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Abstract

We investigate the statistics of orientation of small, neutrally buoyant, spherical tracers whose

center of mass is displaced from the geometrical center. If appropriate-sized particles are considered,

a linear relation can be derived between the horizontal components of the orientation vector and

the same components of acceleration. Direct numerical simulations are carried out, showing that

such relation can be used to reconstruct the statistics of acceleration fluctuations up to the order

of the gravitational acceleration. Based on such results, we suggest a novel method for the local

experimental measurement of accelerations in turbulent flows.
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I. INTRODUCTION

The Lagrangian investigation of turbulence has dramatically improved in the last few

years in experimental techniques, theoretical models and numerical simulations [1]. These

progresses benefited from the increased range of Reynolds numbers accessible for investiga-

tion (in particular, for simulations) and the improved accuracy of measurement techniques.

On the theoretical side, we have now phenomenological models able to quantitatively explain

the Lagrangian properties of turbulence such as, e.g. the statistics of velocity increments

[2] and accelerations [3]. Grounded on the successes of Lagrangian investigations, recent

experimental and numerical studies started to investigate the motion of complex objects

in turbulent flows [4–9]. The motivations are both fundamental and applicative. In this

short note we suggest a possible technique to measure turbulent accelerations without the

need of particle tracking, by means of the local measurement of the orientation of finite-size

particles. The idea relies on spherical particles whose average density is that of the carrier

fluid (so that they are neutrally buoyant), but whose center of mass is displaced with respect

to the geometrical center (implying that the orientation is determined by the gravitational

torque and that due to the fluid). By means of direct numerical simulations (DNS) we show

that information on particle orientation can be used to estimate fluid accelerations up to

the order of gravitational acceleration.

The paper is organized as follows. In Sect. II we discuss the theoretical basis of the

technique in its simplest implementation. Sect. III presents some preliminary validation of

the method based on numerical simulations. Finally, Sect. IV is devoted to conclusions and

perspectives.

II. THE MOTION OF GEOTROPIC TRACERS

We consider the trajectory, x(t), of a neutrally-buoyant sphere small enough such that

its dynamics can be approximated by that of a passive tracer,

dx

dt
= u(x, t) , (1)

transported by a flow u(x, t). As sketched in Fig.1, we assume that the particle center of

mass C is displaced by a distance h with respect to the geometrical center O (which is the

center of buoyancy). The displacement determines the particle orientation, defined by the
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FIG. 1: An example of geotropic particle with black and white pattern.

unit vector p directed opposite to the center of mass. The direction p is determined by the

balance between the different torques acting on the particle. Because of particle asymmetry,

an external force f , such as gravity mg, exerts a torque redTf = −hp × f . In addition,

the particle immersed in a fluid experiences a viscous torque Tv = 8πνρr3(ω/2−Ω), where

ω = ∇ × u is the fluid vorticity, ν and ρ are the fluid kinematic viscosity and density,

respectively, and Ω is the angular velocity of the sphere. If the particle Reynolds number

is very small, we can assume creeping flow conditions around the sphere, which impose

equilibrium between the external forces and the viscous ones, in this particular case zero total

torque Tf +Tv = 0. From the solid body rotation formula ṗ = p×Ω and p× (Tf +Tv) = 0

we end with the following equation for the orientation [10]

dp

dt
= − 1

2v0
[A− (A · p)p] + 1

2
ω × p , (2)

where A denotes the total acceleration (due to the flow and gravity) on the sphere and the

constant v0 = 3ν/h, having the dimension of a velocity, weighs the contribution of external

forces to particle orientation. We remark that in the case of axisymmetric non-spherical

particles an additional term is present in (2) [8–10].

Equations (1) and (2) are valid in the limit of small, neutrally buoyant particles. If

inertia is taken into account, particle motion is described by integro-differential equations

containing added mass and history effects (see, e.g., Ref. [11]). No such effects will be

considered here, consistently with our approximations. In a fluid at rest, the only external

force entering Eq. (2) is gravity, so that A = g = (0, 0,−g). The result is that particles

orient upwards in a time O(v0/g). Such phenomenon is well known in bio-fluid-dynamics,

and is at the basis of the ability of some bottom-heavy phytoplankters to swim towards the
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sea surface (a phenomenon dubbed negative gravitaxis [10]), maximizing the exposition to

light and thus the photosynthetic activity.

