Each tree in the forest is grown using the bootstrapped sample, and the OOB part is 

thus processed by the grown tree. This gives rise to classification for each point in the 

OOB part of that bootstrapped sample, meaning that about one third of the trees in the 

random forest give a prediction for each point in the original data. The final 

classification of a particular data point is decided on the basis of majority vote. The 

unbiased estimates of true classification rates are calculated by comparing the OOB 

set classification made by the forest to the experimentally observed classes to which 

the data points belong. The random forest package in R was used to implement the 

model. 
 

 

3 Results 

 

3.1 Input variables 

 



1
1 

 

In Table 1, input variables provided by the Susy Safe registry were listed in the ‘‘Node 

description’’ column. Variables Age and Gender recorded demographic characteristics 

of the injured child; Location reported the location of the foreign body, which caused 

the accident using International Classification of Disease (ICD-9) codes: ICD931 (FB 

in the ears), ICD932 (FB in the nose); ICD933 (FB in the pharynx and larynx); 

ICD934 (FB in the trachea, bronchi and lung); ICD935 (FB in the mouth). 

The details of hospitalization were provided in two variables: (1) Hospitalization, 

which recorded whether the child experienced at least 1 day of hospitalization; (2) 

Complications, which recorded whether the child experienced complications, e.g. 

obstructions, pneumonia esophageal atresia, nasal odorous discharge. 

FBs were described by shape, rigidity and size, according to Rimell’s definition.
41 

With regard to 

their shape, FBs were assigned to one of the following categories: 2D circle (e.g. 

some pieces of paper), 3D (e.g., pen cap), cylinder (e.g. coins), needle shape (e.g. 

pins and needles), spherical (e.g. balls and pebble) and other shapes. 

With regard to the size, when the dimensions of the object (given in mms) were 

reported, the volume was calculated as follows: for 3D objects the volume of a 

parallelepiped was calculated considering the length of the axes; for spherical objects 

the volume of a sphere was calculated by the diameter reported; for 2D circle objects, 

the volume was approximated by that one of a cylinder with height 1 mm. Such volume 

measures represent how much space takes up the smallest geometrical figure 

containing the irregular-shaped foreign body. In addition, for three-dimensional not 

spherical objects, the ellipticity, i.e. the ratio between the longest axis and the shortest 

axis, was computed. 

In Table 1, modalities of the discrete variables were reported (column 3), along 

with the classes used to discretize the continuous variables. 

The structure of the BNs BN1 and BN2 is depicted in Figures 1 and 2, respectively 

(see Table 1 for the description of nodes); classification trees CT1 and CT2 are 

shown in Figures 3 and 4, 
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Figure 1. Structure of Bayesian network (BN) completely generated from data (BN1). Labeled rectangles 

are node (model variables); arrows represent conditional dependence relationships. Since BN1 is 

completely generated from data, the arrows between two nodes do not imply causation but just the 

existence of a relationship, which is given by 

a conditional probability table. 
 
 

respectively. In implementing the classification tree CT2, potential confounding 

effects with other variables were eliminated by means of data pre-processing described 

in section 2.2.3. Thus, in this case, the relationship among severe injuries and other 

variables was potentially interpretable as causal. Logistic regression parameter 

estimates are shown in Table 2. 

In Table 3, the performance of each of the models is summarized with the Area 

under the ROC curve, sensitivity and specificity along with their 95% confidence 

intervals. The ranking of features based on the MI computed among Hospitalization 

and all other model variables is shown in Table 4, giving thus a measure of the relative 

importance of the variables as predictor of severe injuries. 

It could be observed that in the BNs, nodes which are closer to the Hospitalization 

node (Figures 1 and 2) showed a greater impact in predicting injury severity. 

Conversely, the influence of nodes farther away tended to be diluted due to the 

uncertainty introduced by the intermediate nodes, in a phenomenon already known 

 

 

 
 

 

 

 

 

 
 

  
 



 

and described in the literature.
21 For the logistic regression model, backward variable 

elimination yielded a reduced model with 6 out of the 12 original variables. 

