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To date, relatively little is known about the spatiotemporal aspects of 
whole-brain blood oxygenation level-dependent (BOLD) responses to 
brief nociceptive stimuli. It is known that the majority of brain areas 
show a stimulus-locked response, whereas only some are character
ized by a canonical hemodynamic response function. Here, we inves
tigated the time course of brain activations in response to 
mechanical pain stimulation applied to participants' hands while 
they were undergoing functional magnetic resonance imaging 
(fMRI) scanning. To avoid any assumption about the shape of BOLD 
response, we used an unsupervised data-driven method to group 
voxels sharing a time course similar to the BOLD response to the 
stimulus and found that whole-brain BOLD responses to painful 
mechanical stimuli elicit massive activation of stimulus-locked brain 
areas. This pattern of activations can be segregated into 5 clusters, 
each with a typical temporal profile. In conclusion, we show that an 
extensive activity of multiple networks is engaged at different time 
latencies after presentation of a noxious stimulus. These findings 
aim to motivate research on a controversial topic, such as the tem
poral profile of BOLD responses, the variability of these response 
profiles, and the interaction between the stimulus-related BOLD 
response and ongoing fluctuations in large-scale brain networks.
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Introduction

Harmful stimuli applied to the skin activate small, myelinated 
AS-fibers and unmyelinated C-fibers. While the sensation 
mediated by AS-fibers is referred to as “first pain” and de
scribed as a sharp, pin prick, that mediated by C-fibers, re
ferred to as “second pain”, is described as a dull, long-lasting, 
burning feeling. Previous functional magnetic resonance 
imaging (fMRI) studies have shown that the cortical response 
to painful contact heat is biphasic. Indeed, this biphasic 
response has been related to different possible physiological 
mechanisms such as first or second pain (Chen et al. 2002), or 
innocuous versus painful heat (Becerra et al. 2001; Wager et al. 
2004; Moulton et al. 2005), but also nonpain-related processes 
such as participants’ assessment o f pain during stimulation 
(Moulton et al. 2005; Oshiro et al. 2007).

It is well established that painful stimuli trigger responses in 
a wide array o f cortical and subcortical areas, including the 
primary and secondary somatosensory cortices (SI and SII), 
the cingulate and insular cortices, the thalamus, the prefrontal 
cortices, and the cerebellum (Peyron et al. 2000; Garcia-Larrea 
et al. 2003; Apkarian et al. 2005; Friebel et al. 2011); however, 
less research has been conducted on the temporal profile of 
the blood oxygenation level-dependent (BOLD) response to 
painful stimuli. A number o f previous studies investigating the 
temporal profile o f the BOLD response have focused either on 
the relationship between pain perception and the BOLD signal

(Porro et al. 1998), or on the differences in the temporal prop
erties o f the hemodynamic signal in response to innocuous 
versus noxious stimuli in prespecified areas (Chen et al. 2002; 
Moulton et al. 2005). Fewer authors have proposed model-free 
or modified general linear model (GLM) whole-brain analysis 
o f the temporal profile o f the BOLD signal (Upadhyay et al. 
2010; Moulton et al. 2012). For instance, Moulton and col
leagues (Moulton et al. 2012) subdivided the BOLD response 
to heat stimuli into 3 temporal segments using time-shifted 
predictors in a GLM analysis. The results o f this study indicated 
that only the late response correlates with perceptual ratings of 
intensity of the stimulus. Interestingly, the authors suggested a 
temporal differentiation between the brain responses to pain 
that likely reflects the involvement o f different brain networks 
at different time latencies. Notably, most o f the previous 
studies that have attempted to characterize the temporal profile 
o f the BOLD response following painful stimuli have used 
stimuli o f long duration (Chen et al. 2002; Moulton et al. 2005, 
2012; Upadhyay et al. 2010). However, as evidenced by the 
finite impulse response theory (Oppenheim et al. 1983), only 
the use o f brief stimuli is suitable for the effective characteriz
ation o f the temporal profile o f a response signal (Menon 
2012). Moreover, in the majority o f these studies, the possi
bility o f investigating the whole-brain network response to 
noxious stimuli was spatially limited and not truly data driven.

The method most commonly employed to analyze fMRI data 
involves the creation o f a set of predictors that are convolved 
with a prespecified BOLD response model (often a 2-gamma 
function; Glover 1999)- This hypothesis assumes that the BOLD 
response is constant in time and space (Buckner et al. 1996). 
This method suffers from 2 principal problems (Gonzalez- 
Castillo et al. 2012): (1) A high number o f false-negative findings 
in the presence o f a low signal-to-noise ratio (Huettel and 
McCarthy 2001; Saad et al. 2003); (2) only areas showing the 
prespecified response are reliably detected. It has, in fact, re
cently been demonstrated that, under optimal conditions, 
almost all o f the brain cortex (96%) shows a significantly 
stimulus-locked BOLD response (Saad et al. 2003; Gonzalez- 
Castillo et al. 2012). The majority o f these areas (68%) show a 
response that is very different to the canonical hemodynamic 
response function (HRF). Other studies have emphasized that 
the BOLD response can be characterized by spatially variable 
delays and envelopes (Lai et al. 1993; Lee et al. 1995; Schacter 
et al. 1997; Buckner et al. 1998; Robson et al. 1998; Kruggel and 
von Cramon 1999a,b; Bandettini 2000; Saad et al. 2003; Hand- 
werker et al. 2004; Thomason et al. 2005; Meltzer et al. 2008). 
Such variations have been attributed alternatively to hemody
namic delays, neuronal activity, anatomical differences, or fMRI 
noise (Weisskoff et al. 1993; Biswal et al. 1995; Biswal et al. 
1996; Mitra et al. 1997; Kruggel and von Cramon 1999a,b; Saad 
et al. 2003; Chang et al. 2008).
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Some promising alternatives for analyzing fMRI data 
without imposing any prespecified response model are rep
resented by finite impulse response models (for more details 
see Goutte et al. 2000; Miezin et al. 2000; Ollinger et al. 2001), 
basis function (see for example Hossein-Zadeh et al. 2003; 
Woolrich et al. 2004), and temporal clustering techniques 
(Smolders et al. 2007).