In a turbulent flow, advected particles are subject to intense accelerations, so that, locally,

gravity must be corrected due to inertial forces. The total acceleration A acting on the

particle is thus given by A = g − a, where a = du/dt is the fluid acceleration at the

particle position. Again, the assumption that the acceleration of the particle is equal to

that of the fluid implies particles smaller than few η. Numerical [12, 13] and experimental

[14, 15] investigations showed that particles larger than η sense accelerations smaller than

tracers. If one restricts to diameters up to 4η the error on the rms value should be less than

20%. There is indication that such larger particles can accurately be described by including

Faxen’s corrections in the equation of motion [12, 13].

In the following, for the sake of simplicity, we assume that fluid acceleration is smaller

than gravity, i.e. g ≫ arms. This is true for flows at moderate Reynolds numbers only [16],

but this assumption greatly simplifies the analysis of (2). Formally, we can write A = g−ǫa

in Eq. (2), with ǫ a small non-dimensional number. Further we consider the limit of fast

reorientation, which amounts to requiring that the reorientation time v0/g is smaller than

the Kolmogorov time τη. If one estimates arms ∼ ǫ3/4/ν1/4 and assumes h ∼ η in the

definition of v0, fast orientation consistently implies g ≫ arms.

When the vortical term ω × p is small, i.e. when v0ωrms ≪ arms, Eq. (2) reduces to

A = (A · p)p, which explicitly reads

ǫax = (ǫa · p+ gpz)px

ǫay = (ǫa · p+ gpz)py (3)

ǫaz + g = (ǫa · p+ gpz)pz .

From (3) one can see that the orientation vector must have the form p = (ǫqx, ǫqy, 1), indeed

as p2 = 1 the correction to pz will beO(ǫ2) so that we can neglect it at this level. Plugging the

expression for p in Eq. (3), at O(ǫ) we obtain q = (ax/g, ay/g, 0). In conclusion, measuring

the orientation of the particle with respect to the vertical we can measure two components

of the fluid acceleration

p =

(

ax
g
,
ay
g
, 1

)

(4)
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This result is valid under the assumption that arms ≪ g and, therefore, in general for not

too high Re. This condition together with the smallness of the vorticity term implies fast

orientation (v0/g ≪ τη). As a consequence, if v0 is too large, the first effect we expect is

that vorticity becomes relevant, with an increase of the tilting angle, so that using (4) could

lead to an over-estimate of accelerations. In more general conditions, it is in principle still

possible to use (2) to gather information on the acceleration statistics but this requires less

direct procedures, which we will not consider in this preliminary study.

III. NUMERICAL SIMULATIONS OF GEOTROPIC TRACERS IN TURBU-

LENCE

In this section we illustrate the behavior of geotropic particles in realistic turbulent flows

and explore the range of validity of the result (4) by means of DNS of the dynamics of

geotropic tracers together with the Navier-Stokes equations for an incompressible flow. Tra-

jectories (up to 2×105) are stored together with a and ω in statistically stationary conditions.

Equation (2) is then integrated starting from random orientations and for different values of

v0. After an initial transient of the order of v0/g, during which particles forget their initial

orientation, we can compare the acceleration a with the prediction of Eq. (4).

We have performed simulations of homogeneous-isotropic turbulence by means of a paral-

lel pseudo-spectral code in a cubic box with periodic boundary conditions at Reλ ≃ 200 with

resolution 5123. Statistical stationarity was maintained via a Gaussian, delta-correlated in

time, random forcing at small wave-numbers. Eq. (1) is integrated evaluating the velocity

at particle position by means of trilinear interpolation. Moreover, we have also exploited

a database [17] of previously simulated Lagrangian trajectories at resolution 20483 and

Reλ ≃ 400, for which acceleration and vorticity were available. Equation (2) was integrated

using a second-order Adams-Bashforth scheme. In order to get physical relevance from the

DNS we rescale space and time with dimensional values. This is easily done by matching the

Kolmogorov scale and time with experimental values at similar Reλ, as shown in Table I.

