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Abstract 

We present a theory, and its computer implementation, of how mental simulations underlie the 

abductions of informal algorithms and deductions from these algorithms.  Three experiments 

tested the theory’s predictions, using a novel environment of a single railway track and a siding. 

This environment is akin to a universal Turing machine, but it is simple enough for non-

programmers to use.  They solved problems calling for them to use the siding to rearrange the 

order of cars in a train (Experiment 1). They abduced and described in their own words 

algorithms that solved such problems for trains of any length; and, as the use of simulation 

predicts, they favored while-loops over for-loops in their descriptions (Experiment 2). Given 

descriptions of loops of procedures, they deduced the consequences for given trains of six cars, 

doing so without access to the railway environment (Experiment 3).  As the theory predicts, 

difficulty in rearranging trains depends on the numbers of moves and cars to be moved, whereas 

in formulating an algorithm and deducing its consequences it depends on the Kolmogorov 

complexity of the algorithm. Overall, the results corroborated the use of a kinematic mental 

model in creating and testing informal algorithms, and showed that individuals differ reliably in 

the ability to carry out these tasks. 

 

Keywords: Abduction | Deduction | Informal programming | Mental simulation | Problem solving 
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Significance statement 

We developed a theory of how mental simulations underlie the abductions of informal 

algorithms and deductions from these algorithms. Experiments tested the theory's predictions 

using a novel task environment. Participants solved problems; abduced and described in their 

own words algorithms that solved such problems; and deduced the consequences of algorithms. 

Difficulty in formulating the algorithm and deducing its consequences depended on the 

algorithm's Kolmogorov complexity. Results corroborated the use of a kinematic mental model 

in creating and testing informal algorithms, and showed that individuals differ reliably in the 

ability to carry out these tasks. 
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\body 

At the root of much human thinking is the ability to make mental simulations, that is, to imagine 

a process step by step so that it unfolds in the mind in the same temporal order as the events in 

the actual process.  This hypothesis is central to the theory of mental models (1-4). The theory 

explains how individuals reason, but in tasks such as syllogistic or conditional reasoning, rival 

theories offer alternative accounts (5, 6), and it is not easy to decide amongst them empirically 

(7). The aim of the present paper is accordingly to show that human reasoners use kinematic 

mental models in order to simulate events.  This concept of mental models in simulations 

depends on three assumptions, which derive from the model theory (8).  

 1. The mental models in simulations are iconic, i.e., their structures correspond to the 

structures of what they represent (9). Hence, a model of a spatial layout is itself spatial, and so 

the relations between objects in the world are mirrored in the spatial relations between them in 

the model (10).  

 2.  A kinematic model unfolds in time, and the sequence of situations that it represents 

corresponds to the temporal order of events in the world, real or imaginary (2, 11). 

 3. Mental models can be schematic and more parsimonious than visual images, which 

they underlie (1), because models need not represent the world from a particular point of view or 

represent all of its visual features (12). They represent what is common to many possibilities 

differing in details, and they yield faster inferences than images (13).  

 Some cognitive scientists are skeptical about the existence of any mental representations 

(14, 15); some emphasize the role of the environment in constraining, affording, or situating 

intelligent behavior (16, 17); some allow representations only in the form of syntactically-

structured strings of symbols in a mental language (18); and some to the contrary allow 
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representations only in sensory modalities (19).  Our experiments were designed to illuminate 

these various ideas about representations. 

 The model theory postulates that the formulation of algorithms and computer programs 

depends on mental simulations. Computer programming calls for knowledge of programming 

languages, and so our studies focused on how naive individuals – those who knew nothing about 

programming – formulated algorithms in everyday language. Programs often depend on a loop of 

operations, e.g., For each of the n elements in an input list, put that element at the head of the 

output. This “for-loop” reverses the order of a list, such as (A B C). The first step places A at the 

head of an otherwise empty output, the second step puts B at the head of the output, and the third 

step puts C at the head of the output. The result is (C B A). The same reversal can be carried out 

with a “while-loop”, e.g., While the input list contains at least one item, put the item at the head 

of the input list to the head of the output. While-loops are more powerful than for-loops, because 

only they can compute certain functions (20). 