In light o f these previous suggestions proposing that painful 
stimuli are processed by different brain networks, each with a 
characteristic BOLD response, we aimed to characterize whole- 
brain responses to mechanical painful stimuli in a true data- 
driven fashion, that is, without imposing a predefined BOLD 
response or any a priori selection o f regions o f interest (ROIs). 
This methodology was employed to deal with the shortcom
ings o f the traditional predictor-related fMRI analysis method 
(Glover 1999) under the hypothesis o f a massive involvement 
in stimulus-locked brain areas during an active task (Gonzalez- 
Castillo et al. 2012). We investigated whether, following 
painful mechanical stimuli, different groups o f areas (e.g. net
works) activate (or deactivate) with a different temporal 
profile. We examined the time course o f voxels o f the whole- 
brain BOLD signal (Ploran et al. 2007) in response to mechan
ical painful stimuli (Magerl et al. 2001; Baumgartner et al. 
2010) and used a hierarchical cluster analysis (Smolders et al. 
2007; Sack et al. 2008; Gonzalez-Castillo et al. 2012) to classify 
the time course profile o f voxels into clusters sharing similar 
temporal profiles. We assumed that employing data analysis 
that does not impose any predefined BOLD shape would 
enable us to demonstrate that the group o f stimulus-locked 
areas that collaborate to process the experimental stimulus 
form a much wider picture than shown by previous studies. 
Subsequently, we specified the temporal characteristics o f the 
signal in the detected areas using the BOLD latency mapping 
(BLM; Formisano and Goebel 2003) technique and 
event-related averages. BLM uses a linear fit method to charac
terize the parameters o f the BOLD response as onset, duration, 
time to peak, and percentage o f signal change (PSC). To estab
lish the specificity o f our findings, we also performed a control 
experiment in which nonpainful tactile stimuli were used.

Materials and Methods

Painful Stimulation Experiment

Subjects
Seventeen healthy right-handed volunteers (8 females, mean age 
28 ± 4.2 years) free of neurological or psychiatric disorders, not taking 
medications known to alter brain activity, and with no history of drug 
or alcohol abuse, participated in the study. Handedness was ascer
tained with the Edinburgh Inventory (Oldfield 1971). We obtained the 
written informed consent of each subject, in accordance with the De
claration of Helsinki. The study was approved by the institutional com
mittee on ethical use of human subjects at the University of Turin.

Task a n d  Im age Acquisition
Prior to the fMRI session, the participants were instructed on the task 
and familiarized with the stimuli. The intensity of the stimuli was ad
justed so as to obtain a painful stimulation in all subjects. We chose, for 
each participant, the stimulus that elicited the first painful sensation, 
using the modified method of limits (Greenspan and McGillis 1994). 
During the 4 runs of the experimental session, the participants were re
quired to keep their eyes shut and relax while receiving the stimuli on 
their left and right hands. In this slow event-related paradigm, each run 
was composed of a sequence of 12 brief stimuli. The interstimulus

interval was jittered pseudorandomly between 18 and 22 s to permit 
the complete envelope of the BOLD response and an adequate 
sampling of the hemodynamic function. No more than 3 stimuli were 
consecutively applied to the same hand. The location of the stimuli 
was changed slightly after each stimulus. The participants were re
quired to use their fingers to indicate their rating of the mean perceived 
intensity of the stimuli at the end of the block. This procedure was 
adopted to avoid any spurious motor or cognitive response during the 
block. The stimuli were rated on a scale ranging from 0 (no pricking 
pain) to 10 (most intense pricking pain imaginable). The stimuli were 
applied using a hand-held 256-mN pin-prick probe with a flat cylindri
cal tip (diameter 250 }im). Mechanical pin-prick pain is primarily 
mediated by high-threshold mechanoreceptors and type I mechano- 
heat receptors (Magerl et al. 2001). Pin-prick stimulation has been 
used to evaluate mechanical pain in healthy (Baumgartner et al. 2010) 
and clinical (Rolke et al. 2006) populations. Previous fMRI studies have 
shown that areas activated in response to such mechanical painful 
stimuli are comparable with those following laser stimulations (Baum
gartner et al. 2010). In addition, the brief duration of the stimulus (1 s) 
is particularly suited for temporal analysis of the BOLD signal, owing 
to the favorable ratio between the duration of the stimulus and the dur
ation of the BOLD response to it (Oppenheim et al. 1983). Stimuli 
were applied by a trained experimenter; in this way the correct 
pressure and duration of the stimulus were guaranteed. The duration 
of the stimulus was ascertained using a metronome.

Images were acquired on a 1.5-T INTERA™ scanner (Philips 
Medical Systems) with a SENSE high-field, high-resolution head coil 
optimized for functional imaging. Functional 7’2*-weighted images 
were acquired using echoplanar imaging sequences, with a repetition 
time (TR) of 2000 ms, an echo time (TE) of 50 ms, and a 90° flip angle. 
The acquisition matrix was 64 x 64, with a 200-mm field of view (FoV). 
A total of 240 volumes were acquired, with each volume consisting of 
19 axial slices, parallel to the anterior-posterior commissure (AC-PC); 
slice thickness was 4.5 mm with a 0.5-mm gap. In-plane resolution was 
3.1 mm. Two scans were added at the beginning of functional scanning 
to reach a steady-state magnetization before acquiring the experimen
tal data. The data from these scans were then discarded. Within a 
single session, a set of 3-dimensional (3D) high-resolution 7\-weighted 
structural images was acquired for each participant, using a fast field 
echo sequence, with a 25-ms TR, an ultra-short TE, and a 30° flip 
angle. The acquisition matrix was 256 x 256, and the FoV was 256 mm. 
The set consisted of l6 0  contiguous sagittal images covering the whole 
brain. In-plane resolution was 1 mm x 1 mm and slice thickness 1 mm 
( 1 x 1 x 1  mm^ voxels).

