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We present a fully analytical formulation for calculating Raman intensities of crystalline periodic sys-
tems using a local basis set. Numerical differentiation with respect to atomic coordinates and with
respect to wavevectors is entirely avoided as is the determination of crystal orbital coefficient deriva-
tives with respect to nuclear displacements. Instead, our method utilizes the orbital energy-weighted
density matrix and is based on the self-consistent solution of first- and second-order Coupled Per-
turbed Hartree-Fock/Kohn-Sham equations for the electronic response to external electric fields at
the equilibrium geometry. This method has also been implemented in the CRYSTAL program, which
uses a Gaussian type basis set. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824442]

I. INTRODUCTION

Raman spectroscopy undoubtedly ranks among the fa-
vorite techniques for the characterization of crystalline ma-
terials. However, despite the relative simplicity of the experi-
mental setup and the wide availability of high-quality instru-
mentation, there remain difficulties associated with the deter-
mination of absolute and relative intensities across the entire
frequency range.1 This is mainly due to the absence of a refer-
ence channel to compensate for instrumental sensitivity varia-
tion with time and/or wavelength. In this connection, the abil-
ity to obtain intensities from ab initio calculations is highly
important not only for predictive purposes but also to support
the analysis of experimental data and to help to compare spec-
tra from different instruments.

Within the Placzek approximation,2 the key properties in-
volved in computing nonresonant Raman susceptibilities are
the partial derivatives of the polarizability tensor with respect
to atomic positions:

∂αb,c

∂RA
a

∣∣∣∣
R0

= ∂3ET OT

∂RA
a ∂Eb∂Ec

∣∣∣∣
E=0,R0

. (1)

Here �RA is the coordinate of atom A, �E is the electric field
and a, b, c indicate cartesian directions.

While ab initio methods for the evaluation of these quan-
tities were developed for molecules in the early 1980s,3, 4 fun-
damental problems arise when trying to formulate a com-
putable expression for periodic crystalline systems. These
problems have delayed solid state applications.

In order to appreciate the modifications necessary to con-
vert from the treatment for a molecule to that of an infinite
periodic system, we recall here that the expression for the

a)Electronic mail: lorenzo.maschio@unito.it

scalar dipole interaction between an electron in a molecule
and a uniform static electric field �E (electron charge unit:
e = −1 a.u.),

V̂ (�r) = �E · �r (2)

is not consistent with the periodic boundary conditions for
an infinite system, because it is unbound and breaks trans-
lational invariance. Solutions to this problem have been pro-
posed by several authors.5–12 One common approach relies on
an alternative formulation of the electronic interaction opera-
tor which, in the Bloch basis, is diagonal with respect to the
reciprocal space �k vector. Provided the system has a non-zero
bandgap, this operator may be written as

�̂(�k) = ı �E · eı�k·�r �∇ke
−ı�k·�r =

∑
b

Eb �̂b(�k). (3)

The evaluation of �̂ requires a derivative with respect to �k. Al-
gorithms capable of dealing with this derivative have been im-
plemented in plane wave codes13–16 although the role of crys-
tal orbital phase factors is often ignored, as discussed in this
paper and in Refs. 11 and 17. A rather different approach, ap-
propriate for an atomic orbital (AO) basis, is employed herein.

One possible way of proceeding is to treat the interaction
term in (3) perturbatively. Then, the wavefunction and elec-
tric dipole properties can be obtained, for example, through
a periodic Coupled-perturbed Hartree-Fock (CPHF) or Kohn-
Sham (CPKS) approach. Such a CPHF/CPKS treatment has
recently been developed18 and implemented,19, 20 by some of
the present authors, in the CRYSTAL09 program, that uses a
local Gaussian basis set.21, 22

Periodic codes that allow one to compute Raman inten-
sities mainly adopt a density functional theory (DFT) CPKS
approach together with a plane wave basis set. Differentiation
with respect to nuclear coordinates is, then, carried out either

0021-9606/2013/139(16)/164101/13/$30.00 © 2013 AIP Publishing LLC139, 164101-1
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numerically23–26 or analytically.27–30 To our knowledge, a for-
malism in a local basis, such as we report in this work, has
not been previously presented. In contrast with previous treat-
ments (except for Ref. 28) we also avoid the time-consuming
calculation of derivatives of orbital coefficients with respect
to nuclear displacements. In addition, the role of exact ex-
change has generally not been considered, thereby precluding
the use of hybrid functionals in the CPKS treatment. Finally,
in several cases the derivative with respect to �k is treated nu-
merically (e.g., by means of Berry phase techniques), rather
than analytically, as done here.

We have recently presented an analytical approach for the
evaluation of IR intensities.17, 31 It combines the analytical pe-
riodic CPHF/CPKS treatment of electric field derivatives with
analytical gradients (i.e., geometric first derivatives) of the to-
tal energy.36 Gradients of the wavefunction are avoided (fol-
lowing the n + 1 rule32) through the use of the orbital-energy
weighted density matrix. This was demonstrated to be effi-
cient and numerically stable, when combined with the usual
numerical integrations over reciprocal space.

In the current work, we extend the formalism to Ra-
man intensities. Again, our treatment avoids calculating gra-
dients of the wavefunction (second derivatives with respect
to the electric fields are required instead) as opposed to the
corresponding treatment for molecules presented by Quinet
and Champagne.33 Our procedure is fully analytical except,
of course, for the integrations over reciprocal space. More-
over, we develop further a simple way of treating the deriva-
tives with respect to the wave vector introduced in earlier
papers.17–19 The numerical validation and performance, as im-
plemented in CRYSTAL, is discussed in Paper II.34

The overall result is the first implementation of a fully
analytical approach for computing Raman intensities in a
Gaussian-type basis that is routinely usable for periodic sys-
tems of any dimensionality, allowing also for the use of hy-
brid functionals. Readers who are not interested in following
the entire derivation in detail, will find the implemented ex-
pression for the Raman intensities given by Eq. (77).

This paper is organized as follows: in Secs. II A
and II B the CPHF theory preliminary to the present devel-
opment is briefly reviewed. In Sec. II C, the treatment of the
perturbation due to atomic displacements is described. Then,
starting from the mixed second derivative of the total energy
with respect to the atomic displacement and the electric field
(Sec. II D), we derive the fully analytical expression for the
Raman tensor in Sec. III. In Sec. III E, the extension to CPKS
theory is described. Finally, in Sec. IV conclusions are drawn
and some future work is noted.

II. CPHF THEORY AND PRELIMINARIES

Let us briefly introduce the notation, adopted in the fol-
lowing:

� Greek indices μ, ν, . . . will label AO basis functions in
the unit cell.