 There have been investigations of deductions that call for a repeated loop of mental 

operations (21, 22) and of novice programmers’ grasp of loops (23, 24). Studies of algorithmic 

thinking in non-programmers are rare, but they suggest that non-programmers tend not to make 

spontaneous use of loops (25-27).  

 In order to investigate the mental simulation of loops, we needed a task suitable for 

individuals with no knowledge of programming. We devised a simple computer environment of 

a toy train, which mimics a Turing machine (20), but which can be immediately grasped by naive 

participants including children. Unlike classical problems, such as the Tower of Hanoi (28) or 

missionaries and cannibals (29), the railway environment can be used to examine problems that 

differ in computational complexity (30) as we describe below. Fig. 1 presents the environment as 
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it is shown on a computer screen. It consists of a railway track with a siding and labeled cars. 

Only three sorts of moves are possible: a move from left track to right track; from left track to 

siding, and from siding to left track.  

 We used the train environment to examine naive individuals’ performance of three 

distinct sorts of task. Problem solving calls for individuals to rearrange a train, initially on left 

track, so that it is in a specified order on right track.  Abductive reasoning yields explanations 

(31), and we enlarge the term to cover reasoning that yields algorithms. Our task calls for 

individuals to abduce algorithms that solve whole classes of rearrangements, such as an 

algorithm that reverses the order of a train of any length. Deductive reasoning calls for 

individuals to infer the consequences of an algorithm for a given train. In what follows, we 

describe the model theory of these three tasks, its computer implementation, and the results of 

three experiments that corroborate its predictions about the three tasks. Finally, we draw some 

general conclusions about mental representations and simulation. 

 

The model theory of algorithms 

In order to create an algorithm that solves any problem in a class of problems, the first step is to 

solve representative instances in the class. The second step is to use a simulation of the process 

of their solution in order to abduce an algorithm that solves any problem in the class.  And, in 

order to test the algorithm’s correctness, the third step is to use the algorithm itself, or to simulate 

it, to deduce its consequences for some new problems in the class.  Each of these steps is a 

component of the model theory, and we have implemented each component in a computer 

program, mAbducer (for “model-based abducer”, available at 
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http://mentalmodels.princeton.edu/models/). We describe the theory of its three components in 

turn.  

 Problem solving. Although there are only three possible sorts of move in rearrangement 

problems (R – move one or more cars to right track; S – move one or more cars to siding; and L 

– move one or more cars to left track), trial and error soon leads to an explosion of possibilities. 

A problem such as the Tower of Hanoi can be solved using means-ends analysis in which one 

works backwards from the desired goal, invoking operations to reduce the difference between it 

and the current state (32). A Sudoku puzzle, however, cannot be solved using means-ends 

analysis, because by design it lacks a complete description of the goal (33). Rearrangement 

problems can be solved in a relatively unusual way, using a partial means-ends analysis, in 

which individuals decompose the goal, starting with the right-most car on the right track, and 

solve the problem of getting one or more adjacent cars into their required position in a piecemeal 

way.  

 The input to mAbducer is the starting state of the track and the required goal. It maintains 

a model of the current state of the track and of the goal, and it solves the problem in a 

psychologically plausible way.  The kinematic model that it uses to represent the railway is 

highly schematic. For example, this model from a kinematic sequence 

 A[BA]BCC 

represents the car, A, on left track, the cars BA on the siding as denoted by the square brackets, 

and the cars BCC on right track. The goal is represented as a single sequence of cars, which need 

to be on right track, with no cars on the siding or left track, e.g., [  ]AABBCC. The program, 

which implements a partial mean-ends analysis, matches cars on left track and the siding with 

http://mentalmodels.princeton.edu/models/�
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those required to be on right track, updating the goal whenever at least one car is moved to right 

track until it solves the problem. Its output is a trace of the successful sequence of moves. 