We remark that this rescaling is not unique as Reλ fixes a ratio of scales (and times) and

not an absolute scale. This point is crucial as the parameter v0 is limited by the size of the

particle and g is obviously fixed. In the following we will use laboratory experiments with an

integral scale of the order of few cm for rescaling our simulations to physical values [7, 14].
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Reλ η τη urms ǫ L arms T

(m) (s) (ms−1) (m2s−3) (m) (ms−2) (s)

200 191× 10−6 37× 10−3 0.037 7.1× 10−4 0.07 0.24 8.22

400 98× 10−6 9.5× 10−3 0.097 9.1× 10−3 0.10 1.5 2.58

TABLE I: Parameters of the simulations made dimensional on the basis of laboratory experiments

at similar Reynolds numbers [7, 14]. η = (ν3/ǫ)1/4 is the Kolmogorov scale, τη = (ν/ǫ)1/2 the

Kolmogorov time, urms is the root mean square of the velocity, ǫ is the energy dissipation per unit

mass, L = u′3/ǫ is the integral length scale, arms is the root mean square acceleration. T is the

integration time. For both simulations g = 9.8ms−2.
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FIG. 2: x component (top) and y component (bottom) of the acceleration of one particle computed

from numerical simulations at Reλ = 200 (black line) together with the acceleration estimated from

the x and y component of the orientation vector, i.e. ax = gpx ay = gpy see (4), of a geotropic

particle with v0 = 6mm s−1 corresponding to a displacement h = 0.5mm.

Fig.2 shows an example of time series of the two components of the acceleration ax and

ay obtained following a Lagrangian tracer in the flow at Reλ = 200. The initial condition

of the orientation is along the z axis, p(0) = (0, 0, 1). The dashed red line represents
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the acceleration obtained according to (4) from the x component of the orientation vector,

ax = gpx of a particle with v0 ≃ 0.006ms−1. The corresponding relaxation time under

gravity is τ = v0/g ≃ 6× 10−4s. In this case arms ≪ g and, therefore, the estimation (4) is

fully justified and indeed the acceleration is reproduced quite accurately.
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FIG. 3: The same of Fig.2 for a geotropic trajectory with h = 0.2mm and v0 = 15mm s−1 in a

turbulent flow at Reλ = 400.

In Fig.3 we show an example for a trajectory in a turbulent flow at Reλ = 400. Although

the rms of acceleration arms ≃ ǫ3/4ν−1/4 is smaller than g, particles experience fluctuations

comparable to, or even larger than g, where the assumptions leading to (4) are not applicable.

These large fluctuations of Lagrangian acceleration are typical in turbulence and physically

correspond to event of trapping of tracers in small scale vortices [3, 16, 18]. As shown in

Fig.3, during these events the orientation vector p is unable to fully follow the acceleration

fluctuation, which results to be slightly underestimated.

On a more quantitative level, Fig.4 shows the probability density function (PDF) of

acceleration compared with the estimation obtained via (4). For each value of Reλ considered

we simulate the results of three hypothetical experiments, with particles of different sizes.

As discussed above, geotropic orientation is expected to be a good proxy for acceleration
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FIG. 4: PDFs of acceleration in one horizontal direction for Reλ = 200 (a) and Reλ = 400 (b).

Estimates obtained according to (2) (X = gpx, symbols) are compared with fluid acceleration

(X = ax, line). Three values of particle bias were used, which rescaled on experimental values

correspond to h = 0.1mm (circles), 0.2mm (triangles) and 0.5mm (squares). By comparison, it is

evident that the intermediate value gives a good estimate at higher Reλ but is not satisfying at

the lower one(see text). In (b) the value of g (vertical lines) marks the upper cutoff for measurable

accelerations. In the inset of (a): relative error on the estimate of σ =
√

〈a2x〉 as a function of h,

for Reλ = 200, ∆σ = g
√

〈p2x〉 − σ.

only in the limit of small v0, i.e. for fast orientation. As apparent from both panels in Fig.4,

when a large enough displacement h is considered, the statistics of acceleration is reproduced

remarkably well by particle orientation. However, this is not the case if less biased particles

are considered. This clearly implies a lower limit in the size of particles used, a factor that

must be taken into account in the design of possible experiments. As mentioned above,

vorticity can be neglected only if v0ωrms/arms ∼ v0/δuη < 1. By applying the definition

of the Kolmogorov scale δuηη/ν = 1 and that of v0, the constraint reduces (a part from

order-one coefficients) to η <∼ h. This inequality can pose a problem both for the validity

of (1) and the actual statistics seen by the particle. Both points will be discussed in the

final section. As for now we will just consider this condition in the framework of our model,

assuming that the corrections are small as long as the particle size is of the same order as η.