� Direct space lattice vectors will be indicated as
�g, �h, �n . . . .

� k-vectors of the Brillouin Zone (BZ) sampling in re-
ciprocal space will be indicated as �k.

� A general cartesian direction (x,y,z) will be expressed
by lower case letters a, b, . . . .

� Matrices denoted as S, F, D, . . . represent direct space
quantities, while reciprocal space quantities are de-
noted as S(�k), F (�k),D(�k), . . . .

� Direct space and reciprocal space quantities are con-
nected through standard Fourier and back-Fourier
transforms, F and F , respectively,

S(�k) = F[S],

S = F[S(�k)].

A. Unit cell total energy for periodic systems

We start with the HF expression for the total energy of a
periodic system in the presence of an electric field

ET OT = 1

2
T r ((H + F ) D) + ENN −

∑
A,b

Eb ZA RA
b , (4)

where F is the electronic Fock matrix made of a one-electron
term H and two-electron terms

F = H + (B + T + S q ), (5)

H = h +
∑

b

Eb �b. (6)

In this expression, which has been adapted from Refs. 35 and
36, Tr signifies the trace and the quantities D, S, h, B, T, and
� are the direct space AO matrices defined below:

� D is the density matrix obtained by means of a Fourier
back-transform

D = F [ D(�k) ] (7)

of the corresponding k-space matrix D(�k) calculated as
(assuming closed shells)

D(�k) = C(�k) nC†(�k), (8)

where C is the matrix of crystal orbital eigenvectors
(see Eq. (12) below) and n is the diagonal occupation
number matrix with eigenvalues = 2 for occupied or-
bitals and = 0 for virtual orbitals.

� S is the AO overlap matrix.
� h is the core hamiltonian matrix containing the kinetic

energy and nuclear-electron interaction terms.
� B is the electron-electron interaction term. Its matrix

elements are given by

B �g
μ,ν =

∑
ρ,τ,h,n

Dρτ �n (μν �g||ρ �hτ �h+�n), (9)

where the bielectronic integrals in Eq. (9) are partly
computed exactly and partly approximated by a bipo-
lar expansion.

� T represents the infinite summation contribution to
the electron-electron interaction, which is not reported
here. An explicit expression can be found in Saunders
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et al.35 We do note that T depends upon the density
matrix, i.e.,

T = D T , (10)

where T is the interaction of a field integral with a
set of point multipoles, and includes a potential func-
tion that depends upon the dimensionality, namely, the
Coulomb potential in the molecular case, the Euler-
MacLaurin potential in 1D periodic systems,37, 38

Parry’s potential for 2D periodic systems,39, 40 and the
Ewald potential for 3D systems.35, 41

� RA
a is the cartesian coordinate of atom A along direc-

tion a.
� ZA is the nuclear charge of atom A.
� ENN is the nuclear-nuclear interaction energy.
� �b is the AO matrix representation, in direct space,

for the b cartesian component of the �̂(�k) operator in
Eq. (3). The properties of this matrix, which is cen-
tral to our approach, will be discussed in detail
in Sec. II B.

� q is the value of the spheropole. This term arises only
in 3D periodic systems. It occurs because the charge
distribution is approximated by a model in the long
range and is needed in order to guarantee that the aver-
age of the electrostatic potential vanishes. We note that
q depends upon the density matrix, i.e.,

q = Tr (DQ) , (11)

where Q is the matrix of spheropolar integrals whose
explicit form can be found in Refs. 35 and 36.

B. Perturbation treatment of an external electric field

The periodic CPHF method as implemented in CRYSTAL

has been reported in a number of papers.18–20, 42 Thus, we pro-
vide here only a summary of the key relations employed in
this work. The crystal orbital coefficients in Eq. (8) may be
obtained by solving the Fock equation (derived from the en-
ergy expression)

F (�k) C(�k) = S(�k) C(�k) ε(�k), (12)

F (�k) = F[F ], (13)

where F is the Fourier transform operator. Equation (12) is
solved subject to the normalization condition

C†(�k) S (�k) C(�k) = I, (14)

where I is the identity matrix.
Here ε(�k) is the matrix of Lagrange multipliers. We use

a non-canonical formulation so that this matrix is only block
diagonal in the occupied/virtual crystal orbital space, except
at zero field (in which case it is fully diagonal).

The Fock equation is solved at each �k point in the ir-
reducible BZ to obtain the crystal orbital coefficients for a
given field (usually, the spheropole term is removed from the
k-space Fock equation17, 35 and, subsequently, added to the to-
tal energy; however, for simplicity here it is left in the Fock

matrix). We write C(�k) as a function of electric field using a
Taylor series in the field components:

C(�k) = C(0)(�k) +
∑

a=x,y,z

Ea C(Ea )(�k)

+
∑

a,b=x,y,z

Ea Eb C(Ea ,Eb)(�k) + · · · . (15)

Then, the first derivative of the density matrix Eq. (8) with
respect to the field is

D(Ea )(�k) = C(Ea )(�k) nC(0)†(�k) + C(0)(�k) nC(Ea ) †(�k), (16)

whereas, the corresponding electric field derivative of the nor-
malization condition (Eq. (14)) is

C(Ea )†(�k) S(�k) C(0)(�k) + C(0)†(�k) S(�k) C(Ea )(�k) = 0. (17)

The second derivative of the density matrix Eq. (8) with
respect to the field may be expressed as

D(Ea ,Eb)(�k) = C(Ea ,Eb)(�k) nC(0)†(�k)

+ Pa,bC
(Ea )(�k) nC(Eb)†(�k)

+ C(0)(�k) nC(Ea ,Eb) †(�k), (18)

where Pa, b is the permutation operator; the corresponding
derivative of the normalization condition (Eq. (14)) is given
by

C(Ea ,Eb)†(�k) S(�k) C(0)(�k) + Pa,bC
(Ea )†(�k) S(�k) C(Eb)(�k)

+ C(0)†(�k) S(�k) C(Ea ,Eb)(�k) = 0. (19)

In order to develop an AO matrix representation of �̂(�k)
we start by operating on an arbitrary CO |φi〉 = ∑

ν |ν〉 Cν, i

and projecting on the left-hand side with the AO basis func-
tion 〈μ|. This yields the mixed (AO/CO) relation∑

ν

〈μ|�̂b(�k) |ν〉 Cν,i(�k)

=
∑

ν

[
(Zb)μν(�k) + iS(kb)

μν (�k) + iSμν(�k)
∂

∂kb

]
Cν,i(�k).