 The sequences of moves in the program’s solutions are intended to be psychological 

plausible.  Hence, the relative difficulty of a problem should depend on the number of moves in 

the program’s solution, and the mean number of operands per move.  In a reversal problem, as 

the trace above shows, each move after the first one has an operand of a single car.  We can 

contrast this case with the solution of a palindrome problem, such as the rearrangement from 

ABCCBA[ ] to [ ]AABBCC. We refer to the problem as a “palindrome”, because when the input 

is a palindrome, as in this case, it is sorted into the order illustrated above.  The program’s 

solution calls for 6 moves and the total number of operands (moved cars) is 10, which is greater 

than the 7 operands for the reversal problem. Even though the two problems have the same 

number of moves, the theory therefore predicts that the palindrome should be more difficult to 

solve than the reversal.  Number of operands has a family resemblance to “relational 

complexity”, which concerns the number of arguments in a relation, and which affects the 

difficulty of solving problems (34). However, the number of operands concerns, not the number 

of arguments of an operator, but whether the value of a single argument is one or more cars.  The 

two have in common that they increase the processing load on working memory.  A corollary is 

that individuals should be likely to make unnecessary moves in their solutions, i.e., they should 

often fail to solve problems parsimoniously, because they move just one car instead of two or 

more. 

 An alternative theoretical approach is that solution depends instead, say, on a proof 

procedure, or on an algebraic manipulation (35).  The difficulty of a problem is then likely to 

depend on the Levenshtein “edit” distance (36), i.e., the number of additions, deletions, or 
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substitutions to get from the starting string of cars to the goal string of cars.  This metric predicts 

the difficulty of certain deductive tasks (37).   

 Abductions of algorithms.  Consider the task of formulating an algorithm for reversing a 

train of any length, i.e., given an input of a train of some arbitrary length, ABC…XYZ, the 

algorithm should yield: ZYX…CBA.  A train with a small number of cars can be reversed with a 

small number of moves with no loops.  But, the example calls for reversing trains of any length, 

and so a correct solution is bound to call for a loop of operations. The model theory postulates 

that individuals can nevertheless carry out the task. The process is abductive because it depends 

on creating an explanation of how to get from the input to the output (31). A putative solution 

can be tested using deduction, but it is not discovered by deduction alone – no more than is the 

discovery of a mathematical proof. According to the model theory, the creation of an algorithm 

depends on three steps, which are each modelled in the mAbducer program. 

 The program’s first step is to simulate the solutions to two instances of the problem in 

order to avoid ambiguity.  It makes the simulations using the process described above. Because 

each move concerns a set of one or more cars, which move together, the process parallels the 

piece-meal simulation of the workings of complex mechanisms (4).  

 Its second step is to recover the loop of moves, and any moves that have to be performed 

before or after the loop. The program finds the repeated sequences of at least two moves.  But, 

what determines the number of iterations of the loop?  Since the loop can be either a for-loop or 

else a while-loop, there are two ways to proceed.  One way is to solve a pair of simultaneous 

linear equations to obtain the values of a and b in n = a*length + b, where n is the number of 

iterations of a for-loop, and length is the number of cars in the train.  So, the two reversals above 

yield the values, 3 = 4a + b, and 4 = 5a + b, and the solution is that a = 1 and that b = -1. Hence, 
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for a train of length 6, a for-loop can be constructed in which the number of iterations of the loop 

for a reversal, n, equals 1*6 -1 = 5. Another way to ensure that a loop is carried out for the 

required iterations is to determine the conditions under which a while-loop halts. A simulation 

shows that for a reversal the while-loop halts as soon as the siding is empty. Other sorts of 

problem have different halting conditions. They can be used in the description of a while-loop.  

 Next, mAbducer determines any moves that precede or follow the loop.  In the present 

example, the loop is preceded by a move, S3 or S4, where the number of operands again depends 

on the length of the train, or in the simulation when there is only one car remaining on the left 

track. After the end of the loop of moves, a final R1 occurs. The loop in the present example is 

static in that the number of operands for the moves in the loop remains constant from one 

iteration to the next. In other rearrangement problems, including those that use two stacks for 

their solution, loops are dynamic, i.e., the number of cars in a move within a loop varies 

depending on the length of the train and on whether the loop is in its first iteration, its second 

iteration, and so on (see the faro shuffle in SI 1). 

 The program’s third step is to convert the structure of the solution, including the loop, 

into a verbal description of the algorithm. It translates both for-loops and while-loops into 

explicit descriptions in the programming language LISP (see SI 1 for the translations). It also 

translates while-loops into informal English.  

 The theory predicts that naive individuals use simulations to abduce algorithms, and so it 

should be easier for them to detect the halting conditions needed for while-loops than to solve the 

simultaneous equations needed for for-loops. They should therefore be biased to use while-loops. 

