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Abstract  

 25 

Paclitaxel has been found to be very effective against several human cancers; one of the major 

problems with its use is its poor solubility, which makes necessary its solubilization with excipients 

that can determine allergic reactions often severe. The aim of this study is to develop highly water-

soluble and less toxic analogues of paclitaxel. For this purpose we prepared a series of new 

paclitaxel-poly(ethylene glycol) (PEG) conjugates that were characterized and evaluated for their in 30 

vitro stability and cytotoxicity. In particular, in order to modulate the release of paclitaxel from 

prodrugs, we prepared different compounds introducing PEG in the drug C2' and/or C7 positions 

via ester or carbamate linkage. The conjugates were obtained in high purity and good yield. The 

carbamate prodrugs were highly stable in different media, while the compounds obtained linking 

PEG at C2’ position through an ester bond showed lower stability. Finally, the cytotoxic activity of 35 

the conjugates was evaluated on two cancer cell lines and the results showed that all the derivatives 

had a reduced cytotoxicity compared to that of paclitaxel. 

 

 

 40 
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1. Introduction 

 45 

Paclitaxel (PTX) is a natural product isolated from the bark of Taxus breviflolia (Pacific yew tree) 

and is today considered to be one of the most important drugs in cancer chemotherapy for the 

clinical treatment of many types of cancers (Kingston and Newman, 2007; Rowinsky, 1997). It is 

active against a number of cancer types including breast, lung, prostate, ovarian and some 

leukaemias (Bonomi et al., 1997; Bookman et al., 1996; Nabholtz et al., 1996; Wani et al., 1971). 50 

At molecular level, PTX exerts its antitumor activity by interacting with tubulin (Schiff et al., 

1979). In contrast to other anti-mitotic agents, such as Vinca alkaloids, which act to inhibit 

microtubule formation, PTX promotes tubulin polymerization and stabilizes the microtubules. 

Therefore, cell division is blocked in the late G2 mitotic phase of cell cycle (Kumar, 1981; 

Manfredi and Horwitz, 1984). However, limited response rates and significant side effects are the 55 

major obstacles for more effective cancer therapy. Additionally, PTX’s very low water solubility is 

a real problem in intravenous administration; PTX is currently administered in a vehicle containing 

Cremophor EL® (polyethoxylated castor oil) and ethanol. Significant side effects associated with 

hypersensitivity to Cremophor EL® have been observed (Dorr, 1994; Fjallskog et al., 1993), and 

premedication with corticosteroids and antihistamines is often required (Weiss et al., 1990). In order 60 

to overcome these problems, new aqueous-based formulations for PTX, that do not require 

solubilization by Cremophor EL®, have been developed (Marupudi et al., 2007; Skwarczynski et 

al., 2006). The prodrug strategy is a promising way in terms of improving the drug solubility and 

keeping the pharmacological functions unaltered (Stella and Nti-Addae, 2007). Several reports of 

water-soluble prodrugs of PTX have been reported that are considered to improve water solubility 65 

of the parent drug and to avoid the use of toxic detergents during administration (Vyas and Vittorio, 

1995). 

One of the most used polymers for prodrug delivery is poly(ethylene glycol) (PEG) (Greenwald et 

al., 2003). PEG is an amphiphilic polymer that is soluble in organic solvents as well as in water, 

non-toxic and is eliminated from the body by a combination of renal and hepatic pathways; thus, 70 

this molecule is ideal to be employed in pharmaceutical applications; moreover, PEG has been 

approved by the FDA for human intravenous, oral and dermal applications (Hooftman et al., 1996). 

Some papers describe the different synthetic approaches adopted to covalently attach PEG to PTX: 

PEG of various molecular weights was linked to the C2’ and/or C7 positions of PTX through 

different bonds either directly or through suitable spacers (i.e. amino acids) or linkers (Feng et al., 75 

2002; Greenwald et al., 1996; Greenwald et al., 1994; Li et al., 1996; Schoenmakers et al., 2004). 
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However, there are still some problems related to PEG-PTX prodrugs described in literature till 

now, such as for example poor stability or low improvement of solubility that lead to a limitation in 

their clinical use (Skwarczynski et al., 2006). Thus, a very attractive challenge in this field is still to 

obtain new stable water-soluble PTX conjugates with improved activity. 80 

To reach this goal, the aim of this study was to develop highly water-soluble and less toxic 

analogues of PTX. For this purpose, we prepared a series of new PEG-PTX conjugates that were 

characterized and evaluated for their in vitro stability and cytotoxicity. In particular, in order to 

modulate the release of paclitaxel from prodrugs, we prepared several conjugates introducing PEG 

in the drug C2' and/or C7 positions using different synthetic routes and the properties of these 85 

derivatives are discussed, together with a preliminary examination of their in vitro antitumor 

activity.  