Data Analysis

Data Preparation
BOLD imaging data were preprocessed and analyzed using the Brain- 
Voyager QX software (Brain Innovation, Maastricht, The Netherlands). 
Functional images were preprocessed as follows to reduce artifacts 
(Miezin et al. 2000): (1) The global intensity of the repeatedly 
measured images of a slice was corrected using a mean intensity adjust
ment. For each slice, we computed the average intensity across the first 
image, for each subsequent scan of the same slice, we computed the 
mean intensity and then scaled to obtain the same average slice inten
sity; (2) we corrected small head movements using 3D motion correc
tion. All volumes were aligned spatially to the first volume by rigid 
body transformations, using a trilinear interpolation algorithm; (3) we 
employed a slice scan time correction to allow a whole volume to be 
treated as a single data point. The sequentially scanned slices compris
ing each volume were interpolated in time, using a signal 
sinc-interpolation algorithm; (4) we performed spatial data smoothing 
using a 3D Gaussian kernel with full-width at half-maximum (FWHM) 
of 8 mm; and (5) applied temporal filters to remove drifts due to 
scanner and physiological noise: Linear and nonlinear trends removal 
through a temporal high-pass filter eliminating frequencies <3 cycles 
in the time course were performed. For all temporal analyses, no tem
poral smoothing or low-pass filter was applied to preserve the tem
poral characteristics of the signal. Only for the GLM analysis, a 
temporal smoothing of 2.8-s FWHM was applied. After preprocessing,



we followed a series of steps to obtain a precise anatomical location of 
brain activity to facilitate intersubject averaging. Each subject’s slice- 
based functional scan was coregistered with their 3D high-resolution 
structural scan. The 3D structural dataset of each subject was then 
transformed into Talairach space (Talairach and Toumoux 1988): The 
cerebrum was translated and rotated into the AC-PC plane and the 
borders of the cerebrum were identified. Using the anatomical-func- 
tional coregistration matrix and the Talairach reference points, the 
functional time course of each subject was then transformed into Ta
lairach space and the volume time course created.

Temporal Clustering
To determine whether different groups of voxels had a specific time 
course in relation to the presentation of the stimulus, we applied fuzzy 
c-mean clustering (Smolders et al. 2007) to each voxel’s time course in 
a time window of 22 s after the stimulus presentation. Fuzzy clustering 
has the advantage of performing a completely data-driven and un
biased parcellation of the voxels that exhibit a time course correlated 
with the stimulus presentation, that is, voxels showing a similar time 
course after the presentation of the stimulus are clustered together. 
This method decomposes the original fMRI time series into a prede
fined number of spatio-temporal modes, which include a spatial map 
and an associated cluster centroid time course. Group cluster maps 
were obtained using a 1-sample f-test; maps were computed at a stat
istical threshold of P < 0 .0 5  corrected for multiple comparisons using 
false discovery rate correction (Benjamini and Hochberg 1995). Fur
thermore, the intersubject correspondence (ISC) index was calculated 
to show the exact percentage of subjects in which each cluster was 
found.

BOLD  Latency Mapping
We estimated a series of parameters for single trials of the unsmoothed 
time courses (Richter et al. 2000; Formisano et al. 2002; Formisano and 
Goebel 2003) using the BLM plugin implemented in Brain Voyager 
(Esposito, personal communication). These parameters were: onset 
latency, time to peak, FWHM duration, latency and PSC (Lindquist and 
Wager 2007; Lindquist et al. 2009). With the use of the BLM technique, 
BOLD responses were estimated according to a piece-wise linear (tra
pezoidal) model fit of the slow event-related response (Richter et al. 
2000; Formisano et al. 2002; Supplementary Fig. 1).

Confidence intervals were based on the variance of single-trial par
ameter estimates and the assumption of a f-distribution. This analysis 
can be performed either in a ROI-wise or in a voxel-wise fashion. The 
advantage of ROI-wise analysis is that it considers clusters as single en
tities, therefore allowing the statistical comparison of temporal features 
between clusters. In contrast, voxel-wise analysis enables the temporal 
parameters of single voxels within the clusters to be observed.

create a map where commonly observed pain-related areas are coded 
with regard to their specificity for pain (Yarkoni et al. 2011). As a 
second step, we performed a control experiment in which innocuous 
brushing was used.

Nonpainful Stimulation ( Control Experiment)

Subjects
A second cohort of 12 healthy right-handed volunteers (6 females, 
mean age 29 ± 7.41 years) took part in the control experiment. One of 
the volunteers had previously taken part in the main experiment. The 
participants were free of neurological or psychiatric disorders, not 
taking medications known to alter brain activity, and had no history of 
drug or alcohol abuse. All were right-handed according to the Edin
burgh Inventory (Oldfield 1971). We obtained the written informed 
consent of each participant, and the study was approved by the insti
tutional committee on ethical use of human subjects at the University 
of Turin.

Task a n d  Im age Acquisition
In this control experiment, we used exactly the same design as before, 
except for the kind of stimulus. Here, we applied innocuous nonpain
ful tactile stimuli using a SenseLab™ Brush-05.

The stimuli were rated on a scale ranging from 0 (no brushing sen
sation) to 10 (most intense sensation imaginable). The stimulus was of 
the same duration as the pin-prick stimulation. As in the first exper
iment, the stimuli were applied to the dorsum of the hand. Images 
were acquired on a 1.5-T INTERA™ scanner (Philips Medical Systems) 
with a SENSE high-field, high-resolution head coil optimized for 
functional imaging. Functional 7’2“-weighted images and 3D high- 
resolution Ti-weighted structural images were acquired using the same 
parameters used in the main experiment.

Data Analysis
BOLD imaging data were preprocessed using the same preprocessing 
strategies as in the main experiment. After preprocessing, a series of 
event-related averages were created for each positive cluster detected 
with the temporal clustering strategy (see previous Materials and 
Methods section for details).

Results

Perception o f the Stimuli
The average rating o f intensity for painful stimuli was 3.15 
(±2); for innocuous stimuli, it was 3.6 (±2).

Specificity o f  the Clusters
An important question of this study was to ascertain whether, by de
composing the BOLD signal into clusters of voxels having a similar 
temporal profile, it would be possible to identify pain-specific acti
vations. We used 2 approaches to answer this question. First, we com
bined meta-analytic tools and Bayesian inference techniques. We 
employed the Neurosynth Database for this purpose (Yarkoni et al. 
2011). Neurosynth is a highly automated brain mapping database and 
framework that, using text mining and meta-analytic procedures, can 
be used to explore the representational characteristics of several neural 
and cognitive states. This framework can be used to explore the speci
ficity of an observed pattern of activation given a search term. The 
problem of specificity calls for the reverse inference solution (Poldrack 
2006). Indeed, the majority of neuroimaging studies provide a weak 
basis for determining what cognitive states a given brain pattern 
implies. Using Neurosynth, we quantified the forward inference or the 
probability that there would be activation in specific brain regions 
given the presence of a particular term inactivation | term), and the 
reverse inference or the probability that a term would occur in an 
article given the presence of activation in a particular brain region P  
(term | activation). By comparing these 2 analyses, we were able to

Temporal Clustering (Mechanical Pain)
Fuzzy clustering decomposed the whole-brain BOLD signal 
into 8 clusters (Fig. 1). The percentage o f stimulus-locked 
brain voxels detected by this clustering method was 39%, 
while the GLM only showed 23% o f the brain voxels as active, 
meaning that 58% o f the voxels detected by the clustering 
method were characterized by a nontypical BOLD response. 
This result is in line with the findings recently reported by 
Gonzalez-Castillo et al. (2012), who described 68% o f active 
voxels as having a nontypical BOLD response. These voxels 
are only partially detected by traditional fMM analysis employ
ing canonical HliF.