The prime difficulty in solving a problem is the number of moves and operands. But, the prime 

difficulty in abducing an algorithm should be the complexity of the algorithm itself. We used 
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Kolmogorov complexity as the relevant metric (38, 39), and we applied it to mAbducer’s while-

loops, because of their psychological plausibility.  We used the numbers of characters in its 

algorithms in Common Lisp (see SI 1), multiplied by the number of bits in a character (i.e., 7 for 

ASCII). The first three problems in Table 1 call for static loops, but the faro shuffle, which is the 

converse of the parity sort, calls for a dynamic loop. The faro shuffle of cards (also known as a 

‘riffle’) has interesting mathematical properties relating to parallel computation and to the Fast 

Fourier transform (40). The four algorithms, which we used in our experiments, increase in 

complexity and in computational power – two stacks are needed to solve faro shuffles. But, 

Kolmogorov complexity is a simple general metric that captures this increase, which is otherwise 

hard to quantify.  

 Deductions from descriptions of algorithms. The final task that we investigated is to 

deduce the consequences of an algorithm.  mAbducer carries out this procedure to check the 

algorithm that it has abduced. For a train of a new length, it simulates the consequences of the 

algorithm.  An obvious sign of an erroneous algorithm is that it halts prior to solving the 

problem. This sort of error has not occurred with mAbducer, and so it is capable of automatic 

programming (for other methods, see 41-43).  Suppose that naive individuals familiar with the 

railway environment have to deduce the consequences of the reversal algorithm for the train, 

ABCDEF.  They should carry out this task by mentally simulating a sequence of operations. Of 

course, the task of imagining this sequence could be too difficult for most individuals without 

access to pencil and paper, and so one aim of our empirical research was to determine whether 

they could cope with it. The primary factor that should cause difficulty in such simulations, 

given that they are of comparable numbers of moves and operands, is the Kolmogorov 

complexity of the algorithms.  
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 We have outlined the model theory, and its computer implementation, of how individuals 

solve rearrangement problems, how they use simulations to abduce algorithms to solve them, and 

how they use simulations of the algorithms to deduce their consequences.  We now turn to 

empirical tests of the theory’s predictions that number of moves and operands should determine 

the difficulty of solving problems, whereas Kolmogorov complexity should determine the 

difficulty of the abductions and deductions.  

 

Experiment 1 Problem solving 

The experiment examined the ability of 20 students to solve rearrangement problems – a 

prerequisite for the subsequent studies, because if individuals cannot solve these problems with 

reasonable efficiency, they can hardly devise algorithms for their solution.  But, the experiment 

was also a test of the first component of mAbducer – its procedure for solving rearrangement 

problems.  It uses a single algorithm to carry out a partial means-ends analysis in order to decide 

what move to make next, which may have one or more operands.   The experiment allowed the 

participants to manipulate the trains  (on a computer screen), and so they did not have to simulate 

the process of solution, but could carry out it directly.  The aim was to determine whether naïve 

individuals could carry out the task, whether its difficulty depended on mAbducer’s numbers of 

moves and operands, and whether they tended to err in overlooking parsimonious moves.  The 

problems were presented using a graphical interface on a computer, and consisted of all 24 

possible rearrangements of trains containing four cars.    

 The important result was that naive individuals were able to solve these problems with 

ease. They produced very few incorrect solutions. We dropped the two extreme problems from 

the statistical analysis so that they would not bias the results, i.e., the problem that required only 
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one move to solution, and the problem that had a total of 12 operands.  The participants’ mean 

number of moves to solve a problem increased with the mAbducer’s number of moves (Page’s 

trend test, L = 1809.5, z = 8.47, p < .0001) and the mean number of moves also increased with 

mAbducer’s number of operands (Page’s trend test, L = 276, z = 5.69, p < .0001; see SI 2 for 

means and additional analyses). In other words, as the number of operands increased so did the 

mean number of moves, independently of the number of moves in a mAbducer’s solution. The 

latency results likewise corroborated both of these effects. There was a reliable tendency for the 

participants to make redundant moves.  Every participant made at least one redundant move, and 

we replicated this tendency in a follow-up experiment designed to elicit such errors.  The main 

reason for redundant moves was perseveration.  That is, when the participants moved a single car 

from siding to left track, they often overlooked the possibility of moving two cars together from 

left track to right track.  The participants differed reliably in their ability to find parsimonious 

solutions (Friedman test, χ2 = 45.05, p < .001), and the best participant made a mean of 5.63 

moves over all the problems, and the worst participant made a mean of 7.54 moves over all the 

problems.  After the end of the experiment proper, the participants had to think aloud as they 

tackled two further problems, and their protocols corroborated the use of a partial means-ends 

analysis in which they focused on the successive parts of the goal rather than the goal as a whole. 