If (as in our case) one considers a set of experiments all using water and with comparable

integral scales, an increase in Re corresponds to a smaller viscous scale, thus decreasing

the minimum particle size required to reconstruct acceleration. As an example of this we
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considered the case of particles with h = 0.2mm. As evident from Fig.4 using Eq. (4) on

statistics obtained with such particles would lead to an overestimate of larger accelerations

at Reλ = 200 (triangles in Fig.4a) while they would be acceptable candidates at Reλ = 400

(triangles in Fig.4b). However, the largest acceleration that can be measured by means of (2)

is g. For experiments at higher Re where very large accelerations are present, this introduces

a cut-off in the estimated accelerations. As evident from the results at Reλ = 400 the core of

the PDF is approximately correct, even if values above 0.5÷ 0.7g are underrepresented. We

stress that the simulations exhibited accelerations up to 80 arms (not shown for graphical

reasons), while g ≈ 6.3arms if rescaled over the experimental parameters. Analysis of the

variance of acceleration performed for Reλ = 200 (inset of Fig.4a) reveals that the second

moment of the distribution is correctly recovered asymptotically in h/η. The same cannot

be verified at Reλ = 400, since the cut-off at g prevents convergence of the second moment

of estimated accelerations.

In order to further investigate the errors on the estimate of the acceleration, we con-

sider the joint distribution P (ai, gpi) (with i = x, y) of each acceleration component and

its estimate. As show in Fig.5 such distributions confirm a tendency of smaller particles to

overestimate accelerations. Only for Reλ = 400 the largest particles underestimate acceler-

ations, as can be seen by the low tails of the corresponding PDF in Fig.4 and by a slight

asymmetry of P (ax, gpx) towards quadrants in which |gpx| < |ax|. The strongly intermit-

tent nature of both acceleration and vorticity suggests to investigate in more detail how

accurately accelerations of different magnitude can be estimated via (4). The conditional

average 〈|1− gpx/ax|; ax〉 is shown in Fig.6 for both values of Reλ. Let us first consider the

curves at Reλ = 200. It is evident that larger particles (i.e. with faster reorientation time)

provide better estimates: the largest particles, with h = 0.5mm give a minimum relative

error of around 0.2. Through most of the observed range, the relative error is smaller for

larger accelerations, because the effect of vorticity decreases accordingly. Indeed, the same

figure also compares the relative error with v0(ω × p), showing that, for all but the largest

accelerations, the error in the estimate comes from the vorticity term in (2), consistently

with the assumption of fast orientation. For accelerations larger than ∼ 0.1g the effect of

finite gravity causes deviations from this behaviour and eventually an increase of the relative

error, as expected. This effect is less evident for smaller particles, most likely because they

tend to overestimate the acceleration while the finite gravity effect leads to an underestimate

9



-10

-5

 0

 5

 10

-10 -5  0  5  10
gp

x/
a r

m
s

a

-6
-4
-2
 0
 2
 4
 6

-10 -5  0  5  10

c

-10

-5

 0

 5

 10

-10 -5  0  5  10

gp
x/

a r
m

s

ax/arms

b

-6
-4
-2
 0
 2
 4
 6

-10 -5  0  5  10
ax/arms

d

FIG. 5: Joint PDF of acceleration and estimated acceleration, for Reλ = 200 (a,b) and Reλ = 400

(c,d). Each panel refers to a different value of the displacement, 0.2mm (a,c) and 0.5mm (b,d).