 
3.2 Scenarios definition and prediction 

 

The combination of events, features and processes causing diverse natural 

phenomena could be taken as a scenario. The capability to predict scenarios and 

compute an occurrence probability is a 
 

 
 

Figure 2. Bayesian network (BN) modeled using causal knowledge of the phenomenon derived from 

othorhinolaryngologist (BN2). Labeled rectangles are node (model variables); arrows represent 

conditional dependence relationships. 
 

valuable tool for risk assessment because it allows for extrapolation of hazard and 

prevention. BNs can handle this feature in a very straight-forward way. To illustrate 

this point we calculated the risk of hospitalization of a few scenarios that may be 

encountered in the clinical practice. 

In Figure 5, an example about how BNs deal with scenarios is presented. In this 

example, BN1 has been considered since it is the BN model that achieves the best 

accuracy (Table 3). After setting the evidence (a male who had an injury while he 

was playing with a spherical shaped object) the probability of being hospitalized was 

computed making use of the Bayes Theorem. Thus, given the injury occurred, the 

probability to be hospitalized is 83.3%. Entering new evidence made it possible to 
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update probabilities. For example, if a needle-shaped foreign body, e.g. a fishbone, is 

swallowed while a child is eating, the probability of an injured male to be hospitalized 

was about 40%, whereas for an injured female was slightly lower (37%). 

Finally, since the BN completely generated from data (BN1) outperformed all 

other models (Table 3), it was used to construct a set of risk profiles (Table 5). In 

fact, given the type of the foreign body, its shape, rigidity and volume, child’s age 

and gender, the probability of observing an injury was computed. Also the most 

probable location of the foreign body along with the most probable extraction 

techniques required were reported in addition to the probability of experiencing a 

hospitalization. 

 

4 Conclusion 

 

In this paper, a comparison among techniques widely used in QRA was proposed. 

An approach based on BNs was adopted to carry out a risk analysis on foreign body 

injuries in children. BNs 

 



 

 
 

Figure 3. Classification tree (CT1). Prior probabilities at each group have been treated as equal. Terminal 

nodes are symbolized by rectangles; non-terminal nodes, by ovals. Splitting criteria are specified in the 

nodes. The probability of experiencing a hospitalization is given within the node according to the set 

of rules specified. 

 

performance was compared to a set of competing statistical risk modeling methods: 

(1) logistic regression models (LR); (2) artificial neural networks, ANN; (3) 

classification trees, CT1 and (4) random forest. A hybrid approach using BNs in 

building classification trees (CT2) was also considered. Children’s hospitalization 

was identified as the outcome measure of injury severity and it was studied in 

relation to the child’s age and gender and accident details. 

Artificial neural networks (ANNs) along with classification trees and random 

forest are a rich tool in dealing with noisy or incomplete data. A drawback of ANNs 

is, however, that there are no standard methods for constructing the architecture. In 

this study, we set up a single hidden layer feed-forward neural network, which is the 
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common type encountered in the literature.
34

 

The classification tree approach is also a method extremely robust to the presence 

of irrelevant variables and variables with little predictive value. Besides a non-

impressive total accuracy, standard classification tree (CT1) showed to be capable of 

better identifying injuries at a higher risk of severity (96% of sensitivity). Furthermore, 

contrary to ANNs, which are ‘‘black box’’ models of difficult 

 
 

 
 

Figure 4. Classification tree built using a hybrid approach (CT2). A Bayesian network was completely 

generated from data. Then a standard classification tree was fit between the outcome (hospitalization) 

and the minimal set of predictors given by the parents in the Bayesian network. 
 

 

interpretation, it provided a way to extrapolate decision rules for achieving threat 

reduction in the form of a ready-understandable flowchart. 

Like ANNs,  random  forests  do not  present a  ready-understandable flow-chart.  

They  are an ensemble method, which reduces variability of trees by averaging 

multiple trees. Thus, as expected, it showed a slightly better specificity and a lower 

sensitivity than CTs, achieving an overall performance which made it comparable 

to ANNs. 

Logistic regression is a popular statistical method, owing largely to its simplicity 



 

and the interpretability of the estimated parameters, which can generate excellent 

prognostic models. Although LR is not adept at modeling grossly nonlinear complex 

interaction, in our study it showed indeed its ability to  capture non-linear effects 

outperforming ANNs and standard CT, which also were affected by a low specificity. 