 

 

2. Materials and methods 90 

 

2.1. Materials and instruments 

 

Unless stated otherwise, all reagents and solvents were obtained from commercial sources and were 

used without further purification. Paclitaxel was a gift from Indena (Milan, Italy). PEG derivatives 95 

(alpha-methoxy-omega-amino poly(ethylene glycol), m-PEG-NH2 5 and 20kDa) were purchased 

from IRIS Biotech GmbH (Marktredwitz, Germany). 

All reactions requiring anhydrous conditions were performed under an Ar or N2 atmosphere. 

The reactions were monitored by thin-layer chromatography (TLC) on F254 silica gel pre-coated 

sheets (Merck, Milan, Italy); after development, the sheets were visualized by irradiation by UV 100 

light and/or by exposition to iodine vapour. Flash-column chromatography was performed on 230-

400 mesh silica gel (Merck). 

HPLC analyses were carried out using a LiChroCART C18 column (250x4 mm i.d., 5 µm particle 

size) equipped with a C18 column guard (Merck) on a Merck-Hitachi HPLC system. The column 

was eluted using two solvents: water with 0.05% trifluoroacetic acid (TFA) (solvent A) and 105 

acetonitrile with 0.05% TFA (solvent B). The flow rate was maintained at 1 mL/min using a 

gradient protocol as follows: solvent A 90% for 5 min, a linear gradient from A 90% to A 10% for 

30 min, A 10% for 10 min, a linear gradient from A 10% to A 90% for 5 min. The eluting fractions 

were monitored at 227 nm using an L4000UV detector. Peak heights and areas were recorded and 

processed on a CBM-10A Shimadzu interface (Shimadzu, Milan, Italy). 110 
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The 1H nuclear magnetic resonance (1H-NMR) spectra were recorded on a Bruker 300 Ultrashield 

instrument (Karlsruhe, Germany) in CDCl3 solution at room temperature, with SiMe4 as internal 

standard. UV-vis spectra were obtained on a Beckman 730 spectrophotometer (Beckman Coulter, 

Milan, Italy). 

 115 

2.2. Chemistry 

 

2.2.1. Preparation of paclitaxel-2’-succinyl-NHS 

 

2’-succinyl-paclitaxel (1) was prepared as reported elsewhere with modifications (Deutsch et al., 120 

1989). Briefly, PTX (33 mg, 0.0386 mmol) was dissolved in 500 µL of dry pyridine to which 7.7 

mg of succinic anhydride (0.0772 mmol) and 0.5 mg (0.00386 mmol) of 4-dimethylaminopyridine 

were added. The resulting solution was stirred for 3 h at room temperature. The product was 

purified by flash chromatography with elution in chloroform/methanol (90/10 v/v) to give 34.6 mg 

of pure product, 94% yield. 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 1.62 (s, 125 

3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, C4-

OAc), 2.6 (m, 4H, COCH2CH2CO), 3.34 (d, 1H, C3-H), 4.17 and 4.28 (d, 2H, C20-H), 4.48 (dd, 

1H, C7-H), 4.96 (d, 1H, C5-H), 5.51 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 5.80 (d, 1H, C3’-H), 6.21 

(t, 1H, C13-H), 6.27 (s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.4 (m, 3’-NBz), 7.5 (m, 2-

OBz), 7.73 (d, 3’-NBz), 8.1 (d, 2-OBz). 130 

The carboxyl function of 2’-succinyl-paclitaxel (1) (20 mg, 0.0210 mmol) was activated in the 

corresponding N-hydroxysuccinimidil derivative (2) by reaction with N-hydroxysuccinimide (NHS) 