 

Experiment 2 Abduction of algorithms 

The experiment examined the model theory of how naïve individuals abduce informal algorithms 

that solve rearrangement problems.   They should rely on mental simulations of solutions of the 

problems.  The experiment accordingly tested three empirical predictions.   First, algorithms to 

solve rearrangements of trains of 8 cars should be easier to create than those for trains of any 
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length.  The former do not require loops of operations and so they should be simpler to deal with 

than the latter. Second, the difficulty in formulating algorithms should depend on their 

Kolmogorov complexity, not on metrics such as edit distance or number of moves (see Table 1 

above).  Third, if participants use mental simulation, then they should be biased in favor of 

while-loops rather than for-loops, because they can observe the condition on the track when a 

while-loop ends, whereas the abduction of a for-loop calls for mental arithmetic to solve 

simultaneous equations.   The experiment examined the three sorts of problem with static loops, 

namely, reversals, palindromes, and parity sorts, which call for loops with a constant number of 

operands in their instructions (see SI 3).   The 20 participants, who were not programmers, first 

solved five practice problems (different from those in the experiment) using the railway 

environment. The environment was then switched off, and they had to create algorithms for 

solving the three sorts of problem either for trains of 8 cars or for trains of any length.  The 

problems of these two sorts were presented in separate blocks in two counterbalanced orders to 

make a total of 6 trials. The participants wrote their algorithms in everyday language, and here is 

a typical example of a participant’s correct algorithm for a reversal of trains of any length: Move 

all cars to the right of A to the side. Then move A to the right. Shift B to left, then right. Shift C to 

left, then right...repeat until pattern is reached. It is based on a while-loop (for other examples of 

informal algorithms, see SI 3). Because solutions were near ceiling for the 8 car trains (92% 

correct), Fig. 2 presents the percentages of correct algorithms and the times the participants took 

to produce them (whether correct or not) only for trains of any length.  The results corroborated 

the three predictions of the model theory.  First, it was easier to formulate algorithms for trains of 

8 cars (92% correct) than for trains of any length (52% correct, Wilcoxon test, z = 3.29, p < 

.001).  Second, the three sorts of rearrangement yielded the predicted trend in accuracy, i.e., 
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reversals (90% correct), palindromes (70% correct), and parity-sorts (63% correct, Page’s trend 

test, L = 256.5, z = 2.60, p < .005).   Participants created accurate algorithms more often when 

they tackled 8 car trains in the first block than when they tackled trains of any length in the first 

block (82% vs. 65%, Mann-Whitney test, z = 1.70, p < .05).  However, there was a three-way 

interaction (Mann-Whitney test, z = 1.94, p < .05) in that 8 car problems were close to ceiling 

regardless of block or sort of problem, whereas algorithms for trains of any length were affected 

by both variables.  Once again, the latencies showed the same pattern of results (see SI 4). Third, 

analyses of the algorithms revealed that the participants used reliably more while-loops than for-

loops. For trains of 8 cars, 61% of correct algorithms embodied loops (38% while-loops and 23% 

for-loops). For trains of any length, correct solutions were bound to use loops (82% while-loops 

and 18% for-loops).  These data are based on the 18 participants who formulated at least one 

correct algorithm for trains of any length; 12 of them used more while-loops than for-loops and 

there were 3 ties (Binomial  test, p < .02). The bias towards while-loops was greater for trains of 

any length (Wilcoxon test, z = 2.4, p < .01).  The use of while-loops had a reliable correlation 

with accuracy (r = .43, p < .005), whereas the use of for-loops tended towards a negative 

correlation with accuracy (r = -.26, p = .09).  Finally, the participants, who knew nothing about 

programming, differed overall in their ability to formulate correct algorithms (Friedman non-

parametric analysis of variance, χ2 = 35.96, p = .01).  The best participant was correct on every 

problem, whereas the worst participant was correct for less than 20% of the problems. 