(20)

Here Zb(�k) is the AO matrix that represents the component
of the electronic position coordinate along b and S(kb)(�k) is
the derivative of the AO overlap matrix, S, with respect to the
wave vector kb. This last relation, such as Eqs. (12)–(14), is
valid at any arbitrary field and geometry.

It is useful to define the derivative of the zero field co-
efficients with respect to vector �k in terms of the CO matrix
Qb(�k) given by

∂

∂kb

C(0)(�k) = C(0)(�k) Qb(�k). (21)

The diagonal elements of Q contain an undetermined imagi-
nary component (which reflects an arbitrary phase factor in
the CO coefficients).11, 43, 44 This imaginary component, in
turn, causes the dipole moment to be determined only up to
the addition of an arbitrary lattice vector. In our previous work
(Refs. 17 and 31), we showed that the IR intensities are un-
affected by this indeterminacy as long as the nuclear motion
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does not involve a change in lattice parameters. Since it is
known that polarizabilities are independent of the imaginary
diagonal components of Q (Ref. 11) a similar result holds for
Raman intensities and, in this case, for all nuclear motions.

Even after making the substitution of Eq. (21) into
Eq. (20) the last term on the rhs does not have the desired
form, i.e., XC, where X is an AO matrix. This difficulty is
solved45 by multiplying on the right with the orthonormality
condition (14) to give

ı S(�k)
∂

∂kb

C(�k) = ı

[
S(�k)

(
∂C(�k)

∂kb

)
C†(�k) S(�k)

]
C(�k).

(22)
Again, the above equation is valid for arbitrary geometry
and field. The quantity in square brackets is treated self-
consistently in solving the CPHF equations.

Finally, it is convenient to introduce the matrix

Mb(�k) = Zb(�k) + ıS(kb)(�k), (23)

which depends upon geometry but not field.
Then, combining Eqs. (20) and (22) with the definition

ı 
b(�k) = ıS(�k)

(
∂

∂kb

C(�k)

)
C†(�k) S(�k), (24)

leads to an AO matrix expression for �b(�k), i.e.,

�b(�k) = Mb(�k) + ı 
b(�k). (25)

In Eq. (25) we have, for convenience, introduced the hermi-
tized variants of Mb(�k) and 
b(�k),

Mb(�k) = 1

2
(Mb(�k) + M

†
b(�k)), (26)

ı 
b(�k) = 1

2
ı(
b(�k) − 


†
b(�k)), (27)

because these two quantities are not separately hermitian even
though their sum �b(�k) is hermitian. This allows us to treat
Mb(�k) and ı 
b(�k) separately in the following development.

For zero field we can exploit Eq. (21) to get

�
(0)
b (�k) = Mb(�k) + ı[S(�k) C(0)(�k) Qb(�k) C(0)†(�k) S(�k)],

(28)
where, in analogy with Eq. (27), we have defined

ı Qb(�k) = 1

2
ı(Qb(�k) − Q

†
b(�k)). (29)

This yields the energy contribution linear in the field (see
Eq. (6)) as

∑
b Eb T r(D(0) �

(0)
b ), with �

(0)
b defined as the back-

Fourier transform of �
(0)
b (�k),

�
(0)
b = F

[
�

(0)
b (�k)

]
. (30)

1. First-order CPHF equations

In order to obtain the first-order CPHF electric field equa-
tion for C(Ea ) we take the derivative of Eq. (12) with respect

to the field. This leads to

[F (Eb)(�k)C(0)(�k) + F (0)(�k) C(Eb)(�k)]

= S(�k) [C(Eb)(�k) ε(0)(�k) + C(0)(�k) ε(Eb)(�k)], (31)

which holds for arbitrary geometry and zero field. Equation
(31) is solved by writing

C(Eb)(�k) = C(0)(�k) U (Eb)(�k) (32)

and, then, determining U (Eb)(�k) self-consistently so as to sat-
isfy the condition that the off-diagonal blocks of ε(Eb)(�k) are
zero. The diagonal blocks (occ-occ or virt-virt) of U (Eb)(�k)
are arbitrary, apart from the normalization condition of
Eq. (17), which is trivially satisfied in CRYSTAL19 by tak-
ing these blocks to be zero. This requires U (Eb)(�k) to be
anti-hermitian. With that choice the diagonal blocks of the
Lagrange multiplier matrix become

ε(Eb)(�k) = G
(Eb)
D (�k)

= {C(0)†(�k)[B(Eb)(�k) + T (Eb)(�k) + q(Eb)S(�k) + Mb(�k)]

×C(0)(�k) + ı Qb(�k)}D (33)

as indicated by the subscript D.
As already done in earlier papers,18 we have introduced

here the shorthand notation

G(Eb)(�k) = C(0)†(�k) F (Eb)(�k) C(0)(�k) (34)

for the quantity in curly brackets in Eq. (33), which is the first-
order perturbed Fock matrix in the CO basis. Whereas the di-
agonal blocks of G(Eb)(�k) determine ε(Eb)(�k) the off-diagonal
blocks determine U (Eb)(�k). In deriving (33) we have taken ad-
vantage of Eq. (28). Note, finally, that using (32) the first
derivative of the density matrix Eq. (16) with respect to the
field may be conveniently rewritten as

D(Ea )(�k) = C(0)(�k)[U (Ea )(�k) n + nU (Ea )†(�k)] C(0) †(�k). (35)

2. Second-order CPHF equations

Let us start with the derivative of Eq. (24) with respect to
a generic field direction Ec at zero field, which is given by

ı 

(Ec)
b (�k) = ı S(�k) C(0)(�k)

∂U (Ec)(�k)

∂kb

C(0)†(�k) S(�k). (36)

Since this result may not be completely evident a step-by step
derivation is provided in the Appendix (see Eq. (A1)). In ad-
dition, differentiating Eq. (25) at zero field and using the anti-
hermitian character of ∂U (Ec)(�k)/∂kb, yields

�
(Ec)
b (�k) = ı 


(Ec)
b (�k) = ı 


(Ec)
b (�k). (37)

In order to obtain the second-order CPHF electric field
equation for C(Eb,Ec) we take the second derivative of Eq. (12)
with respect to the fields Eb, Ec (evaluated at zero field) which
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leads to

F (Eb,Ec)(�k) C(0)(�k) + Pb,cF
(Ec)(�k) C(Eb)(�k) + F (�k) C(Eb.Ec)(�k)

= S(�k)[C(Eb,Ec)(�k) ε(0)(�k) + Pb,cC
(Eb)(�k) ε(Ec)(�k)