(3.2 mg, 0.0278 mmol) in the presence of N,N’-dicyclohexylcarbodiimide (DCC) (5.6 mg, 0.0269 

mmol) in dry dichloromethane. The reaction mixture was stirred for 6 h at room temperature. After 

filtration and evaporation the crude product was dissolved in dichloromethane and washed with 135 

brine and did not required any further purification step (19 mg, yield 85%). 1H-NMR (CDCl3): 

δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, 

C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, C4-OAc), 2.63 (m, 2H, 2’-OCOCH2), 2.66 (m, 4H, 

NCOCH2CH2CO), 2.92 (m, 2H, CH2CON), 3.34 (d, 1H, C3-H), 4.17 and 4.28 (d, 2H, C20-H), 4.48 

(dd, 1H, C7-H), 4.96 (d, 1H, C5-H), 5.51 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 5.80 (d, 1H, C3’-H), 140 

6.21 (t, 1H, C13-H), 6.27 (s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.4 (m, 3’-NBz), 7.5 

(m, 2-OBz), 7.73 (d, 3’-NBz), 8.1 (d, 2-OBz). 

 

2.2.2. Preparation of 4-nitrophenyl-carbonate paclitaxel derivatives 
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 145 

The different carbonate paclitaxel derivatives (5, 6 and 7) were prepared following the method 

described by de Groot (de Groot et al., 2000) with minor modifications. The reactions were carried 

out under an argon atmosphere. PTX (50 mg, 0.0585 mmol) was dissolved in dry dichloromethane 

containing 4 drops of pyridine. For the preparation of 2’-(4-nitrophenyl carbonate)paclitaxel (5), 

200 mg (1.06 mmol) of 4-nitrophenyl chloroformate in dry dichloromethane was added and the 150 

reaction proceeded for 5 h at -35°C. In the case of the synthesis of 2’,7-(4-nitrophenyl 

biscarbonate)paclitaxel (7) PTX was reacted with 300 mg (1.59 mmol) of 4-nitrophenyl 

chloroformate for 24 h at room temperature. Then the reaction mixtures were washed with a 

solution of potassium bisulfate and dried with anhydrous magnesium sulfate. The solvent was then 

removed under reduced pressure and the crude products were purified by flash chromatography 155 

(hexane/ethyl acetate 55/45 v/v for 5, 60/40 v/v for 6 and 70/30 v/v for 7). 7-(4-nitrophenyl 

carbonate)paclitaxel (6) was directly obtained starting from the crude 2’,7-(4-nitrophenyl 

biscarbonate)paclitaxel (7) that was left for one night in the column before purification.  

Compound 5, yield 65% (38 mg) 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 

1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, 160 

C4-OAc), 3.34 (d, 1H, C3-H), 4.17 and 4.28 (d, 2H, C20-H), 4.48 (dd, 1H, C7-H), 4.96 (d, 1H, C5-

H), 5.51 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 6.10 (dd, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 (s, 1H, 

C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.35 (d, nitrophenyl), 7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 

7.73 (d, 3’-NBz), 8.1 (d, 2-OBz), 8.26 (d, nitrophenyl). 

Compound 6 yield 74% (44 mg) 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 165 

1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, 

C4-OAc), 3.34 (d, 1H, C3-H), 4.17 and 4.28 (d, 2H, C20-H), 4.80 (d, 1H, C2’-H), 4.96 (d, 1H, C5-

H), 5.26 (dd, 1H, C7-H), 5.67 (d, 1H, C2-H), 5.78 (d, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 (s, 1H, 

C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.35 (d, nitrophenyl), 7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 

7.73 (d, 3’-NBz), 8.1 (d, 2-OBz), 8.26 (d, nitrophenyl). 170 

Compound 7 yield 86% (59 mg) 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 

1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, 

C4-OAc), 3.34 (d, 1H, C3-H), 4.17 and 4.28 (d, 2H, C20-H), 4.96 (d, 1H, C5-H), 5.28 (dd, 1H, C7-

H), 5.53 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 6.15 (dd, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 (s, 1H, 

C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.35 (d, nitrophenyl), 7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 175 

7.73 (d, 3’-NBz), 8.1 (d, 2-OBz), 8.26 (d, nitrophenyl). 
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2.2.3. Preparation of 2’-[methoxypoly(ethylene glycol)amido-N-metyl-glycine carbamate] 

paclitaxel derivatives 

 180 

Compound (8) was prepared by reaction of 2’-(4-nitrophenyl carbonate)paclitaxel (5) (15.5 mg, 

0.0152 mmol) dissolved in 2 mL of dry dichloromethane with 8.3 mg (0.0456 mmol) of a solution 

of sarcosine tert-butyl-ester in dry dichloromethane containing triethylamine (85 µL, 0.608 µmol). 

