

This is an author version of the contribution published on:

Proceedings of the National Academy of Sciences of the United States of America,
110, 16766-16771

Questa è la versione dell’autore dell’opera:
 [Proceedings of the National Academy of Sciences of the United States of America,

110, 16766-16771
doi:10.1073/pnas.1316275110]

The definitive version is available at:
La versione definitiva è disponibile alla URL:

[http://www.pnas.org]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301907835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mental simulations 2

Running head: Mental simulations

Kinematic mental simulations in abduction and deduction

by

Sangeet S. Khemlania, Robert Mackiewiczb, Monica Bucciarellic, and P.N. Johnson-Lairdd

August 25th 2013

Classification BIOLOGICAL SCIENCES - Psychological and Cognitive Sciences

a. Corresponding author:

Navy Center for Applied Research in Artificial Intelligence, Naval Research Lab, Washington,

DC 20375, Tel: +1 571 275 8107 Email: skhemlani@gmail.com

b. Department of Psychology, University of Social Sciences and Humanities, Chodakowska

19/31, 03-815 Warsaw, Poland. Email: robert.mackiewicz@swps.edu.pl

c. Centro di Scienza Cognitiva and Dipartimento di Psicologia, Università di Torino, Turin

10123, Italy. Email: monica.bucciarelli@unito.it

d. Department of Psychology, New York University, 6 Washington Place, New York, NY

10003. Email: phil@princeton.edu

mailto:skhemlani@gmail.com�
mailto:robert.mackiewicz@swps.edu.pl�
mailto:monica.bucciarelli@unito.it�
mailto:phil@princeton.edu�

Mental simulations 3

Abstract

We present a theory, and its computer implementation, of how mental simulations underlie the

abductions of informal algorithms and deductions from these algorithms. Three experiments

tested the theory’s predictions, using a novel environment of a single railway track and a siding.

This environment is akin to a universal Turing machine, but it is simple enough for non-

programmers to use. They solved problems calling for them to use the siding to rearrange the

order of cars in a train (Experiment 1). They abduced and described in their own words

algorithms that solved such problems for trains of any length; and, as the use of simulation

predicts, they favored while-loops over for-loops in their descriptions (Experiment 2). Given

descriptions of loops of procedures, they deduced the consequences for given trains of six cars,

doing so without access to the railway environment (Experiment 3). As the theory predicts,

difficulty in rearranging trains depends on the numbers of moves and cars to be moved, whereas

in formulating an algorithm and deducing its consequences it depends on the Kolmogorov

complexity of the algorithm. Overall, the results corroborated the use of a kinematic mental

model in creating and testing informal algorithms, and showed that individuals differ reliably in

the ability to carry out these tasks.

Keywords: Abduction | Deduction | Informal programming | Mental simulation | Problem solving

Mental simulations 4

Significance statement

We developed a theory of how mental simulations underlie the abductions of informal

algorithms and deductions from these algorithms. Experiments tested the theory's predictions

using a novel task environment. Participants solved problems; abduced and described in their

own words algorithms that solved such problems; and deduced the consequences of algorithms.

Difficulty in formulating the algorithm and deducing its consequences depended on the

algorithm's Kolmogorov complexity. Results corroborated the use of a kinematic mental model

in creating and testing informal algorithms, and showed that individuals differ reliably in the

ability to carry out these tasks.

Mental simulations 5

\body

At the root of much human thinking is the ability to make mental simulations, that is, to imagine

a process step by step so that it unfolds in the mind in the same temporal order as the events in

the actual process. This hypothesis is central to the theory of mental models (1-4). The theory

explains how individuals reason, but in tasks such as syllogistic or conditional reasoning, rival

theories offer alternative accounts (5, 6), and it is not easy to decide amongst them empirically

(7). The aim of the present paper is accordingly to show that human reasoners use kinematic

mental models in order to simulate events. This concept of mental models in simulations

depends on three assumptions, which derive from the model theory (8).

 1. The mental models in simulations are iconic, i.e., their structures correspond to the

structures of what they represent (9). Hence, a model of a spatial layout is itself spatial, and so

the relations between objects in the world are mirrored in the spatial relations between them in

the model (10).

 2. A kinematic model unfolds in time, and the sequence of situations that it represents

corresponds to the temporal order of events in the world, real or imaginary (2, 11).

 3. Mental models can be schematic and more parsimonious than visual images, which

they underlie (1), because models need not represent the world from a particular point of view or

represent all of its visual features (12). They represent what is common to many possibilities

differing in details, and they yield faster inferences than images (13).

 Some cognitive scientists are skeptical about the existence of any mental representations

(14, 15); some emphasize the role of the environment in constraining, affording, or situating

intelligent behavior (16, 17); some allow representations only in the form of syntactically-

structured strings of symbols in a mental language (18); and some to the contrary allow

Mental simulations 6

representations only in sensory modalities (19). Our experiments were designed to illuminate

these various ideas about representations.