O f the 8 clusters, 2 were discarded because clearly com
posed o f noise (Supplementary Fig. 2). The remaining 6 were 
considered as reflecting physiological signals.

The first cluster was composed o f the primary somatosen
sory cortex, S I, the superior/middle temporal gyrus, the pos
terior insula, the mid-cingulate cortex, and the parietal and
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Figure 1. Temporal clustering results (main experiment). The panels show the results of temporal clustering. Each colored line represents the centroid time course for each of the 
nonartifactual clusters. Voxels were clustered according to the temporal similarity of their time courses with the centroid. Six clusters were identified, 3 of which showing a positive 
response after stimulation and 2 showing a negative response after stimulation. The sixth cluster (sensorimotor) was considered an over-decomposition of the first cluster

precuneal cortices. This cluster showed an early positive 
response to the stimulation closely resembling the 2-gamma 
BOLD responses (Fig. 2 and Supplementary Fig. 3).

The second cluster was composed o f the anterior insula, the 
putamen, and the dorsal anterior cingulate cortex. Its activity 
was characterized by a wider and later positive response when 
compared with that o f the first cluster.

The third cluster showed a fronto-parietal pattern o f activity, 
including the dorso-lateral prefrontal cortex, frontal eye fields, 
and the premotor and temporo-polar cortices. Its temporal 
profile was characterized by a wide and sustained positive 
response.

The fourth cluster included portions o f the default mode 
network (DMN; Raichle and Snyder 2007), and as expected, 
showed an early negative response (Hagmann et al. 2008). The 
fifth cluster principally involved primary, secondary, and 
associative visual areas. It showed a temporally widespread 
negative response (Supplementary Fig. 4).

The sixth cluster included voxels in the primary somatosen
sory, somatomotor, as well as premotor and somatosensory 
association cortices and was labeled “sensorimotor.” However, 
as the temporal profile o f the sensorimotor cluster was charac
terized by a high similarity (Supplementary Fig. 5) with the 
temporal profile o f the cluster which included the posterior 
insula, the sensorimotor cluster was considered an over
decomposition o f this cluster.

Event-Related Averages
The activations in the posterior insular cluster occurred earlier 
than those in the cingulo-insular and fronto-parietal clusters 
(Fig. 2) and, as previously anticipated, this cluster showed the 
canonical HRF. In contrast, the latter 2 clusters showed a more 
prolonged response, compared with the first one. The middle 
right panel shows a comparison between the temporal behav
ior o f the GLM areas and the first cluster o f painful stimulation. 
It can be observed that, although the profile o f these 2 
responses is similar, the GLM response is characterized by a 
more prolonged activation.

Bold Latency Mapping
Since we were principally interested in activations, only the 3 
positive clusters (comprising the posterior insula, cluster 1; the 
cingulate and insular cortices, cluster 2; and the frontal and 
parietal cortices, cluster 3) were included in this analysis. An 
analytic investigation o f the temporal characteristics o f the 3 
clusters confirmed the results o f the event-related averages. 
The three clusters had a significantly different time-to-peak 
pattern, with the first cluster peaking before the cingulo- 
insular and fronto-parietal clusters. The onset latency o f the 
posterior insular and cingulo-insular clusters was instead com
parable, with only the onset latency o f the “fronto-parietal” 
cluster showing a greater delay (Fig. 3, upper panel). The
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Figure 2. Event-related averages for clusterization results (main experiment). The upper panel shows the comparison between the temporal profiles of the 3 positive clusters. Light 
colored areas represent the standard error The lower panel shows the temporal profile of the 3 positive and 2 negative clusters. Bars represent the standard error: note that negative 
components are characterized by a wider error

cingulo-insular and fronto-parietal clusters were found to have 
a significantly higher BOLD response (PSC). Although weak, 
the BOLD responses were considerably reliable. Indeed, the 
weakness o f the signal was mainly due to the massive aver
aging as is clearly shown by the comparison with the single 
subject averaging (Supplementary Fig. 6).

We performed event-related averages and BLM, 2 methods 
leading to similar results, because we were interested in 
double-checking the temporal estimation o f the hemodynamic 
response. Indeed, the techniques employed for parameter esti
mation in time-resolved fMRI suffer from the extreme spatial 
and temporal variability o f the BOLD response. The compari
son with a simple estimation as close as possible to the actual 
data, such as the event-related average, can provide a simple 
and effective means o f double-checking the sophisticated BLM 
estimation.

Voxel-wise BLM (Fig. 3, lower panel) showed that the 
time-to-peak wavefront moved from the posterior insula, 
superior parietal, inferior frontal, and midcingulate cortices to 
the dorso-lateral prefrontal, anterior dorsal insular, sup
plementary motor, and anterior cingulate cortices.

The duration o f the response was found to be greater for 
those areas characterized by a greater time to peak. The onset 
latency was more prolonged for the dorsal premotor, inferior 
parietal, and mesial premotor areas. The amplitude o f the 
BOLD signal (PSC) was lower for the posterior insular

component and higher for the cingulo-insular and fronto
parietal ones (for single-subject data and PSC analyses see also 
Supplementary Figs 7 and 8).

Temporal Similarity Analysis
The hierarchical clustering o f the dissimilarity matrix allowed 
the creation o f a hierarchical dendrogram o f clusters. It can be 
observed that those areas characterized by a negative response 
are more similar to each other than those characterized by a 
positive response. In addition, the GLM activations are similar 
to those o f the posterior insular cluster, and also to those o f the 
cingulo-insular and fronto-parietal clusters (Fig. 4, upper 
panel), thus confirming that the GLM response captures all of 
these components.

The ISC o f the 6 components and o f the 2 artefactual com
ponents are shown in the left panel o f Supplementary Figure 
5. The values represent the percentage o f the presence o f the 
pattern for each subject (e.g. an ISC o f 100 for one component 
means that such a pattern is present in 100% of the subjects). 
The ISC can therefore be regarded as an index o f reliability. As 
can be seen, negative responses (deactivations) were character
ized by lower reliability. The lower right panel shows a com
parison between the posterior insular and the sensorimotor 
cluster response. The high similarity o f the latter part o f the 
response o f these 2 clusters suggests that the 2 components 
may be part o f a same over-decomposed component.