The reaction proceeded under stirring and a nitrogen atmosphere for 2 h at room temperature. The 

reaction was washed with 0.1 N HCl, dried with anhydrous magnesium sulphate and evaporated 185 

under reduced pressure. 

2’-(N-methyl-glycine carbamate)paclitaxel (9) was obtained by adding 58.5 µL (0.76 µmol) of TFA 

to a dry dichloromethane solution of 8 (16.2 mg, 0.0152 mmol) and the mixture was allowed to 

react for 1 h at room temperature. The mixture was then neutralized with 10% aqueous sodium 

bicarbonate solution and extracted with dichloromethane. The organic layer was dried over 190 

anhydrous magnesium sulphate and evaporated under reduced pressure. Yield 69% (10.3 mg) 1H-

NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-

H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, C4-OAc), 3.2 (s, 3H, 2’-OCONCH3), 

3.34 (d, 1H, C3-H), 4.17 and 4.28 (d, 2H, C20-H), 4.32 (s, 2H, 2’-OCONCH2), 4.48 (dd, 1H, C7-

H), 4.96 (d, 1H, C5-H), 5.63 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 6.08 (dd, 1H, C3’-H), 6.21 (t, 1H, 195 

C13-H), 6.27 (s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 

7.73 (d, 3’-NBz), 8.1 (d, 2-OBz). 

A solution of 2-ethoxy-1-(ethoxy-carbonyl)-1,2-dihydroquinoline (EEDQ) (3 mg, 0.0121 mmol) in 

100 µL of anhydrous dimethylformamide (DMF) was added dropwise to 10 mg (0.0102 mmol) of 9 

in 400 µL of DMF and the reaction was stirred for 30 min at room temperature. Then, 0.0120 mmol 200 

of m-PEG-NH2 (5 or 20 kDa) in 100 µL of anhydrous DMF were added and the reaction proceeded 

for 24 h at room temperature. The course of reaction was followed by HPLC, which showed the 

presence of the conjugates 10 and 11. The crude product was purified by HPLC and the collected 

fractions were dialyzed against water and lyophilized. Yield 63% 1H-NMR (CDCl3): δ 1.11 (s, 3H, 

C17-H), 1.19 (s, 3H, C16-H), 1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 205 

(s, 3H, C10-OAc), 2.43 (s, 3H, C4-OAc), 3.2 (s, 3H, 2’-OCONCH3), 3.30 (s, PEG OCH3), 3.34 (d, 

1H, C3-H), 3.46-3.95 (m, PEG OCH2CH2O), 4.17 and 4.28 (d, 2H, C20-H), 4.39 (s, 2H, 2’-

OCONCH2), 4.48 (dd, 1H, C7-H), 4.96 (d, 1H, C5-H), 5.63 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 

6.08 (dd, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 (s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 

7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 7.73 (d, 3’-NBz), 8.1 (d, 2-OBz). 210 
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2.2.4. General procedure for the preparation of the PEGylated compounds 

 

The previously prepared paclitaxel derivatives (2, 5, 6 and 7) dissolved in dry DMF were separately 

reacted with a dry DMF solution of m-PEG-NH2 (5 and 20kDa); the PTX:PEG molar ratio was 1:2 215 

for compound 7 and 1:1 for the other derivatives. The reaction mixtures were stirred for 12 h at 

room temperature. The course of reactions was followed by HPLC, which showed the presence of 

the different conjugates. The crude products were purified by HPLC and the collected fractions 

were dialyzed against water and lyophilized. 