 The model theory postulates that the formulation of algorithms and computer programs

depends on mental simulations. Computer programming calls for knowledge of programming

languages, and so our studies focused on how naive individuals – those who knew nothing about

programming – formulated algorithms in everyday language. Programs often depend on a loop of

operations, e.g., For each of the n elements in an input list, put that element at the head of the

output. This “for-loop” reverses the order of a list, such as (A B C). The first step places A at the

head of an otherwise empty output, the second step puts B at the head of the output, and the third

step puts C at the head of the output. The result is (C B A). The same reversal can be carried out

with a “while-loop”, e.g., While the input list contains at least one item, put the item at the head

of the input list to the head of the output. While-loops are more powerful than for-loops, because

only they can compute certain functions (20).

 There have been investigations of deductions that call for a repeated loop of mental

operations (21, 22) and of novice programmers’ grasp of loops (23, 24). Studies of algorithmic

thinking in non-programmers are rare, but they suggest that non-programmers tend not to make

spontaneous use of loops (25-27).

 In order to investigate the mental simulation of loops, we needed a task suitable for

individuals with no knowledge of programming. We devised a simple computer environment of

a toy train, which mimics a Turing machine (20), but which can be immediately grasped by naive

participants including children. Unlike classical problems, such as the Tower of Hanoi (28) or

missionaries and cannibals (29), the railway environment can be used to examine problems that

differ in computational complexity (30) as we describe below. Fig. 1 presents the environment as

Mental simulations 7

it is shown on a computer screen. It consists of a railway track with a siding and labeled cars.

Only three sorts of moves are possible: a move from left track to right track; from left track to

siding, and from siding to left track.

 We used the train environment to examine naive individuals’ performance of three

distinct sorts of task. Problem solving calls for individuals to rearrange a train, initially on left

track, so that it is in a specified order on right track. Abductive reasoning yields explanations

(31), and we enlarge the term to cover reasoning that yields algorithms. Our task calls for

individuals to abduce algorithms that solve whole classes of rearrangements, such as an

algorithm that reverses the order of a train of any length. Deductive reasoning calls for

individuals to infer the consequences of an algorithm for a given train. In what follows, we

describe the model theory of these three tasks, its computer implementation, and the results of

three experiments that corroborate its predictions about the three tasks. Finally, we draw some

general conclusions about mental representations and simulation.

The model theory of algorithms

In order to create an algorithm that solves any problem in a class of problems, the first step is to

solve representative instances in the class. The second step is to use a simulation of the process

of their solution in order to abduce an algorithm that solves any problem in the class. And, in

order to test the algorithm’s correctness, the third step is to use the algorithm itself, or to simulate

it, to deduce its consequences for some new problems in the class. Each of these steps is a

component of the model theory, and we have implemented each component in a computer

program, mAbducer (for “model-based abducer”, available at

Mental simulations 8

http://mentalmodels.princeton.edu/models/). We describe the theory of its three components in

turn.

 Problem solving. Although there are only three possible sorts of move in rearrangement

problems (R – move one or more cars to right track; S – move one or more cars to siding; and L

– move one or more cars to left track), trial and error soon leads to an explosion of possibilities.

A problem such as the Tower of Hanoi can be solved using means-ends analysis in which one

works backwards from the desired goal, invoking operations to reduce the difference between it

and the current state (32). A Sudoku puzzle, however, cannot be solved using means-ends

analysis, because by design it lacks a complete description of the goal (33). Rearrangement

problems can be solved in a relatively unusual way, using a partial means-ends analysis, in

which individuals decompose the goal, starting with the right-most car on the right track, and

solve the problem of getting one or more adjacent cars into their required position in a piecemeal

way.

 The input to mAbducer is the starting state of the track and the required goal. It maintains

a model of the current state of the track and of the goal, and it solves the problem in a

psychologically plausible way. The kinematic model that it uses to represent the railway is

highly schematic. For example, this model from a kinematic sequence

 A[BA]BCC

represents the car, A, on left track, the cars BA on the siding as denoted by the square brackets,

and the cars BCC on right track. The goal is represented as a single sequence of cars, which need

to be on right track, with no cars on the siding or left track, e.g., []AABBCC. The program,

which implements a partial mean-ends analysis, matches cars on left track and the siding with

http://mentalmodels.princeton.edu/models/�

Mental simulations 9

those required to be on right track, updating the goal whenever at least one car is moved to right

track until it solves the problem. Its output is a trace of the successful sequence of moves.

 The sequences of moves in the program’s solutions are intended to be psychological

plausible. Hence, the relative difficulty of a problem should depend on the number of moves in

the program’s solution, and the mean number of operands per move. In a reversal problem, as

the trace above shows, each move after the first one has an operand of a single car. We can

contrast this case with the solution of a palindrome problem, such as the rearrangement from

ABCCBA[] to []AABBCC. We refer to the problem as a “palindrome”, because when the input

is a palindrome, as in this case, it is sorted into the order illustrated above. The program’s

solution calls for 6 moves and the total number of operands (moved cars) is 10, which is greater

than the 7 operands for the reversal problem. Even though the two problems have the same

number of moves, the theory therefore predicts that the palindrome should be more difficult to

solve than the reversal. Number of operands has a family resemblance to “relational

complexity”, which concerns the number of arguments in a relation, and which affects the

difficulty of solving problems (34). However, the number of operands concerns, not the number

of arguments of an operator, but whether the value of a single argument is one or more cars. The

two have in common that they increase the processing load on working memory. A corollary is

that individuals should be likely to make unnecessary moves in their solutions, i.e., they should

often fail to solve problems parsimoniously, because they move just one car instead of two or

more.