+ C(0)(�k) ε(Eb,Ec)(�k)] (38)

for an arbitrary geometry. Equation (38) is solved by writing

C(Eb,Ec)(�k) = C(0)(�k) U (Eb,Ec)(�k) (39)

and, then, determining U (Eb,Ec)(�k) self-consistently, so that the
normalization condition is satisfied and the matrix of La-
grange multipliers

ε(Eb,Ec)(�k) = [ε(0)(�k) U (Eb,Ec)(�k) − U (Eb,Ec)(�k) ε(0)(�k)]

+ Pb,c(G(Eb)(�k) U (Ec)(�k) − U (Ec)(�k) ε(Eb)(�k) )

+ G(Eb,Ec)(�k) (40)

is block-diagonal. The latter condition requires that

[ε(0)(�k) U (Eb,Ec)(�k) − U (Eb,Ec)(�k) ε(0)(�k)]ND

= Pb,cU
(Ec)(�k) ε(Eb)(�k) − (G(Eb)(�k) U (Ec)(�k))ND

− G
(Eb,Ec)
ND (�k) (41)

in which the subscript ND indicates the non-diagonal blocks.
Equations (40) and (41) are obtained by multiplying Eq. (38)
on the left with C(0)†(�k).

As a consequence of (37), the explicit form of G(Eb,Ec)(�k)
is given by

G(Eb,Ec)(�k) = C(0)†(�k) F (Eb,Ec)(�k) C(0)(�k)

= C(0)†(�k)[B(Eb,Ec)(�k) + T (Eb,Ec)(�k)

+ q(Eb,Ec)S(�k)] C(0)(�k) + Pb,cı
∂U (Ec)(�k)

∂kb

. (42)

Note that, in contrast to U (Eb)(�k), the diagonal blocks (occ-occ
or virt-virt) of U (Eb,Ec)(�k) are not zero, but are given by

U
(Eb,Ec)
D (�k) = −1

2
Pb,c(U (Eb)†(�k) U (Ec)(�k)). (43)

C. Perturbation due to atomic displacements

Equation (15) is valid at any geometry. Expanding about
the equilibrium geometry the perturbed coefficients that are
linear in the atomic displacements and zeroth-order in the
field can be formally expressed as

C(RA
a )(�k) = C(0)(�k) U (RA

a )(�k). (44)

These coefficients will not appear in our final formula for the
Raman intensities, but it is necessary to account for them in
the intermediate steps of our derivation. Note that Eq. (44) is
valid for all kb.

The first derivative of the density matrix Eq. (8) with re-
spect to the displacements may, then, be written as

D(RA
a )(�k) = C(RA

a )(�k) nC(0)†(�k) + C(0)(�k) nC(RA
a ) †(�k), (45)

while the corresponding derivative of the normalization con-
dition (Eq. (14)) is

C(RA
a )†(�k) S(�k) C(0)(�k) + C(0)†(�k) S(�k) C(RA

a )(�k)

= U (RA
a )†(�k) + U (RA

a )(�k)

= −C(0)†(�k) S(RA
a )(�k) C(0)(�k). (46)

Moreover, at zero field, the derivative of the displacement-
perturbed coefficients with respect to the reciprocal space vec-
tor component kb is given by

∂C(RA
a )(�k)

∂kb

= ∂C(0)(�k)

∂kb

U (RA
a )(�k) + C(0)(�k)

∂U (RA
a )(�k)

∂kb

= C(0)(�k)

[
Qb(�k) U (RA

a )(�k) + ∂U (RA
a )(�k)

∂kb

]
. (47)

D. Second-order mixed derivative of the total energy
with respect to RA

a and Eb.

The mixed second derivative of the total energy with
respect to the atomic displacement and the electric field
(along b)

∂

∂Eb

∂ET OT

∂RA
a

∣∣∣∣
R0

= Tr

(
1

2

(
H (RA

a )+F(RA
a )
)
D(Eb)

+ 1

2

[
�

(RA
a )

b + (
F(RA

a ))(Eb)]
D

− S(RA
a )D

(Eb)
W

)
R0

− ZAδab, (48)

evaluated at zero field, was presented in our previous paper
(Ref. 17). Now, however, we have changed the notation by
introducing the (derivative of the) Fock matrix

F(RA
a ) = h(RA

a ) + (
B(RA

a ) + T(RA
a ) + q(RA

a )S + q S(RA
a )
)

+
∑

b

Eb �
(RA

a )
b (49)

in which

B
(RA

a )
μν �g =

∑
ρτ �h�n

Dρ�0τ �n
∂

∂RA
a

(μ
�0ν �g||ρ �hτ �h+�n) (50)

with an analogous expressions for T(RA
a ) –

T(RA
a ) = D T (RA

a ) (51)

and q(RA
a ). Once again, the derivatives with respect to nuclear

displacements are to be obtained while holding the crystal
orbital coefficients (and, hence, the density matrix) fixed at
their equilibrium geometry values. This results from utilizing
the eigenvalue-weighted density matrix, DW , as is custom-
ary in quantum chemistry.46, 47 DW is defined in reciprocal
space in a manner analogous to the ordinary density matrix
(cf. Eq. (7)),

DW (�k) = C(�k) ε(�k) nC†(�k). (52)
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Its derivative with respect to the electric field component
along direction b may be obtained at zero field as

D
(Eb)
W (�k) = C(Eb)(�k) ε(0)(�k) nC(0)†(�k)

+ C(0)(�k) ε(Eb)(�k) nC(0)†(�k)

+ C(0)(�k) ε(0)(�k) nC(Eb)†(�k). (53)

The second derivatives of the eigenvalue-weighted den-
sity matrix with respect to electric field components b and c,
that will be needed in Sec. III, can be expressed (at zero field)
as

D
(Eb,Ec)
W (�k) = (C(Eb,Ec)(�k) ε(0)(�k) nC(0)†(�k)

+ Pb,c [C(Eb)(�k) ε(Ec)(�k) nC(0)†(�k)

+ C(Eb)(�k) ε(0)(�k) nC(Ec)†(�k)]

+ C(0)(�k) ε(Eb,Ec)(�k) nC(0)†(�k)

+ Pb,c [C(0)(�k) ε(Eb)(�k) nC(Ec)†(�k)]

+ C(0)(�k) ε(0)(�k) nC(Eb,Ec)†(�k)). (54)

This result may be written in the more compact form

D
(Eb,Ec)
W (�k) = C(0)(�k)[A1(�k) + A2(�k)]C(0)†(�k), (55)

where

A1(�k) = U (Eb,Ec)(�k) ε(0)(�k) n

+Pb,cU
(Eb)(�k) ε(0)(�k) nU (Ec)†(�k)