Compounds 3 and 4, yield 68% 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 1.62 220 

(s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, C4-

OAc), 2.63 (m, 2H, 2’-OCOCH2), 2.95 (m, 2H, CH2CON), 3.30 (s, PEG OCH3), 3.34 (d, 1H, C3-

H), 3.45-4.1 (m, PEG OCH2CH2O), 4.17 and 4.28 (d, 2H, C20-H), 4.48 (dd, 1H, C7-H), 4.96 (d, 

1H, C5-H), 5.51 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 5.80 (d, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 

(s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 7.73 (d, 3’-225 

NBz), 8.1 (d, 2-OBz). 

Compounds 12 and 13, yield 55% 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 

1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, 

C4-OAc), 3.28 (s, PEG OCH3), 3.34 (d, 1H, C3-H), 3.48-4.1 (m, PEG OCH2CH2O), 4.17 and 4.28 

(d, 2H, C20-H), 4.48 (dd, 1H, C7-H), 4.96 (d, 1H, C5-H), 5.65 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 230 

6.08 (dd, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 (s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 

7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 7.73 (d, 3’-NBz), 8.1 (d, 2-OBz). 

Compounds 14 and 15, yield 48% 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 

1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, 

C4-OAc), 3.30 (s, PEG OCH3), 3.34 (d, 1H, C3-H), 3.42-3.99 (m, PEG OCH2CH2O), 4.17 and 4.28 235 

(d, 2H, C20-H), 4.80 (d, 1H, C2’-H), 4.96 (d, 1H, C5-H), 5.42 (dd, 1H, C7-H), 5.67 (d, 1H, C2-H), 

5.78 (d, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 (s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 7.4 

(m, 3’-NBz), 7.5 (m, 2-OBz), 7.73 (d, 3’-NBz), 8.1 (d, 2-OBz). 

Compounds 16 and 17, yield 50% 1H-NMR (CDCl3): δ 1.11 (s, 3H, C17-H), 1.19 (s, 3H, C16-H), 

1.62 (s, 3H, C19-H), 1.76 (s, 3H, C18-H), 2.2 (m, 2H, C14-H), 2.23 (s, 3H, C10-OAc), 2.43 (s, 3H, 240 

C4-OAc), 3.28 (s, PEG OCH3), 3.34 (d, 1H, C3-H), 3.45-4.1 (m, PEG OCH2CH2O), 4.17 and 4.28 

(d, 2H, C20-H), 4.96 (d, 1H, C5-H), 5.42 (dd, 1H, C7-H), 5.65 (d, 1H, C2’-H), 5.67 (d, 1H, C2-H), 

6.08 (dd, 1H, C3’-H), 6.21 (t, 1H, C13-H), 6.27 (s, 1H, C10-H), 7.07 (d, 1H, NH), 7.3 (m, 3’-Ph), 

7.4 (m, 3’-NBz), 7.5 (m, 2-OBz), 7.73 (d, 3’-NBz), 8.1 (d, 2-OBz). 

 245 
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2.3. Water solubility and stability of conjugates 

 

Water solubility was estimated by dissolving appropriate amounts of conjugates in 0.1 mL of water.  

The hydrolysis rate of conjugates was determined at different pH values, using sodium acetate 250 

buffer 0.1 M (pH 5.6), sodium phosphate buffer 0.1 M (pH 7.4), sodium borate buffer 0.1 M (pH 9) 

or fetal calf serum. Conjugates were dissolved at a concentration of 1 mg/mL. Drug stability was 

determined by removing portions of samples from the solutions incubated at 37°C for various 

periods of time. 20 µL of sample were withdrawn from the solution of the different buffers and 

injected into HPLC. To the samples incubated in serum 200 µL of acetonitrile were added to 255 

precipitate  proteins, and the resulting solution was vortexed for 30 s and centrifuged at 330 x g for 

5 min. 150 µL of supernatant were analyzed by HPLC using the conditions already described. 

 

2.4. Tumor cell lines and cell culture 

 260 

The cell lines used were MCF-7, a human breast cancer, and HT-29, a human colorectal 

adenocarcinoma. Both cell lines were maintained in RPMI 1640 medium containing 10% fetal calf 

serum and 1% antibiotics (containing penicillin and streptomycin) in a 5% CO2 humidified 

atmosphere at 37°C. 