Two different strategies were chosen to implement BNs: (1) a BN in which both the 

structure and probability tables were generated purely from the data (BN1); (2) a BN 

in which the structure was defined by experts (mainly otorhinolaryngologists) of the 

phenomenon, whereas the probability tables were entirely learned from the data 

(BN2). One of the main differences that arose between the two models was the role 

of the Extraction technique and Complications variables. In a causal representation 

of the phenomenon, extraction methods can be potential cause of complications, 

which is the most important predictor of injury severity. This fact did not arise in the 

BN completely generated from data (BN1) as well as in the automatically generated 

models. Indeed, inspecting the 
 
 

Table 2. Results of logistic regression model. 
 

Variable Effect p-Value 

Location   
ICD933 1.35 0.029 

ICD934 3.79 <0.001 
ICD935 2.44 <0.001 
Gender   
Female 0.89 0.045 

Extraction technique   
Aspiration 0.37 0.053 

Bronchoscopy 3.35 <0.001 
Oesophagoscopy 3.43 <0.001 
Operation 2.64 0.023 

Otoscopy 0.03 0.042 

Shape 

2D circle 

 

1.36 <0.001 
Cylinder 1.45 0.003 

Needle shape 1.47 <0.001 
Other 1.82 <0.001 
Rigidity   
Pliable 0.87 0.04 

Semi-stiff 0.80 <0.001 
Age 0.80 0.003 
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Table 3. Area under the ROC curve was used to assess the performance of the models: Bayesian 

Networks (BN1 and BN2); logistic regression (LR), neural networks (ANN); classification trees (CT1 

and CT2); random forest (RF). 
 

 AUC SENS SPEC 

BN1 92.31% (89.94-94.68) 95.19% (93.1–97.28) 90.06% (88.08–92.04) 

CT2 91.5% (89.39; 93.61) 87% (85.03; 88.97) 32% (29.82; 34.18) 

LR 87.03% (84.99–89.05) 89.2% (86.5–91.9) 83.1% (80.75–85.45) 

ANN 74.45% (71.25–77–65) 81.42% (77.52–85.32) 55.16% (51.51–58.8) 

CT 72.29% (70.27–74.31) 96.14% (94.06–98.22) 41.74% (39.58–43.9) 

BN2 71.59 % (68.48–74.7) 91.12 % (87.9–94.44) 40.17 (36.96–43.38) 

RF 86.11% (82.90–89.31) 73.52% (64.97–82.08) 57.15% (54.11–60.19) 

 

registry, it has been recognized that many records reported symptoms related to the 

presence of a FB, such as pain, epistaxis or hearing loss, instead of clinical 

complications, and this indeed explained why extraction technique and not 

complications was the most influential variable in predicting severe injuries. 

Our analysis has shown that BN1 and the hybrid approach CT2 outperformed 

all methods in terms of accuracy. Opposing to CT2, the advantage of BNs relied 

on the fact that complex relationships among factors were explicated in a graphical 

model, which incorporated uncertainty via the conditional probability associated to 

each node.26 Indeed, BNs gave a picture of the influence of critical factors on the 

injury severity. Results from ranking of variables suggested the conclusion 



 

Table 4. Sensitivity analysis was carried out on hospitalization variable to determine the covariates that have the most influence on the injury severity. 
 

BN1   CT2  BN2  ANN   CT1   LR  RF  

Variable %  Variable % Variable % Variable %  Variable %  Variable % Variable % 

Location 45.3  Location 68.6 Complications 75.1 Location 45.4  Location 37.2  Location 58.7 Location 50 

Extraction 40.1  Extraction 52.7 Extraction 44.8 Extraction 25.5  Extraction 20.8  Extraction 36.4 Extraction 47.2 
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Figure 5. The scenario of a male who had an injury while he was playing with an object with spherical 

shape is depicted using BN1. Foreign body (FB) was located in the mouth, esophagus or stomach 

(ICD935). Hospitalization node returned the probability the injury lead to hospital admission (83.3%). 

Probability table associated to Foreign body type 

node (not showed to allow for a better visualization) gives that there is 89% of probability the child is 

playing with a button. Also, there is 63.3% of probability the injury occurred in absence of an adult (see 

adult presence node). 
 