 

Experiment 3 Deduction from algorithms 

The model theory postulates that when naïve individuals deduce the consequences of carrying 

out an algorithm on a particular train, they rely on simulating the sequence of the algorithm's 



Mental simulations  17 

operations.  Hence, according to the theory, the difficulty of the task should depend, not on the 

number of moves to be carried out, but on the Kolmogorov complexity of the algorithm.  The 

experiment tested this prediction using while-loops for all four sorts of problem in Table 1, i.e., 

reversals, palindromes, parity sorts, and faro shuffles.  Each of them, however, was described in 

exactly the same number of words.  The participants, who were not programmers, first watched a 

movie that explained and illustrated the railway environment.  They then had no access to this 

environment for the deduction task, and they were not allowed to write anything down.  After 

two simple practice problems, they had to deduce the consequences of the descriptions of 

algorithms on a given train of 6 cars. They did the task twice for each of the four sorts of 

algorithm, once with trains labelled with letters and once with trains labelled with numbers.  The 

descriptions of the algorithms were in Polish, the native language of the participants, and they 

were not the minimal descriptions in Table 1, but were rewritten to be as clear as possible and to 

contain the same number of words (see SI 5). 

 The percentages of correct deductions for the 43 participants who produced at least one 

complete answer corroborated the model theory’s predictions. The participants were correct for 

41% of reversals, 35% of palindromes, 32% of parity sorts, and 23% of faro shuffles (Page’s L 

test, z = 1.94, p < .03).  The latencies of correct deductions also supported this trend for those 

participants who were correct on at least one deduction of each sort, i.e., 77 s for reversals, 130 s 

for palindromes, 106 s for parity sorts, and 151s for faro problems.  The means are slightly 

misleading because the stochastic increase in latencies for individual participants corroborated 

the predicted trend in a highly reliable way (Page’s L, z = 3.55, p < .0005). The number of 

moves in the simulations, the number of operands, or the edit distance (see Table 1) cannot 

explain the trends in accuracy and latency. The participants differed overall in their ability to 
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make correct deductions (Friedman non-parametric analysis of variance, χ2 = 17.29, p < .001). 

The best participants got all eight problems correct; the worst got none of them correct. 

 

General Discussion 

In reasoning, the mind is fallible about both logical and probabilistic conclusions (44-46), but it 

has a striking ability to make mental simulations.  They can be static mental models or kinematic 

sequences of them in which the sequences represent temporal orders (11).  The model theory that 

we outlined in this article, and its computer implementation in mAbducer, show how such 

simulations can underlie the abduction of algorithms and the deduction of their consequences – 

at least in the case of a seemingly simple environment of toy trains.  The environment is easy to 

understand and, skeptics may say, too easy because its problems are as narrow and trivial as toy 

trains.  In fact, unlike, say, syllogistic inferences (7), the number of rearrangement problems is 

unbounded, and some of them call for considerable computational power.  Faro shuffles (43), as 

illustrated in Table 1, call for the use of two stacks so that a car shifted from the siding to left 

track has to be shifted back to the siding again.  The computational power needed here – two 

stacks – exceeds the power embodied in a well-known conjecture about the syntax of natural 

languages (47). 

            Individuals readily solve problems in the railway domain when they manipulate the cars 

on the track.  The difficulty of solving these problems, as Experiment 1 showed, depends on 

mAbducer’s number of moves in a solution, but also independently on the number of cars in 

these moves. Participants often overlooked parsimonious moves of more than one car at a time.   

In the experiment, they did not have to simulate the moves, because they could use the track 

itself. 
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 The ability to solve problems is a prerequisite for abducing algorithms for their solution.   

The mAbducer program depends on simulating solutions using schematic models that it updates 

kinematically.  Given that a loop of operations has to be repeated, it formulates a while-loop 

from its observations of the halting condition in the simulations.   The program can also describe 

a for-loop and determine the number of times that the loop should iterate from its solution of a 

pair of simultaneous equations.  The task of abducing algorithms is difficult, and at first we 

doubted whether naive individuals would be able to perform it, because previous studies of 

informal programming showed that they avoided the use of loops (25-27).  But, without access to 

the railway environment, as Experiment 2 showed, they were able to simulate loops of 

operations, to figure out what was going on in them, and to describe them in informal 

algorithms.  The participants had the predicted bias towards while-loops rather than for-loops.  