 265 

2.5. Cytotoxicity test 

 

MCF-7 and HT-29 cells, maintained as described above, were seeded at 3×104 cells/well in 

microtiter plates and incubated overnight to allow cellular adhesion. Various dilutions of PTX (in 

dimethylsulfoxide) and conjugates (in water) (expressed as paclitaxel concentration) were added in 270 

triplicate, and incubated for 72 h. The supernatants were removed and the cells washed and 

incubated for 16 h with fresh medium containing 1 mCi of L-[4,5-3H]-leucine (58 Ci/mmol). The 

cells were harvested using with a Skatron Harvester and the incorporated radioactivity was 

measured using a Packard-2500 TR Liquid Scintillation Analyzer. The results were expressed as 

percentages of L-[4,5-3H]-leucine incorporation compared to control cultures, background values 275 

being subtracted. Data are means of three separated experiments, in which each individual value is 

the average of triplicate samples (<7% standard error). 
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3. Results and discussion 280 

 

3.1. Chemistry 

 

The schematic structures of the new PEG-PTX prodrugs are reported in Figure 1. 

Prodrugs 3 and 4 were prepared starting by the reaction of the 2’-hydroxy function of PTX with 285 

succinic anhydride according to the procedure of Deutsch (Deutsch et al., 1989). In order to 

facilitate the further PEGylation reaction, the carboxyl function of 2’-succinyl-paclitaxel was 

activated as N-hydroxysuccinimidil derivative (PTX-NHS, 2) using NHS and DCC. PTX-NHS was 

finally reacted with m-PEG-NH2 (5 and 20 kDa) in DMF to give the desired prodrugs (Scheme 1). 

The different PEG-carbamate prodrugs (12-17) were obtained by preliminary activation of PTX C2' 290 

and/or C7 hydroxyl groups with 4-nitrophenyl chloroformate (Scheme 2, compounds 5, 6 and 7) 

and consequent reactions with m-PEG-NH2. 

The activated 2’-carbonate (5) was obtained reacting PTX with 4-nitrophenyl chloroformate at -

35°C, as reported by de Groot (de Groot et al., 2000). The same reaction was performed at room 

temperature to prepare the 2’,7-disubstituted compound (7). We were able to obtain the 7-carbonate 295 

derivative (6) in a single step during purification of the 2’,7-disubstituted carbonate by flash 

chromatography; in fact, during the purification we observed the formation of the 7-(4-nitrophenyl 

carbonate)paclitaxel obtained by the hydrolysis of the more reactive compound at 2’-position from 

2’,7-(4-nitrophenyl biscarbonate)paclitaxel. To this aim the crude product was left for about 12 h in 

the column before purification. This is an easy and less time-consuming procedure for the activation 300 

of the hydroxyl group of PTX in 7, since most of the methods reported in literature required the 

previous protection of 2’-position of PTX (Altstadt et al., 2001; Lee et al., 2005; Ryu et al., 2008; 

Wang et al., 2006). Other works describe the preliminary preparation of the 2’,7-disubstituted 

derivative and the further removal of the more chemically labile substituent at the 2’-position, but 

cleavage, reaction work up and purification were necessary to obtain the desired compound 305 

(Mathew et al., 1992; Niethammer et al., 2001; Takahashi et al., 1998). Our approach is more 

flexible and permits to obtain the di- or mono- substituted derivative easily during column 

purification process. 

The preparation of PEG-PTX prodrugs 10 and 11 is reported in Scheme 3. The introduction of a 

methyl group as steric hindrance on the carbamate nitrogen was obtained by reacting 2’-(4-310 

nitrophenyl carbonate)paclitaxel (5) with sarcosine tert-butyl-ester, then the protective group was 

cleaved with TFA and the corresponding derivative 9 was reacted with m-PEG-NH2 (5 and 20 kDa) 

in DMF in presence of EEDQ to give the corresponding PEGylated compounds. We decided to 
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insert a steric hindrance in the 2’-carbamate PEG-PTX prodrugs because the unhindered derivatives 

12 and 13 were highly unstable in buffer solution at pH 7.4 at 37°C. In fact, in this conditions we 315 

observed the rapid formation of the inactive compound baccatin III, due to an addition-elimination 

sequence as yet reported by de Groot (de Groot et al., 2000). The authors demonstrated that the 

insertion of a methyl group prevented this unwanted reaction giving more stable derivatives. A 

quite similar approach was described by Greenwald in the preparation of hindered PEG-

camptothecin diesters (Greenwald et al., 1998). 320 

Compounds 14-17 were prepared by reacting m-PEG-NH2 with the different carbonate PTX 

derivatives in order to obtain derivatives characterized by a carbamate linkage and by the presence 

of PEG in the C2’ and/or C7 positions of the drug. 