+ ε(0)(�k) nU (Eb,Ec) †(�k), (56)

A2(�k) = Pb,c(U (Eb)(�k) ε(Ec)(�k) n + ε(Eb)(�k) nU (Ec)†(�k))

+ ε(Eb,Ec)(�k) n

= Pb,c(ε(Eb)(�k) nU (Ec)†(�k) + G(Eb)(�k) U (Ec)(�k) n)

+ (ε(0)(�k) U (Eb,Ec)(�k) − U (Eb,Ec)(�k) ε(0)(�k)

+G(Eb,Ec)(�k))n. (57)

III. RAMAN INTENSITIES

Our goal is to obtain a computable expression for the
Raman tensor elements. The first step is to differentiate
Eq. (48) with respect to a generic field direction Ec prior to

evaluating this expression at zero field:

∂2

∂Eb∂Ec

∂ET OT

∂RA
a

∣∣∣∣
E=0,R0

= Tr

{
1

2

(
H (RA

a ) + F(RA
a ))(0)

D(Eb, Ec)

+ 1

2
Pb,c

[
�

(RA
a )

b + (
F(RA

a )
)(Eb)

]
D(Ec)

+ 1

2

[
Pb,c ı 


(RA
a ,Ec)

b + (
F(RA

a )
)(Eb, Ec)

]
D(0)

− S(RA
a )D

(Eb, Ec)
W

}
R0,E=0

. (58)

Next we discuss the various features of this equation and,
then, perform some manipulations leading to a formula that
is simpler and more suitable for implementation.

A. The mixed derivative of the electron-electron
and spheropole terms

The B(RA
a ), T(RA

a ), and q(RA
a ) quantities, defined in

Eqs. (49)–(51), contain the field-dependent density matrix,
and gradient of a field-free integral. The first and second
derivative of these terms with respect to the electric field
components along b and c are, then, easily obtained by
substituting the field-perturbed density matrix in the relevant
expressions.

B. Gradients of the � and �(Ec) matrices

The �b term in Eq. (49) is linear (and higher order) in the
field; it vanishes for E = 0. Hence, for the Raman effect we
are interested in the first derivative of the terms involving this
quantity in Eq. (48), i.e.,

Pb,c

∑
�k

T r
(
�

(RA
a )

b (�k) D(Ec)(�k) + ı 

(RA

a ,Ec)
b (�k) D(0)(�k)

)
. (59)

The treatment of the Mb part of �b is trivial since Mb is field-
independent. So our focus is on obtaining a suitable expres-
sion for

Pb,c

∑
�k

T r
(
ı 


(RA
a )

b (�k) D(Ec)(�k) + ı 

(RA

a ,Ec)
b (�k) D(0)(�k)

)
.

(60)

In order to simplify the treatment the non-hermitized form of

b(�k) is used below, but it is straightforward to convert to the
hermitian conjugate.

To obtain the first term of Eq. (60), an explicit expression

for 

(RA

a )
b (�k) is needed. To that end we differentiate Eq. (24)

with respect to RA
a at zero-field to obtain



(RA

a )
b (�k) = S(RA

a )(�k) C(0)(�k) Qb(�k) C(0) †(�k) S(�k) + S(�k) C(0)(�k) Qb(�k) C(0) †(�k) S(RA
a )(�k)

+ S(�k) C(0)(�k)

[
∂U (RA

a )(�k)

∂kb

− Qb(�k) C(0) †(�k) S(RA
a )(�k) C(0)(�k)

]
C(0) †(�k) S(�k). (61)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.192.118.92 On: Tue, 22 Oct 2013 15:31:03



164101-7 Maschio et al. J. Chem. Phys. 139, 164101 (2013)

This result may not be immediately evident. However, a complete derivation is presented in the Appendix (see Eq. (A2)). Using
the result of Eqs. (16) and (61) for D(Ec) we find that∑

�k
T r

(
ı 


(RA
a )

b (�k) D(Ec)(�k)
)

= ı
∑

�k
T r

([
C(0)†(�k)S(RA

a )(�k)C(0)(�k)Qb(�k) + ∂U (RA
a )(�k)

∂kb

]
[U (Ec)(�k)n − nU (Ec)(�k)]

)
. (62)

In order to eliminate ∂U (RA
a )(�k)/∂kb from the last term in

Eq. (62) we consider the integral

BZ∑
�k

∂

∂kb

[
U (RA

a )(�k) U (Ec)(�k)
] = 0, (63)

which is zero since we may assume48 that both U (RA
a )(�k)

and U (Ec)(�k) are the same at opposite boundaries of the first

Brillouin zone, i.e., at ± �k. It, then, follows that

BZ∑
�k

∂U (RA
a )(�k)

∂kb

U (Ec)(�k) = −
BZ∑
�k

U (RA
a )(�k)

∂U (Ec)(�k)

∂kb

(64)

and, by the same token,

BZ∑
�k

∂U (Ec)(�k)

∂kb

U (RA
a )(�k) = −

BZ∑
�k

U (Ec)(�k)
∂U (RA

a )(�k)

∂kb

. (65)

Substitution of Eqs. (64) and (65) into Eq. (62) gives

∑
�k

T r
(
ı 


(RA
a )

b (�k) D(Ec)(�k)
) = ı

∑
�k

T r

(
C(0) †(�k) S(RA

a )(�k) C(0)(�k) Qb(�k) [U (Ec)(�k) n − nU (Ec)(�k)]

− U (RA
a )(�k)

[
∂U (Ec)(�k)

∂kb

n − n
∂U (Ec)(�k)

∂kb

])
(66)

as desired. We now turn to the second contribution of Eq. (60). An expression for 

(RA

a ,Ec)
b (�k) may be found by differentiating

Eq. (37) with respect to displacements (note that all quantities in that equation, including C(0), depend upon RA
a ). This yields



(RA

a ,Ec)
b (�k) = S(RA

a )(�k) C(0)(�k)
∂U (Ec)(�k)

∂kb

C(0)†(�k) S(�k) + S(�k) C(0)(�k)
∂U (Ec)(�k)

∂kb

C(0)†(�k) S(RA
a )(�k)

+ S(�k) C(0)(�k)

⎡
⎣U (RA

a )(�k)
∂U (Ec)(�k)

∂kb

+
(

∂U (Ec)(�k)

∂kb

)(RA
a )

+ ∂U (Ec)(�k)

∂kb

U (RA
a ) †(�k)