 

that models do not always give the same interpretation for the same covariates, 

according to other studies,42,43 rather they provide a different framework for the 

explanation of the evidence. 

Thus, a tool which allows for a ready interpretation of relationships among risk 

factors is of great use. In the framework of risk analysis, this capability makes BN a 

competing alternative to other approach, such as logistic regressions, which are often 

preferred since they provide easily interpretable results. The possibility to analyze 

different scenarios is an import feature which allows to asses the effect of FB’s 

characteristics and incident’s circumstances, such as adult absence/presence, on the 

risk of experiencing a severe injury, once the injury has occurred. In fact, probability 

updating after setting evidence can be used to identify in a straightforward manner 

the characteristics of unsafe products or the importance of adult surveillance in 



 

mitigating injury severity. 

However, it should be noted that the logistic regression model showed an overall 

classification accuracy which was not far behind BNs, confirming to be an efficient 

model for classification task, despite its simplicity. 

Even if BNs can be considered for causal modeling, in this study they were 

considered for association analysis only. The absence of an independent sample to 

externally validate the models constituted the major limitation of this study. 



 

Table 5. Predicted probability of observing evidence on foreign body and children characteristics based on BN1. The probabilities of the 

most probable FB location (ICD) and extraction technique required are reported along with the probability of experiencing a 

hospitalization given that an injury occurred. 
 

 

Observation pattern 
 

 

 
 

N 

Foreign 
body 

type 

 

 
 

Age 

 

 
 

Gender 

 

 
 

Shape 

 

 
 

Rigidity 

 

 
 

Volume 

 

 
 

Ellipticity 

Probability of 
observing 

evidence 

 

The most 

probable ICD 

The most 

probable 
extraction 

technique 

 

Probability of 

hospitalization 

1 Batteries 2 m spherical Stiff 70 1 6.7 935 (84%) Endoscopy (78%) 88% 

2 Pebble 1 m 3D Stiff 140 1.4 4.3 932 (67%) Endoscopy (49%) 83% 

3 Plastic 3 F 3D Pliable 95 >2 7.3 932 (73%) Endoscopy (33%) 27% 

4 Fish bone 5 m Needle shape Pliable 140 >2 7.4 934 (61%) Endoscopy (52%) 62% 

5 Pearls 6 F Spherical Stiff >400 1 10.1 934 (49%) endoscopy (42%) 71% 

6 Stationery 4 m Cylinder Pliable 33.5 >2 4.56 934 (62%) Endoscopy (37%) 56% 

7 Toy 2 F Spherical Stiff 102 1.3 3.8 933 (65%) Other (31%) 53% 

8 Nut 6 m Spherical Stiff 200 1 7.2 934 (89%) Bronchoscopy (58%) 87% 

9 Button 3 m 2D circle Stiff >40 2 2.4 935 (61%) Other (66%) 39% 

10 Stick 4 m Needle shape Stiff NA NA 1.3 933 (90%) Other (71%) 18% 

BN: Bayesian Network; FB: foreign body; ICD: International Classification of Disease. 





 

4.1 Final remarks 

 

While logistic regression models were found to be a simpler model, which still perform 

well comparably with other more complex statistical techniques, BNs, beyond 

outperforming all other models, offered some advantages in the context of QRA. 

Since the ‘‘Susy Safe’’ surveillance registry is set up to constantly receiving new cases, 

we chose to treat BN as an adaptive net giving a higher weight to more recent cases 

with respect to the older ones. As a result, we built a BN that while receiving cases and 

updating information on foreign body features (size, shape and rigidity) was able to 

quickly respond to instances of changing product safety design regulation. 

The capability of identifying relationships among variables is a key feature of BNs. In 

this analysis, the BN confirmed the role of FB’s type along with its shape and rigidity 

in determining the risk of severe injury, beside its location and the extraction procedure 

chosen by physicians. Moreover, the complex relationships among risk factors showed 

that there was not a single cause related to the severity of the injury but a more complex 

pattern of events contributing to the adverse outcome. 

The conclusions drawn from this single comparative study are certainly not definitive. 
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