Contour levels are set a factor 10 apart starting from 10−1 (at the centre) down. The straight

line marks gpx = ax for reference. While the tendency is generally that of overestimating large

accelerations (appearing as a clockwise tilt of the level sets), stronger ”clockwise” lobes appears

for the larger displacement at Reλ (d), compatible with the lower tails in the corresponding PDF

of Fig.4. Note that the strong deformation of the PDF in (c) and (d) is due to the cut-off gpx.

so that there is a compensation between the two opposite effects. The right panel shows

that the effect of finite gravity is much larger for Reλ = 400, as expected. However, one

should note that the vorticity term would give with the same particles a smaller error in this

second case than for Reλ = 200. Indeed, by estimating the error due to vorticity as v0/uη

one would get a value about 1.9 smaller for the higher Reλ, compatible within 10% with the

numerical results around a ∼ arms. We stress that this observation is not valid in general:

it is a consequence of the fact that, in our case, the flow at higher Re has a larger effective

integral scale and a larger uη.
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FIG. 6: Relative error on the estimate of one component of acceleration by (4). The average

〈|1− gpx/ax|; ax〉 conditioned on the local value of ax (symbols) is compared with the contribution

due to the vorticity term in (2) 〈v0|ωypz − ωzpy|; ax〉 (lines). For Reλ = 200 (left), the latter

clearly constitutes the main contribution to the error. At Reλ = 400 (right), the estimate of larger

accelerations is clearly affected by the finite value of g. Data refer to h = 0.2mm (triangles, solid

line) and h = 0.5mm (squares, dotted line).

IV. CONCLUSION AND DISCUSSION

Summarizing our numerical results, it appears that the orientation of biased particles

could be a viable proxy for fluid acceleration, at least at moderate Re. It is clearly important

to establish a way to estimate the proper particle size based on the parameters of the

turbulent flow to be examined.

Although particle size does not directly enter the model equations, the offset h clearly puts

a lower limit on particle radius. This point must be carefully considered. Particles should

be sufficiently biased to ensure dominance of acceleration over rotation due to vorticity, but

too large particles would not obey the assumptions leading to (1) and (2).

On the other hand, experimental limitations should be considered. In order to use (4) to

directly measure fluid acceleration one has to measure the tilt angle of a geotropic particle

transported by the flow. One possibility is to use small spherical particles with the upper

and lower hemisphere of different colors as in the example of Fig.1, a simpler version of the

technique used in [4]. By measuring the angle θ of the particle “equator” with respect to

the horizontal plane one has px = sin θ.
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A precise determination of θ requires sufficient resolution of the particle pattern and

therefore not too small particles. On the other hand, because the measure is instantaneous,

there is no need to follow the particles. Therefore, the camera could be placed to zoom a

small region of the fluid only, and to acquire data when a particle comes in that region.

Let us finally comment about possible corrections to the described behavior, for the two

cases of particles too small or too large. If the offset h is too small, the vorticity term in

(2) is no longer negligible. As a consequence, reconstruction of acceleration would require

independent information on vorticity, so that a more complex method would be required.

Furthermore, fast orientation is at the basis of (4) which allows one to avoid particle tracking,

and would be important to follow high frequency fluctuations accurately. In the case of too

large particles, the creeping flow assumption would be inaccurate. Nonetheless, the tilting

angle would still provide information on the fluid acceleration but equation (2) has to be

modified to take inertial terms into account.

A further aspect that should be taken into account is finite size effects on particle trajec-

tory. In general one expects that particles larger than the Kolmogorov scale deviate from

fluid trajectories. However there is evidence that acceleration statistics are not strongly

influenced by particle size [12, 13, 15]. Numerical and experimental results suggest that

addition of the so called Faxen terms in the equation for particle trajectory can account

for the main deviations, providing a method to estimate the related errors[12, 13]. Such

corrections should become relevant when the radius of the particle is larger than η
√
Reλ,

which for experiments comparable to the ones we considered would give O(10)η [12] thus

allowing for some range of sizes to explore.

Given the above constraints we can conclude that the proposed method would be rea-

sonably accurate for typical experimental settings at moderate Reynolds numbers or when

large Reynolds number are achieved thanks to a large integral scale. In spite of the above

discussed limitations, we think that the idea of exploiting biased particles to measure accel-

eration without tracking may be interesting especially if technology can be pushed to the

possibility to measure the tilting angle of many particles at the same time, allowing for the

reconstruction of the spatial field of accelerations.
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