Likewise, the difficulty of the four sorts of rearrangement depended, not on the numbers of 

moves or cars to be moved, but on the Kolmogorov complexity of the Lisp algorithms that 

mAbducer creates (see Table 1). 

Prudent programmers debug their code by deducing its consequences for specific inputs.  

This task also provided evidence for the role of simulation.  With no access to the railway 

environment and without being allowed to write anything down, naive individuals in Experiment 

3 were able to infer the results of carrying out the four sorts of algorithm on trains containing six 

cars.   As the theory predicts, the difficulty of making the deductions depended, not on numbers 

of moves or cars to be moved, but on the complexity of the algorithms, which varied from 

reversing the order of cars to the more complex faro shuffle (see Table 1).     

 The evidence we have reported supports the theory of the simulation using kinematic 

mental models.  It provides a unified account of the abduction of algorithms and the deductions 
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of their consequences.  As far as we know, no other theory of naive reasoning about algorithms 

exists.  Probabilities hardly enter the process and so Bayesian theories of reasoning may be 

irrelevant (5).  But, a theory could be developed from an axiomatization of the railway domain in 

logic (6).  The difficulties for this approach are to frame a complete set of axioms in a way that 

captures both what changes and what does not change with each move (48), and to ensure that 

the resulting system makes the correct predictions about human performance. 

            As we mentioned in the Introduction, psychologists hold almost all possible views about 

mental representations, from the claim that they are not needed for intelligent behavior (16) to 

the competing views that they are either abstract strings of symbols (18) or rooted in sensory 

modalities (19).  Our results seem impossible to explain without invoking mental representations, 

and, most plausibly, kinematic models with an iconic structure that corresponds to the railway 

environment.  These models may be mapped into visual images or they may be as abstract as 

they are in mAbducer (see 4, 12).  Individuals can reason from models without forming visual 

images from them, and evidence suggests that images impede reasoning (13).  Of course, it does 

not follow that all reasoning depends on simulating the world: a person can learn to use formal 

rules of inference.  Likewise, it does not follow that all mental representations are iconic models 

(49).  The model theory itself relies on another sort of representation to capture the meaning of 

an assertion, which it then uses to construct models (50).   

 Mathematicians, logicians, and computer programmers reason about the repeated loops of 

operations in algorithms.   Previous studies have examined how novice programmers try to 

formulate such algorithms in a programming language (e.g., 23-27).   But, as computer scientists 

often complain, no valid test exists to predict the ability of naive individuals as computer 

programmers (51).  The results show that individuals differ reliably in their ability to abduce 
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informal algorithms and to deduce the consequences of these algorithms.  It remains to be seen 

whether such tasks, which depend on mental simulation, are reliable predictors of ability in 

programming.   But, the evidence corroborates the theory that naïve individuals use mental 

simulations to create informal algorithms, even those containing loops of operations, and to infer 

their consequences. 

 

Methods 

Experiment 1. Twenty undergraduate students at Princeton University served as participants 

(mean age of 19.7 years), and none had had any prior training in logic or computer science. The 

participants were tested individually, and carried out the experiment on a PC running LispWorks 

4.4. They interacted with the system using the mouse and the keyboard of the computer. They 

were shown a three-minute instructional video that guided them through the elements of the 

railway environment, and that presented the instructions. The problems showed the initial state 

with the cars on the left track, and the required goal state with the cars on the right track. The 

participants made moves using a mouse to control a graphical interface. The key instruction 

stated that they should try to solve each problem with as few moves as possible. They acted as 

their own controls and carried out all 24 problems, which were presented in a different random 

order to each of them.  

Experiment 2. Twenty participants from the same population as before were tested individually. 

The session began with five practice problems akin to those in Experiment 1, which the 

participants had to solve by interacting with the railway system. These problems were unrelated 

to the experimental problems, and each of them used a train of 6 cars with a solution of 8 moves. 