H  Post-ins 

H  CIng-ins  

i l  Fronto-par.

0,18

0,17

0,16

0,15

0,14

0,13

0,12

0,11

Sec Tim e to peal< O nset latency Duration latency P SC  Post-Ins Cing-ins Fronto-par.

Amplitude

l l l l l l l l l l l  Amplitude (PSC)
0.18 _ _ _ 0 1 3
I I I I I I I I T~B  Time to peak (s)

I I I I I I I I I ■  Duration (s)

.........................................................’
6 2
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temporal similarity is indicated by values approximating to 0 (minor distance). The middle panel shows the BOLD response remodeling: The left panel shows the GLM random effect 
(RFX) results obtained with the canonical HRF response, whereas in the middle and right panels the maps resulting from the GLM RFX with remodeled BOLD predictors are 
presented. The lower panel shows the pain specificity analysis: The map shows the commonly obsen/ed pain-related areas coded with regard to their specificity for pain. Areas that 
are less pain specific are colored in blue, those that are more pain specific in red. Note that the greatest specificity was found in the posterior insula. Image created with Neurosynth 
(http://neurosynth.org/).

http://neurosynth.org/


Alternatively, the sensorimotor cluster may represent the deac
tivation o f an effector network that is normally activated in 
case o f threatening events, such as pain, for the purpose of 
avoiding harm. Given the intrinsically hierarchical nature of 
the brain clusters (Doucet et al. 2011), by imposing a different 
decomposition numerosity it may even be possible to find 
these 2 clusters to be distinct. Interestingly, the maximum 
negative PCS o f the sensorimotor (sub)network is reached 
after the involvement o f the other networks with putative 
sensory, saliency detection, and attentional purposes, support
ing the interpretation o f the sensorimotor network as possibly 
devoted to motor responses to the threatening stimulus.

BOLD Response Remodeling
To explore whether standard predictor-based fMM analysis is 
able to disentangle the full spatio-temporal complexity o f the 
brain response to a painful mechanical stimulus, we remodeled 
specifically tailored hemodynamic responses after the tem
poral clustering analysis. The remodeled response was derived 
from the mean response o f each cluster and convolved with 
the stimulus presentation stick response to create specifically 
tailored predictors. The new predictors were employed for a 
new GLM random effect (liFX) analysis.

The results o f the GLM employing the newly created regres
sors are shown in Figure 4, middle panel. Notably, while with 
the use o f the new regressors we could disentangle the first 
(posterior insula) and third (fronto-parietal) clusters, this 
method was not able to isolate the second (cingulo-insular) 
cluster that always appeared collapsed together with the pos
terior insular cluster. This was probably because, in order to be 
correctly disentangled using this method, the activity in these 
areas, needs to be more separated in time.

Pain Specificity—Neurosynth
When examining the specificity o f the brain response to 
painful stimuli with Neurosynth (Fig. 4, lower panel), we 
found that only a minority o f areas o f the pain neuromatrix 
have a high specificity for pain: The highest specificity was ob
served in the dorsal posterior insula. Other regions such as the 
anterior insula, the temporal lobe, the cerebellum, the amygda
la, pregenual, and subgenual cingulate, and prefrontal cortices 
showed a low specificity for painful stimulation.

Control Experiment
The results o f the control experiment showed that tactile stimu
lation activated a series o f brain areas mainly comprising the 
primary and secondary somatosensory cortices. To evaluate 
the quality o f the activations generated by the nonpainful 
control experiment, a GLM analysis was performed and the 
statistical maps o f this analysis compared with a meta-analysis 
o f touch experiments performed with Neurosynth. We found 
the results o f our experiment to be very similar to those ob
tained with the meta-analysis (Supplementary Fig. 8) and to 
reveal a pattern o f primary and secondary somatosensory cor
tices, motor, premotor, anterior cingulate, insular, prefrontal, 
inferior temporal, and parietal activations.

After the GLM analysis, a series o f event-related averages 
were created for each positive cluster detected with the tem
poral clustering strategy. This analysis showed that, in the first 
cluster, the tactile stimulus elicited a temporal response similar 
to that o f cluster 1 o f the painful stimulation (see Fig. 5 and

compare with the upper panel o f Fig. 2). Conversely, cluster 2 
was only minimally activated by the innocuous stimulus, the 
PSC elicited here was much lower and the temporal profile 
broader. The third cluster showed a similar response to that of 
the fronto-parietal cluster o f the painful stimulation but with a 
reduced PSC in the first part o f the response. Interestingly, 
whereas the first cluster showed a variance (expressed as stan
dard error) that was very similar between mechanical painful 
and tactile stimuli, the other 2 clusters expressed a higher var
iance when involved in a nonpainful stimulation.

Discussion

In this study, we found that, after painful stimulus is applied, a 
widespread pattern o f brain areas characterized either by cano
nical HRF or nonconventional BOLD responses show statisti
cally significant stimulus-locked responses. The areas showing 
a nonconventional BOLD response, and thus not easily detect
able using traditional fMRI analysis techniques, were recently 
reported (Gonzalez-Castillo et al. 2012) to account for 68% of 
all the stimulus-locked areas. All the stimulus-locked acti
vations (and deactivations) related to the painful stimulation 
used in this study accounted for 39% o f the total brain volume, 
whereas the areas detected through GLM analysis accounted 
for just 23%. These stimulus-locked brain areas can be grouped 
into 5 clusters according to their time course o f activation. 
Each o f these clusters is comprised o f different networks and 
has its specific onset latency, time to peak, duration latency 
and PSC. Our findings suggest that the areas that respond with 
stimulus-locked activation to painful stimuli are likely to reflect 
the activity o f different networks, each having a different tem
poral behavior and, possibly, subserving different cognitive 
functions. Only a portion o f those areas are reliably detected 
by canonical GLM fMRI analysis.