⎤
⎦ C(0)†(�k) S(�k), (67)

which leads to

∑
�k

T r
(
ı 


(RA
a ,Ec)

b (�k) D(0)(�k)
)

= ı
∑

�k
T r

(
U (RA

a )(�k)

[
∂U (Ec)(�k)

∂kb

n − n
∂U (Ec)(�k)

∂kb

]
+ C(0)†(�k) S(RA

a )(�k) C(0)(�k)
∂U (Ec)(�k)

∂kb

n

)
. (68)

Once again, for convenience, the individual steps leading to Eq. (68) have been relegated to the Appendix (see Eq. (A3)). Note
that Eq. (46) has been used here. By combining Eqs. (66) and (68), reintroducing the Mb term, and recovering the hermitized
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form for Qb we, finally, obtain

Pb,c

∑
�k

T r
{
�

(RA
a )

b (�k) D(Ec)(�k) + �
(RA

a ,Ec)
b (�k) D(0)(�k)

}

= Pb,c

∑
�k

T r

{
M

(RA
a )

b (�k) D(Ec)(�k)

+ ı C(0) †(�k) S(RA
a )(�k) C(0)(�k)

(
Qb(�k) [U (Ec)(�k) n − nU (Ec)(�k)] + ∂U (Ec)(�k)

∂kb

n

)}
. (69)

This expression has the key feature that it does not contain U (RA
a )(�k) and, thus, does not require solution of the set of coupled-

perturbed equations with respect to atomic displacements. Moreover, we will see that it cancels in large part with terms contained
inside the DW term of Eq. (58), as discussed in Subsection III C.

C. A compact, computable formula for Raman intensities

It is convenient at this point to pick out those terms in Eq. (57) that involve either Qb(�k) or ∂U (Ec)(�k)/∂kb. These terms arise
from ε(Eb)(�k), G(Eb)(�k), and G(Eb,Ec)(�k) (see Eqs. (33) ff.) and (42). After substituting into Eq. (55) we find that their contribution
to the T r(S(RA

a )D
(Eb,Ec)
W ) term in Eq. (58) is

− Pb,c

∑
�k

T r

{
ı C(0) †(�k) S(RA

a )(�k) C(0)(�k)

(
−PoccQb(�k) nU (Ec)(�k) + Qb(�k) U (Ec)(�k) n + ∂U (Ec)(�k)

∂kb

n

)}
, (70)

where Pocc is the projector for the occupied space. The latter accounts for the fact that ε(Eb)(�k) is block-diagonal. These terms
occur with a negative sign and, therefore, exactly cancel with the corresponding terms in Eq. (69) except for the projector. Due
to the projector there is a term left over when the two are combined, namely,

Pb,c

∑
k

T r
{
ı C(0) †(�k) S(RA

a )(�k) C(0)(�k)(PvirtQb(�k) nU (Ec)(�k))
}

(71)

with Pvirt = I − Pocc. We define a modified form of D
(Eb,Ec)
W (�k), i.e.,

D′(Eb,Ec)
W (�k) = C(0)(�k)[A1(�k) + A′

2(�k) − Pb,c(ı PvirtQb(�k) nU (Ec)(�k))]C(0)†(�k), (72)

where the appropriate Qb term has been added and A2(�k) has
been replaced by A′

2(�k),

A′
2(�k) = Pb,c[X(Eb)(�k) U (Ec)(�k) n

− PoccX
(Eb)(�k) nU (Ec)(�k)] + X(Eb,Ec)(�k) n

+ (ε(0)(�k) U (Eb,Ec)(�k) − U (Eb,Ec)(�k) ε(0)(�k))n (73)

with

X(Eb)(�k) = C(0)†(�k)[B(Eb)(�k) + T (Eb)(�k) + q(Eb)S(�k)

+ Mb(�k)]C(0)(�k). (74)

Here X(Eb,Ec)(�k) is a modified second-order G(Eb,Ec)(�k) matrix
after elimination of ∂U (Ec)(�k)/∂kb as just described

X(Eb,Ec)(�k) = C(0)†(�k)[B (Eb,Ec)(�k) + T (Eb,Ec)(�k) + q (Eb,Ec)S(�k)]C(0)(�k).

(75)

In order to account for the fact that the 
b term in �b is
treated separately above from the Mb bar term it is convenient
to define the modified Fock matrix derivative

F′(RA
a ) = B(RA

a ) + T(RA
a ) + q(RA

a )S + q S(RA
a )

+
∑

b

Eb M
(RA

a )
b . (76)

Note that F′(RA
a ) contains terms where the field(s) appear only

either in the density matrix as a multiplicative factor or not at
all. Then, finally, inserting (72) in (58), we obtain a compact
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computable expression for the Raman tensor elements

∂2

∂Eb∂Ec

∂ET OT

∂RA
a

∣∣∣∣
E=0,R0

= Tr

{
1

2

(
H (RA

a ) + F′(RA
a ))(0)

D(Eb, Ec)

+ 1

2
Pb,c

[(
M

(RA
a )

b + (
F′(RA

a ))(Eb))
D(Ec)

]
+ 1

2
(F′(RA

a ))(Eb, Ec)D(0) − S(RA
a )D′(Eb, Ec)

W

}
R0

. (77)

D. Remarks

Taking into account the statement immediately below
Eq. (76), it is clear that there are no entities in our final for-
mula that must be obtained by double differentiation with re-
spect to the field and with respect to atomic positions. Most
importantly, no perturbation equations for the atomic dis-
placements need be solved. All quantities involved are ob-
tained either through a CPHF calculation or by determining
the gradient of an integral as in a standard analytical geometry
optimization. Thus, the computational cost scales favorably
with the size of the unit cell and is, in fact, a fraction of the
cost of obtaining the fundamental frequencies, if symmetry is
not present.49 Equation (77) is a fully analytical expression in
direct space and AO basis for obtaining the Raman intensi-
ties in periodic systems. This is the expression that has been
implemented in the CRYSTAL code.34

E. Extension to CPKS version of DFT

Let us now consider the extension of Eq. (77) to the
CPKS version of DFT. We derive the expression for a hybrid
functional, such as B3LYP, since other approximations, like
the local density approximation (LDA) or generalized gradi-
ent approximations (GGA) can be considered as special cases.
Meta-GGA functionals can be treated by an extension of the
method we present.

In DFT calculations, the total electronic energy is sepa-
rated into parts50

ET OT
DFT (aX) = ET + EV + EJ + aXEX

HF + E � + EXC
R (aX).