The experiment proper followed, and the participants’ task was to type out a procedure that 
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would solve each problem, but they could not interact with the railway environment or write 

anything down. They carried out two blocks of trials, one with problems for trains of 8 cars and 

one with problems for trains of any length, i.e., a total of 6 trials. The blocks were presented in a 

counterbalanced order to two groups of participants. The order of the three sorts of 

rearrangement was randomized for each participant within each block. For the problems with 

trains of any length, the participants were told that a car containing an ellipsis stood in place for 

any number of cars that had the same pattern. They were free to use their own words in any way 

that they wanted. Two independent judges – one of the authors and a research assistant – scored 

the informal algorithms in terms of whether were correct or incorrect, and whether they 

contained a while-loop or a for-loop. The two judges agreed 93% about the accuracy of the 

algorithms (111 out of 120 problems, Cohen's κ = .82). The judges agreed 83% about the nature 

of the loops in the algorithms (99 out of 120 problems, Cohen's κ = .73). A third independent 

judge resolved the discrepant evaluations in both cases. 

Experiment 3. Fifty-four undergraduate psychology students from Warsaw University of Social 

Science and Humanities took part in the experiment (mean age 21.6 years), and because logic is 

obligatory in most Polish universities, over half of them had taken at least one course in logic. 

Twenty-two participants were paid a small sum (equivalent to $2) for participating in the 

experiment, and the rest took part in exchange for course credit. This difference had no reliable 

effect on either of the dependent variables, and so we pooled the data from those two conditions. 

Each participant carried out two versions of the reversal, palindrome, parity, and faro problems. 

One version had cars labelled with letters, and one version had cars labelled with numbers. Each 

description of an informal algorithm started and ended with the same phrases, and each 

description contained 109 words in Polish (see SI 4 for the original descriptions and translations 
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into English). The descriptions were presented in one of eight counterbalanced orders allocated 

at random to the participants. The experiment was presented on a computer screen and the 

students typed in their answers. They were instructed not to type their response until they knew 

the position of all six cars on the right track, and they were not allowed to write anything down. 
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Table 1. Examples of four sorts of rearrangements, the informal algorithms for trains of any 

length that mAbducer discovered from simulating solutions, the total number of moves for each 

example of 6 cars, their mean number of operands, their edit distance, and the Kolmogorov 

complexities of the Lisp functions for re-arranging trains of any length. 

 

Rearrangements 
of ABCDEF 

mAbducer’s informal  algorithms No. of 
moves 

Mean no. 
operands 

Edit 
distance 

Kolmogorov 
complexity 

Reversal yields: 
FEDCBA 

Move one less than cars to siding. 
While there are more than zero cars 
on siding 
    move one car to right track 
    move one car to left track. 
Move one car to right track. 

12 1.3 6 1288 

Palindrome  
yields: 
AFBECD 

Move one less than half the cars to 
siding. 
While there are more than two cars on 
left track  
      move two cars to right track     
      move one car to left track. 
Move two cars to right track. 

6 1.6 4 1295 

Parity sort 
yields: 
ACEBDF 
 

While there are more than two cars 
on left track  
     move one car to right track 
     move one car to siding. 
Move one car to right track. 
Move one less than half the cars to 
left track. 
Move half the cars to right track. 

7 1.4 4 1519 

Faro shuffle 
yields: 
ADBECF 

Set the number of operands to be 
moved, n-of-s, to one less than half 
the cars. 
 Set the decrement to one. 
 While n-of-s is more than zero, 
     move one car to right track, 
     move n-of-s cars to siding, 
     move one car to right track, 
     move n-of-s cars to left track, 
     take decrement from n-of-s. 
 Move two cars to right track. 

9 1.3 4 1771 
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Fig 1.  

The railway environment with an example of an initial configuration in which a set of cars is on 

the left side (A) of the track, the siding (B) can hold one or more cars while other cars are moved 

to the right side of the track (C). The program allows individuals to select a car, e.g., the 

highlighted “E” car, and to move it and all the cars in front of it to the siding or right track. 
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Fig 2. The proportions of correct algorithms in Experiment 2 for trains of any length depending 

on the sort of rearrangement and whether the participants carried out problems of trains of any 

length in the first block (A) or the second one (B). 
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Fig. 3. The percentages of correct algorithms for trains of any length and their mean latencies (in s) 

depending on the sort of rearrangement, and the order of the two blocks. 


	Abstract
	We present a theory, and its computer implementation, of how mental simulations underlie the abductions of informal algorithms and deductions from these algorithms.  Three experiments tested the theory’s predictions, using a novel environment of a sin...