While numerous studies have investigated the spatial profile 
o f activation in relation to painful stimuli (e.g. which areas gen
erate a stimulus-locked response or activate following painful 
stimuli), fewer studies have been conducted on the temporal 
profile o f the BOLD response. None, and this represents the 
main novelty o f the present study, have investigated the 
stimulus-locked responses under the hypothesis o f a global in
volvement o f the brain in stimulus-related processing 
(Gonzalez-Castillo et al. 2012). Here, we used mechanical 
painful stimuli and analyzed the temporal profile o f the BOLD 
response in a true data-driven fashion. Pin-prick stimuli 
applied with a hand-held pin-prick probe coactivate A|3-, AS-, 
and C-fibers and therefore are less specific for nociception 
than laser stimuli, which selectively activate AS- and C-fibers 
(Bromm and Treede 1984; Treede 1995). However, notably, 
the surface o f the mechanical probe is hardly relevant to 
single-unit responses o f low threshold mechanoreceptors such 
as A|3-fibers (Garnsworthy et al. 1988). In addition, different 
aspects o f the pricking pain are coded differentially by AS and 
polymodal C-nociceptors (Garnsworthy et al. 1988; Tamura 
et al. 2004): Probe size and force are better reflected in the 
activity o f the AS (Greenspan and McGillis 1994; Garell et al. 
1996). Taken together, these observations allowed us to con
sider the stimulation as mainly reflecting input transmitted in AS 
primary sensory afférents. Indeed, previous studies have com
pared cortical activity following laser and pin-prick stimulations 
and reported highly similar spatial profiles (Baumgartner et al.
2010). Whereas heat pain has been studied much more in fMRI



Figure 5. Event-related averages for clusterization results (control experiment). The upper panel shows the comparison between the temporal profiles of the 3 positive clusters of 
the touch experiment. Light colored areas represent the standard error. The middle panels show the comparison between the temporal profiles of the 3 positive clusters of the touch 
experiment and the correspondent cluster of the pain experiment. The lower panels show the spatial maps of the 3 positive clusters of the touch experiment.

experiments, cortical responses to sharp (phasic) and tonic 
pressure, 2 kinds o f mechanical pain, have also been character
ized (liingler et al. 2003). Phasic mechanical painful stimuli have 
been shown to activate the primary and secondary somatosen
sory cortices, the cingulate cortex, and the insular cortex (liingler 
et al. 2003). Pain from tonic pressure (mediated by C-fiber me
chanically insensitive afferents; Andrew and Greenspan 1999; 
Schmidt et al. 2000) elicited instead weaker responses that, 
however, also lasted during resting periods. Mechanical pain

stimulation has been less widely used in fMM studies, despite the 
fact that it is one of the most commonly used in animal studies.

The majority o f the studies investigating the temporal profile 
o f BOLD responses have focused on the BOLD time course in 
a limited number o f regions (S I and S2, Chen et al. 2002), and 
using a prespecified canonical HRF. As it has been shown 
(Aguirre et al. 1998; Duann et al. 2002; Neumann et al. 2003; 
Saad et al. 2003; Kannurpatti et al. 2010) that the hemody
namic properties o f the BOLD signal may vary across brain



regions, it may be argued that one possible confound o f tra
ditional fMRI analyses is that these rely on the assumption that 
cortical and subcortical responses to painful stimuli are con
stant across brain regions. Indeed, traditional GLM statistics 
assume a spatially invariant parametric model o f the HRF 
(Friston et al. 1994; Smolders et al. 2007), and this may result 
in different sensitivity o f different regions o f the brain. Our 
method tries to overcome this issue by clustering all the poss
ible shapes o f BOLD responses into different groups o f areas 
sharing a similar temporal profile. This method has been 
shown to permit an improved detection o f stimulus-locked 
brain areas (Gonzalez-Castillo et al. 2012) and to better 
account for the spatial and temporal variabilities o f the BOLD 
response (Smolders et al. 2007; Moulton et al. 2012). Many pre
vious studies (Chen et al. 2002; Moulton et al. 2005) used long 
heat stimuli (>9 s) and analyzed the datasets using a set o f pre
dictors convolved with a canonical HRF (however see Upad
hyay et al. 2010; Moulton et al. 2012). By applying stimuli of 
short duration and with the use o f unsupervised clustering 
techniques to investigate such spatio-temporal aspects o f the 
BOLD brain responses to mechanical painful stimuli, we were 
able to identify 5 statistically significant clusters o f active 
voxels sharing a common temporal profile; all these clusters 
represent a consistent part o f the brain volume and partially 
overlap with known resting-state functional connectivity net
works. Three o f these components showed an increase in the 
BOLD signal after the stimulus was applied: cluster 1, which 
comprised the posterior insula and somatosensory cortices, 
cluster 2, made o f the cingulate cortex and the insula, and 
cluster 3 formed by the frontal and parietal regions. These clus
ters were reliably detected in approximately 80% o f partici
pants. We suggest these 3 clusters may subserve different 
cognitive functions with cluster 1 reflecting the first readout of 
the characteristics o f the mechanical stimulus and clusters 2 
and 3 representing more o f an attentional reorienting toward 
the potentially harmful stimulus (Legrain et al. 2011). The 
response o f the first component resembled closely the early 
phase response recently observed by Moulton et al. (2012). 
However, their early phase response also included a part of 
our cingulo-insular cluster, probably as a consequence of 
failure by the GLM to discriminate between the temporal pro
files o f these 2 clusters. The differences between our results 
and those reported by Moulton and colleagues may also be as
cribed to the kind o f stimulus that was used. Indeed, the tem
poral profile o f the BOLD response using mechanical painful 
stimuli has been studied far less (Lui et al. 2008). The 
cingulo-insular cluster was composed o f areas that have been 
proposed as forming a “saliency detection network” (Seeley 
et al. 2007) and also o f areas o f the multimodal network for the 
detection o f salience proposed by Downar et al. (2000, 2001, 
2002). The fronto-parietal cluster was formed o f areas de
scribed as part o f a fronto-parietal control network (Vincent 
et al. 2008). Although anatomical definitions o f such a network 
diverge (Corbetta and Shulman 2002; Shulman et al. 2002; 
Seeley et al. 2007; Corbetta et al. 2008; Vincent et al. 2008), the 
majority of authors converge on considering it to be purported 
to the reorienting o f attention and cognitive resources toward 
salient stimuli for the organization o f coherent behavior. 
Vincent et al. (2008) proposed that this network is devoted to 
the integration o f information emerging from the external 
world and regarding internal states o f the individual. While the 
time to peak o f the first 2 components differed by about 1 s.

there was no significant difference in their onset latency. In 
contrast, the third fronto-parietal cluster showed a greater mag
nitude o f the BOLD signal and a later and more prolonged acti
vation. This finding suggests that the clusters may subserve 
different and sequential cognitive functions, more related to 
the elaboration o f the characteristics o f the stimulus or more 
related to an attentional cognitive response to it. An alternative 
explanation to the interpretation o f the second and third clus
ters as reflecting attention reorienting regards the possibility 
that their activations reflect the recruitment o f C-fibers and 
may capture the activity o f another sensory component, such 
as the first one. Indeed, studies comparing brain responses 
with first and second pain have consistently shown that, in line 
with the slower conduction velocity o f C-fibers, cortical activity 
related to the activation o f such nociceptors peaks approxi
mately 2 s later than that related to the activation o f AS-fibers 
(Ploner et al. 2002; Forss et al. 2005; Qiu et al. 2006; Veldhuij- 
zen et al. 2009). However, the possibility that first and second 
pain are represented in different cortical networks is debated. 
Forss et al. (2005), using MEG, showed that first and second 
pain share a common cortical network. These considerations 
thus appear not to support the functional interpretation o f the 
2 clusters as reflecting “first” and “second” pain.