(78)
In Eq. (78) ET, EV , and EJ are the kinetic, electron-nuclear,
and Coulomb interaction energies, respectively, and they are
the same as in the HF treatment. E�, which is also the same
as in HF, represents the contribution due to the electric field
while EX

HF is the HF exchange contribution

EX
HF = T r(BXD), (79)

BX
μ,ν �g = −1

2

∑
ρ,τ,h,n

Dρτ �n (μρ
�h|ν �gτ �h+�n), (80)

which is multiplied by the scaling factor aX to give the fraction
of “exact” exchange in the functional. Finally, EXC

R (aX) is the

remaining exchange-correlation part of the electron-electron
repulsion energy.

For simplicity, we consider here again the case of a closed
shell system, so that EXC

R may be written as the numerical
integral (we drop the explicit dependence of EXC

R on aX for
notational convenience)

EXC
R =

∑
i

wi f
XC(ρ, |∇ρ|2)ri

. (81)

The value of f XC is calculated at points ri on a grid and multi-
plied by the Becke weight51, 52 wi associated with each point,
according to an atomic partition. The density and its elec-
tronic gradient are obtained from

ρ(ri) =
∑
μν �g

Dμν �g φ
�0
μ(ri) φ �g

ν (ri), (82)

∇ρ(ri) =
∑
μν �g

Dμν �g
[∇(

φ
�0
μ φ �g

ν

)]
ri
, (83)

where φμ and φν are basis functions. Except for EXC
R (and

the scaling factor aX), Eq. (78) is identical to (6). Therefore,
Eq. (77) is obtained following the same route as for Hartree–
Fock, and to that we add the derivative of EXC

R with respect
to the displacement and two fields. Note that in the DFT case
the exchange part of B(RA

a ) in (77) will be scaled by aX, and
that D′

W
(Eb) will contain DFT eigenvalues. Differentiation of

Eqs. (82) and (83) with respect to nuclear displacements,
while holding the crystal orbital coefficients fixed (as in
Eq. (48)), gives

ρ(RA
a )(ri) =

∑
μν �g

Dμν �g

[
∂

∂RA
a

(
φ

�0
μ φ �g

ν

)]
ri

, (84)

∇ρ(RA
a )(ri) =

∑
μν �g

Dμν �g

[
∂

∂RA
a

∇(
φ

�0
μ φ �g

ν

)]
ri

. (85)

For the derivative of EXC
R with respect to the displace-

ment and two fields we can use as a starting point the closed
shell expression for the EXC

R contribution to the Born charges
tensor obtained in Ref. 17,

∂E
XC (RA

a )
R

∂Eb

∣∣∣∣∣
R0

=
∑

i

wi

{[
∂2f XC

∂ρ2

∂ρ

∂Eb

+ ∂2f XC

∂ρ ∂|∇ρ|2
∂|∇ρ|2

∂Eb

]
ρ(RA

a )

+ 2

[
∂2f XC

∂(|∇ρ|2)2

∂|∇ρ|2
∂Eb

∇ρ + ∂2f XC

∂ρ ∂|∇ρ|2
∂ρ

∂Eb

∇ρ

+ ∂f XC

∂|∇ρ|2
∂∇ρ

∂Eb

]
· ∇ρ(RA

a )

+ ∂f XC

∂ρ

∂ρ(RA
a )

∂Eb

+ 2
∂f XC

∂|∇ρ|2 ∇ρ · ∂∇ρ(RA
a )

∂Eb

}
ri

+
∑

i

∂wi

∂RA
a

{
∂f XC

∂ρ

∂ρ

∂Eb

+ ∂f XC

∂|∇ρ|2
∂|∇ρ|2

∂Eb

}
ri

.

(86)
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Equation (86) was determined by taking advantage of the equality [|∇ρ|2](RA
a ) = 2∇ρ · ∇ρ(RA

a ). Finally, to obtain the cor-
responding contribution to the Raman tensor we differentiate the above relation with respect to the electric field Ec, which
yields

∂2E
XC (RA

a )
R

∂Eb∂Ec

∣∣∣∣∣
E=0,R0

=
∑

i

wi

{[
∂3f XC

∂ρ3

∂ρ

∂Eb

∂ρ

∂Ec

+ ∂2f XC

∂ρ2

∂2ρ

∂Eb∂Ec

+ Pb,c

∂3f XC

∂ρ2∂|∇ρ|2
∂ρ

∂Eb

∂|∇ρ|2
∂Ec

+ ∂3f XC

∂ρ
(
∂|∇ρ|2)2

∂|∇ρ|2
∂Eb

∂|∇ρ|2
∂Ec

+ ∂2f XC

∂ρ ∂|∇ρ|2
∂2|∇ρ|2
∂Eb∂Ec

]
ρ(RA

a )

+ 2

[(
∂3f XC

∂(|∇ρ|2)3

∂|∇ρ|2
∂Eb

∂|∇ρ|2
∂Ec

+ ∂2f XC

∂(|∇ρ|2)2

∂2|∇ρ|2
∂Eb∂Ec

+ Pb,c

∂3f XC

∂(|∇ρ|2)2∂ρ

∂|∇ρ|2
∂Eb

∂ρ

∂Ec
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∂Eb

∂ρ
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∂Eb∂Ec

)
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∂∇ρ

∂Eb

+ Pb,c

∂2f XC

∂ρ ∂|∇ρ|2
∂ρ

∂Ec

∂∇ρ

∂Eb

+ ∂f XC

∂|∇ρ|2
∂2∇ρ

∂Eb ∂Ec

]
· ∇ρ(RA

a )

+ Pb,c

[
∂2f XC

∂ρ2

∂ρ

∂Eb

+ ∂2f XC

∂ρ ∂|∇ρ|2
∂|∇ρ|2

∂Eb

]
∂ρ(RA

a )

∂Ec

+ 2 Pb,c

[(
∂2f XC

∂(|∇ρ|2)2

∂|∇ρ|2
∂Eb

+ ∂2f XC

∂ρ ∂|∇ρ|2
∂ρ

∂Eb

)
∇ρ + ∂f XC

∂|∇ρ|2
∂∇ρ

∂Eb

]
· ∂∇ρ(RA

a )

∂Ec

+ ∂f XC

∂ρ

∂2ρ(RA
a )

∂Eb∂Ec

+ 2
∂f XC

∂|∇ρ|2 ∇ρ · ∂2∇ρ(RA
a )

∂Eb∂Ec

}
ri

+
∑

i

∂wi

∂RA
a

{
∂2f XC

∂ρ2

∂ρ

∂Eb

∂ρ

∂Ec

+ Pb,c

∂2f XC

∂ρ ∂|∇ρ|2
∂|∇ρ|2

∂Eb

∂ρ

∂Ec

+ ∂2f XC

∂
(|∇ρ|2)2

∂|∇ρ|2
∂Eb

∂|∇ρ|2
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+ ∂f XC

∂ρ

∂2ρ

∂Eb ∂Ec

+ ∂f XC

∂|∇ρ|2
∂2

(|∇ρ|2)2

∂Eb ∂Ec

}
ri

. (87)

The XC functional derivatives are obtained through the
XCFUN library written by Ekström53, 54 using automatic dif-
ferentiation for arbitrary-order derivatives. This library has
been interfaced to the CRYSTAL program.42

IV. CONCLUSIONS

We have developed a novel method for the fully analyt-
ical calculation of Raman intensities at the Hartree-Fock and
DFT level. Our treatment, which has been implemented in the
CRYSTAL code, involves solving only a single second-order
self-consistent equation for each polarizability component.