All the purified PEG-PTX conjugates were lyophilized and were stable for several months when 

stored at -20°C under a nitrogen atmosphere. 325 

 

3.2. Water solubilty and in vitro stability of PEG-PTX prodrugs 

 

The conjugation of PEG to PTX dramatically increased its aqueous solubility; in fact the prodrugs 

obtained using PEG of 5kDa of molecular weight showed a solubility of about 340 mg/mL, in the 330 

case of monosubstituted compounds, and of 460 mg/mL for the disubstituted ones. The 20 kDa 

PEG-PTX conjugates showed a decrease in solubility values (150 and 180 mg/mL for mono- and 

di-substituted, respectively). A similar behavior was also observed for a reported series of PEG-

PTX prodrugs, in which the water solubility decreased with the increasing of the polymer’s 

molecular weight (Greenwald et al., 1996). 335 

The in vitro stability of the different PEG-PTX conjugates was studied evaluating by HPLC the 

release of PTX, after incubation at 37°C in buffer at various pH values (5.6, 7.4 and 9) or in serum; 

the results are shown in Table 1. As previously reported by Greenwald (Greenwald et al., 1996), we 

also observed that the half-life of the conjugates did not depend on the PEG’s molecular weight. 

The prodrugs 14-17 were highly stable and the PTX release after 72 h of incubation was about 3-340 

6% at pH 7.4 and 10% (14, 15) or 3% (16, 17) in serum, indicating that we were able to obtain 

soluble prodrugs that also provide a slow release of PTX. On the other hand, compounds 10 and 11 

released 100% of PTX after 48h, but no baccatin III formation was observed indicating that the 

introduction of a methyl group as steric hindrance provided a protection of the conjugates. The 

unhindered conjugates 12 and 13, on the contrary, gave a rapid release of inactive baccatin III at pH 345 

7.4, that reached 100% after 48h, so these conjugates were not further evaluated for their 

cytotoxicity. 
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These experiments clearly demonstrate the higher stability of carbamate linkage over the ester bond 

(compounds 3 and 4) and also indicate that the modification of the more hindered C7 position lead 

to reduction of hydrolysis rate of the conjugates as also reported by other authors (Greenwald et al., 350 

1995; Sugahara et al., 2002). The stability was further improved with the introduction of PEG at 

both C2’ and C7 positions. 

 

3.3. Cytotoxicity 

 355 

The cytotoxic activity of PEG-PTX conjugates was evaluated on MCF-7 and HT-29 human cancer 

cell lines after 72 h incubation at 37°C. Free PTX was also tested as control. The results, reported in 

Table 2, show that PTX was very active and that the prodrugs 3 and 4 display a quite similar 

toxicity; these data are in accordance with the stability experiments that indicated that PTX was 

rapidly released from the conjugates 3 and 4. On the contrary, an important decrease in the 360 

cytoxicity (from two to four orders) was observed in the PEG-carbamate prodrugs, in particular for 

the compounds obtained reacting the C7 position of PTX (14 and 15); a reduction in cytotoxic 

activity of C7 ester or carbamate derivatives was yet reported by other research groups (Greenwald 

et al., 1996; Greenwald et al., 1995). 

Taken together these results show that these PTX derivatives are very stable and less toxic and that 365 

they do not need toxic excipients for their formulation as a consequence of the increased aqueous 

solubility. Thus, these compounds could be of great interest as PTX prodrugs and deserve further 

investigations in order to evaluate their in vivo activity. 

 

 370 

4. Conclusions 

 

A series of new PEG-PTX prodrugs characterized by different linkages were prepared using various 

and sometimes less time-consuming synthetic approaches. The in vitro studies showed that these 

prodrugs are characterized by a good solubility, slow PTX release and low toxicity. 375 

In vivo studies are in progress to deeply investigate the activity and the pharmacokinetic behavior of 

these compounds. 

 

 

380 
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Figure caption 

 

Figure 1. Chemical structures of PEG-PTX prodrugs 3, 4 and 10-17. 
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