To understand how much this temporal profile reflected 
pain processing and how much nonspecific somatosensory 
processing, we performed a control experiment in which in
nocuous brushing was used. The results o f the control exper
iment showed that, after tactile stimulation, it is possible to 
identify 3 clusters. The first, including the insular and somato
sensory cortices, appeared as a functional equivalent o f the 
first cluster o f pain stimulation. This finding is in line with the 
results o f previous studies (Upadhyay et al. 2010) and suggests 
that these areas perform a first, possibly sensory, evaluation of 
the somatosensory stimulus. Interestingly, however, clusters 2 
and 3 obtained in the control experiment showed a reduced 
response, thus confirming the interpretation o f the functional 
meaning o f clusters 2 and 3 in pain as reflecting attention or
ienteering toward salient and potentially dangerous stimuli. 
What is more, Lui et al. (2008), by comparing cortical 
responses elicited by painful and nonpainful mechanical 
stimuli, observed a large spatial overlapping o f the activated 
networks. Nevertheless, the authors reported higher activity in 
the mid-anterior insular cortex, mid-anterior cingulate cortex, 
and in the dorso-lateral prefrontal cortex following noxious 
stimuli. Our results support this view by showing that net
works activating with a longer temporal delay and including 
insular and cingular regions do indeed show a greater PSC fol
lowing painful rather than innocuous stimuli. Crucially, our 
findings support the existence o f an intensity coding for soma
tosensory stimuli (Garcia-Larrea et al. 2010; Pomares et al. 
2012), but they also suggest that it is unspecific (Mouraux et al.
2011) and thus make substantial contributions to the new con
ception o f pain activations as related to salience detection or 
nonmerely pain processing (lannetti and Mouraux 2010; 
Legrain et al. 2011, 2012; Mouraux et al. 2011; Cauda et al.
2012).

In response to painful stimuli, we identified the activity o f 2 
components composed o f clustered voxels showing a decrease 
in the BOLD signal in response to the stimulus and then con
sidered as “negative” or anticorrelated. Both components, 
comprising visual areas, and areas o f the DMN network, may 
reflect the reallocation o f cognitive resources to external



stimuli (Sridharan et al. 2008). It has been suggested that when 
salient sensory stimuli have to be elaborated, the balancing of 
resources between the fronto-parietal and DM networks is 
altered in favor o f the former (Sridharan et al. 2008; Vincent 
et al. 2008). Previous studies investigating the temporal profile 
o f the BOLD response reported the presence o f a double peak 
o f activation specifically following noxious heat stimulation 
that was not present after innocuous heat or tactile stimulation 
(Chen et al. 2002; Moulton et al. 2005). In particular, the 
second, late response has been considered as specific for pain 
(see also Becerra et al. 2001; Moulton et al. 2005, 2012; Upad- 
hyay et al. 2010). These authors suggested that late activations 
in S I, the anterior cingulate cortex, and the insula were specifi
cally related to nociception as they were not detected after the 
application o f nonnocieptive stimuli (Becerra et al. 2001; 
Moulton et al. 2005, 2012). In further support o f the interpret
ation o f the late response as specific for pain, in a recent study, 
Moulton et al. (2012) showed that ratings o f perceived intensity 
coding, but not pain ratings, correlate with the activity o f con
tralateral primary and secondary cortices, thus suggesting that 
heat intensity is likely to be coded in SI and S2. Importantly, 
only the late phase o f the hemodynamic response, which the 
authors identified in S2, correlated with the ratings.

Our results converge on the finding that the activation wave- 
front involved a later activity in the cingulate regions and 
anterior insula (Pomares et al. 2012). However, an alternative 
explanation for such activations may be related to attentional/ 
control components (cingulo-insular and fronto-parietal com
ponents) rather than specifically to nociception. Another poss
ible and simpler account for this difference relates to the 
stimulus used. Indeed, studies in which laser stimuli were 
applied have shown monophasic responses (Bornhovd et al. 
2002; Buchel et al. 2002).

As already revealed by the ROI-wise BLM analysis, the only 
component having a later onset is the fronto-parietal one. The 
fronto-parietal component may reflect the redirection o f atten
tion toward salient stimuli and reflect the cortical underpinnings 
for the integration o f external and internal information. This 
view is supported by electroencephalography (EEG) studies 
investigating responses to nociceptive stimuli. These studies 
have shown that the first responses observed after the presen
tation of a nociceptive stimulus (such as the N l, Bromm and 
Treede 1991) reflect the elaboration of stimulus-related charac
teristics (Mouraux and lannetti 2009; Gallace et al. 2011). In con
trast, later responses to the nociceptive stimulus (such as the N2 
and especially the P2) are considered to represent multimodal 
responses related to attentional reorientering (Legrain et al. 
2002, 2003; Mouraux and lannetti 2009; Valentini et al. 2011; 
Torta et al. 2012), or awareness of the stimulus (Lee et al. 2009; 
Gallace et al. 2011; Torta et al. 2012).

The results o f the temporal analysis emphasized the differ
ences between classical GLM and model-free temporal cluster
ing o f the BOLD signal. GLM deactivations appeared to be 
closer, in their temporal profile, to the DMN component than 
to the visual component. In addition, these analyses empha
sized the similarity between GLM activations and the first pos
terior insular cluster, rather than between GLM activation and 
the cingulo-insular and fronto-parietal clusters. This is impor
tant as it shows that, by employing ad hoc-modeled BOLD 
responses, the traditional predictor-related fMRI analysis 
method can disentangle the posterior insular and the fronto
parietal clusters, although it was not able to isolate the

cingulo-insular cluster that always appeared collapsed together 
with the posterior insular cluster. Indeed, temporal analysis 
showed the cingulo-insular component to be similar to the 
posterior insular one. This explains why the GLM fails in 
teasing apart these 2 components. Importantly, our data- 
driven method was able to reveal that 39% o f brain voxels 
showed stimulus-locked, statistically significant activity, while 
GLM analysis only showed 23% o f the voxels as active.