This remains true regardless of the number of atoms in the
unit cell. Numerical differentiation with respect to atomic co-
ordinates and with respect to wave vectors is entirely avoided.

Despite an involved derivation the final expressions are
simple and computationally optimal. This allows for the easy
simulation of Raman spectra for crystalline systems periodic
in one, two, and three dimensions.

In Paper II of this article,34 we present results com-
puted for different crystalline systems, in order to validate
the method, including comparison with experiment, as well
as verify its numerical stability and efficiency. As shown
there, Raman spectra of systems with more than a hundred
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atoms in the unit cell, such as UiO-66 Metal Organic Frame-
work, can be simulated with a reasonable computational
effort.

The treatment that has been presented can be extended
to other properties such as analytical evaluation of hyper-
Raman intensities, vibrational circular dichroism, and vibra-
tional nonlinear optical properties. We intend to carry out
some of these further developments in the future.

The treatment presented here is for the purpose of calcu-
lating Raman spectra and, hence, will be applied in Paper II34

to �k = 0 vibrations, i.e., at the � point. No such restriction has
been applied to the displacements RA

a .

APPENDIX: DERIVATIVES OF THE � MATRICES

In this Appendix, we report the detailed derivations that
were omitted in the main body of the article for the sake of
enhancing the readability of the paper. Thus, for the differen-
tiation of 
b(�k) with respect to a field Ec, i.e., Eq. (36), we
have

ı 

(Ec)
b (�k) = ı S(�k)

[(
∂

∂kb

C(0)(�k) U (Ec)(�k)

)
C(0)†(�k) +

(
∂

∂kb

C(0)(�k)

)
U (Ec)†(�k) C(0)†(�k)

]
S(�k)

= ı S(�k) C(0)(�k)

(
Qb(�k) U (Ec)(�k) + ∂U (Ec)(�k)

∂kb

+ Qb(�k) U (Ec)†(�k)

)
C(0)†(�k) S(�k)

= ı S(�k) C(0)(�k)

(
Qb(�k) U (Ec)(�k) + ∂U (Ec)(�k)

∂kb

− Qb(�k) U (Ec)(�k)

)
C(0)†(�k) S(�k)

= ı S(�k) C(0)(�k)
∂U (Ec)(�k)

∂kb

C(0)†(�k) S(�k), (A1)

which follows from the fact that U (Ec)(�k) is anti-hermitian. Then, for the derivative with respect to an atomic displacement RA
a ,

i.e., Eq. (61), the following provides a step-by-step derivation:



(RA

a )
b (�k) = S(RA

a )(�k)

[
∂C(0)(�k)

∂kb

]
C(0) †(�k) S(�k) + S(�k)

[
∂C(RA

a )(�k)

∂kb

]
C(0) †(�k) S(�k)

+ S(�k)

[
∂C(0)(�k)

∂kb

]
C(RA

a ) †(�k) S(�k) + S(�k)

[
∂C(0)(�k)

∂kb

]
C(0) †(�k) S(RA

a )(�k)

= S(RA
a )(�k) C(0)(�k) Qb(�k) C(0) †(�k) S(�k) + S(�k) C(0)(�k) Qb(�k) C(0) †(�k) S(RA

a )(�k)

+ S(�k) C(0)(�k)

[
Qb(�k) U (RA

a )(�k) + ∂U (RA
a )(�k)

∂kb

+ Qb(�k) U (RA
a ) †(�k)

]
C(0) †(�k) S(�k)

= S(RA
a )(�k) C(0)(�k) Qb(�k) C(0) †(�k) S(�k) + S(�k) C(0)(�k) Qb(�k) C(0) †(�k) S(RA

a )(�k)

+ S(�k) C(0)(�k)

[
∂U (RA

a )(�k)

∂kb

− Qb(�k) C(0) †(�k) S(RA
a )(�k) C(0)(�k)

]
C(0) †(�k) S(�k). (A2)
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Here we have used Eqs. (21), (44), (47) and, in the last step, Eq. (46). Finally, combining the expression of 

(RA

a ,Ec)
b (�k) resulting

from Eq. (67) with the unperturbed density matrix we obtain the result of Eq. (68),∑
�k

T r
(
ı 


(RA
a ,Ec)

b (�k) D(0)(�k)
)

= ı
∑

�k
T r

(
C(0)†(�k) S(RA

a )(�k) C(0)(�k)

[
∂U (Ec)(�k)

∂kb

n + n
∂U (Ec)(�k)

∂kb

]

+
⎡
⎣U (RA

a )(�k)
∂U (Ec)(�k)

∂kb

+
(

∂U (Ec)(�k)

∂kb

)(RA
a )

+ ∂U (Ec)(�k)

∂kb

U (RA
a ) †(�k)

⎤
⎦ n

⎞
⎠

= ı
∑

�k
T r

(
C(0)†(�k) S(RA

a )(�k) C(0)(�k)

[
∂U (Ec)(�k)

∂kb

n + n
∂U (Ec)(�k)

∂kb

]
+ U (RA

a )(�k)
∂U (Ec)(�k)

∂kb

n

− ∂U (Ec)(�k)

∂kb

[
U (RA

a )(�k) + C(0)†(�k) S(RA
a )(�k) C(0)(�k)

]
n

)

= ı
∑

�k
T r

(
U (RA

a )(�k)

[
∂U (Ec)(�k)

∂kb

n − n
∂U (Ec)(�k)

∂kb

]
+ C(0)†(�k) S(RA

a )(�k) C(0)(�k)
∂U (Ec)(�k)

∂kb

n

)
(A3)

since ∂U (Ec)(�k)/∂kb is block off-diagonal at all RA
a .
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