With regard to the validity o f our results, since the vascular 
structure (Bandettini and Wong 1997) and vascular coupling 
(Huettel et al. 2004; Devonshire et al. 2012) are not constant 
over different brain regions, the latency and shape differences 
we detected may also be explained by a series o f nonneuronal 
and noise-related biophysical causes. The reasons for such 
variability have yet to be fully understood. In this sense, the 
present results should be interpreted with particular caution. 
Nevertheless, our findings would be o f great interest even if 
they reflected a mere hemodynamic variability o f vascular or 
anatomical origins. First, this possibility would beg an impor
tant question about why these well-organized patterns (that 
very interestingly resemble some o f the resting-state networks) 
can be detected using variable envelopes o f vascular or ana
tomical origin. If the origin o f these large-scale networks (that 
are detectable during a task (Smith et al. 2009; Laird et al.
2012) as well as during the resting state (Cauda et al. 2011)) is 
(at least in part) vascular, or anatomical, then our interpret
ation o f the results needs a substantial revision. However, this 
possibility is unlikely, as a recent paper (Chang et al. 2008) 
showed that removing the hemodynamic delay from the 
resting-state networks leads to a slightly different but globally 
preserved pattern o f connectivity. Moreover, if the spatial 
variability o f the hemodynamic delay biased our data (leading 
to false positives or hemodynamic-driven clusters), the same 
problem should also have biased GLM-based fMRI analysis (in 
this case leading principally to false negatives, but also false 
positives, and nonexistent anticorrelations).

However, while we cannot prove that all the detected acti
vations are driven by true neuronal activity (Logothetis 2008), 
these and the following series o f considerations led us to 
believe that the clusters could not be explained solely on the 
basis o f motion artifacts or other physiological confounds. 
Indeed, (1) Papers inspecting the brain distribution o f the he
modynamic delay have described a spatial pattern that is very 
different to the networks detected in this study (Saad et al. 
2001; Chen et al. 2002); (2) the clusters we observed are 
characterized by spatial patterns that differ from the vascular 
harboring structure; (3) since our method was able to reliably 
separate the regions that showed the canonical HRF responses 
and presented a pattern o f activations o f the BOLD response, it 
can be considered valid; (4) response remodeling confirmed 
the validity o f the temporal clusterization results; (5) it is plaus
ible that different vascular structures may lead to different 
onsets, amplitude, and time-to-peak o f the BOLD responses, 
but it is much more difficult to explain why a different vascula
ture should lead to responses showing this spectrum o f posi
tive, negative, peaked, and sustained envelopes; (6) as 
discussed above, some EEG results support our data, (7) these 
data are also in line with the recent discovery that, during an 
active task, the majority o f brain areas show a stimulus-locked 
brain activity (Gonzalez-Castillo et al. 2012); (8) finally and cru
cially, the results o f the control experiment showed that the 
tactile stimulus specifically and differentially modified the



response o f the cingulo-insular and fronto-parietal clusters 
when compared with the painful stimulus. This is fully in 
line with the (much) lower salience o f the tactile stimulation 
and confirms the behavioral interpretation o f the networks 
detected in this paper. As far as the TR is concerned, it 
should be considered that although higher fields can lead to 
a more temporally resolved pulse sequence (Menon 2012), 
the differences in response and in latency detected here are 
in the order o f seconds and can thus also be detected with a 2-s 
TR.

An interesting (although speculative) alternative explanation 
posits that the baseline cerebral blood flow and BOLD 
response can have a strong effect on the BOLD response eli
cited by a subsequent stimulus (Davis et al. 1998; Hoge et al. 
1999; Kastrup et al. 1999; Kim et al. 1999; Li et al. 1999; Cor- 
field et al. 2001). As suggested by several other studies (Sapir 
et al. 2005; Ploner et al. 2006, 2010; Boly et al. 2007; Semino- 
wicz and Davis 2007; Hesselmann et al. 2010; Piché et al. 2010; 
Sadaghiani et al. 2010; Lee et al. 2011), it can be hypothesized 
that in our paradigm an interaction between large-scale brain 
networks (such as, for example, the DMN and fronto-parietal 
networks) and BOLD responses elicited by the stimuli may 
have led, in some specific areas, to a stimulus-locked response 
incorporating some o f the temporal characteristics o f the 
large-scale networks. This has been confirmed by previous 
electrophysiology studies which found that ongoing fluctuat
ing brain activity exerts a significant modulatory effect on sub
sequent stimulus-evoked brain activity (Arieli et al. 1996; 
Makeig et al. 2002). That is, we suggest the possibility o f a 
phenomenon o f temporal synchronization between continu
ously ongoing brain fluctuations (related to large-scale brain 
networks) and BOLD responses to external stimuli such a syn
chronization would give origin to an envelope constituted by 
the convolution between ongoing fluctuation and BOLD 
responses. In this view, in areas belonging to specific 
large-scale networks, the stimulus-related BOLD signal is (at 
least partially) convolved with the network-specific resting 
time course to generate a complex signal that incorporates 
some characteristics o f both. Previous studies on sensory per
ception (Ebner and Armstrong-James 1990) demonstrated that, 
at the cortical level, the perception o f a stimulus depends on 
mutual enforcement o f exogenous stimuli and endogenous 
inputs. This is further confirmed by the evidence that, modulat
ing the influence o f endogenous activity over the stimulus- 
related activity using different anesthetics (halothane/ 
a-chloralose) on anesthetized rats, the brain activations differ 
substantially (John and Prichep 2005). Temporal clustering 
techniques such as the one utilized here may thus capture the 
spatio-temporal pattern o f these areas, where a partial convolu
tion o f large-scale network-related time courses and stimulus- 
locked envelopes generate nonconventional BOLD responses 
(see Supplementary Fig. 9 for a graphical representation o f the 
phenomenon).

In conclusion, we have shown that extensive activity o f 
multiple networks is engaged at different time latencies after 
a painful m echanical stimulus is presented. These findings 
require further confirmation, but aim to motivate research 
on a controversial topic, such as the temporal profile o f 
BOLD responses, the variability o f these response profiles, 
and the interaction betw een the stimulus-related BOLD 
response and the ongoing fluctuation o f the large-scale brain 
networks.

Supplementary Material
Supplementary material can be found at: http://www.cercor. 
oxfordjournals. org/.
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