 An alternative theoretical approach is that solution depends instead, say, on a proof

procedure, or on an algebraic manipulation (35). The difficulty of a problem is then likely to

depend on the Levenshtein “edit” distance (36), i.e., the number of additions, deletions, or

Mental simulations 10

substitutions to get from the starting string of cars to the goal string of cars. This metric predicts

the difficulty of certain deductive tasks (37).

 Abductions of algorithms. Consider the task of formulating an algorithm for reversing a

train of any length, i.e., given an input of a train of some arbitrary length, ABC…XYZ, the

algorithm should yield: ZYX…CBA. A train with a small number of cars can be reversed with a

small number of moves with no loops. But, the example calls for reversing trains of any length,

and so a correct solution is bound to call for a loop of operations. The model theory postulates

that individuals can nevertheless carry out the task. The process is abductive because it depends

on creating an explanation of how to get from the input to the output (31). A putative solution

can be tested using deduction, but it is not discovered by deduction alone – no more than is the

discovery of a mathematical proof. According to the model theory, the creation of an algorithm

depends on three steps, which are each modelled in the mAbducer program.

 The program’s first step is to simulate the solutions to two instances of the problem in

order to avoid ambiguity. It makes the simulations using the process described above. Because

each move concerns a set of one or more cars, which move together, the process parallels the

piece-meal simulation of the workings of complex mechanisms (4).

 Its second step is to recover the loop of moves, and any moves that have to be performed

before or after the loop. The program finds the repeated sequences of at least two moves. But,

what determines the number of iterations of the loop? Since the loop can be either a for-loop or

else a while-loop, there are two ways to proceed. One way is to solve a pair of simultaneous

linear equations to obtain the values of a and b in n = a*length + b, where n is the number of

iterations of a for-loop, and length is the number of cars in the train. So, the two reversals above

yield the values, 3 = 4a + b, and 4 = 5a + b, and the solution is that a = 1 and that b = -1. Hence,

Mental simulations 11

for a train of length 6, a for-loop can be constructed in which the number of iterations of the loop

for a reversal, n, equals 1*6 -1 = 5. Another way to ensure that a loop is carried out for the

required iterations is to determine the conditions under which a while-loop halts. A simulation

shows that for a reversal the while-loop halts as soon as the siding is empty. Other sorts of

problem have different halting conditions. They can be used in the description of a while-loop.

 Next, mAbducer determines any moves that precede or follow the loop. In the present

example, the loop is preceded by a move, S3 or S4, where the number of operands again depends

on the length of the train, or in the simulation when there is only one car remaining on the left

track. After the end of the loop of moves, a final R1 occurs. The loop in the present example is

static in that the number of operands for the moves in the loop remains constant from one

iteration to the next. In other rearrangement problems, including those that use two stacks for

their solution, loops are dynamic, i.e., the number of cars in a move within a loop varies

depending on the length of the train and on whether the loop is in its first iteration, its second

iteration, and so on (see the faro shuffle in SI 1).

 The program’s third step is to convert the structure of the solution, including the loop,

into a verbal description of the algorithm. It translates both for-loops and while-loops into

explicit descriptions in the programming language LISP (see SI 1 for the translations). It also

translates while-loops into informal English.

 The theory predicts that naive individuals use simulations to abduce algorithms, and so it

should be easier for them to detect the halting conditions needed for while-loops than to solve the

simultaneous equations needed for for-loops. They should therefore be biased to use while-loops.

The prime difficulty in solving a problem is the number of moves and operands. But, the prime

difficulty in abducing an algorithm should be the complexity of the algorithm itself. We used

Mental simulations 12

Kolmogorov complexity as the relevant metric (38, 39), and we applied it to mAbducer’s while-

loops, because of their psychological plausibility. We used the numbers of characters in its

algorithms in Common Lisp (see SI 1), multiplied by the number of bits in a character (i.e., 7 for

ASCII). The first three problems in Table 1 call for static loops, but the faro shuffle, which is the

converse of the parity sort, calls for a dynamic loop. The faro shuffle of cards (also known as a

‘riffle’) has interesting mathematical properties relating to parallel computation and to the Fast

Fourier transform (40). The four algorithms, which we used in our experiments, increase in

complexity and in computational power – two stacks are needed to solve faro shuffles. But,

Kolmogorov complexity is a simple general metric that captures this increase, which is otherwise

hard to quantify.

 Deductions from descriptions of algorithms. The final task that we investigated is to

deduce the consequences of an algorithm. mAbducer carries out this procedure to check the

algorithm that it has abduced. For a train of a new length, it simulates the consequences of the

algorithm. An obvious sign of an erroneous algorithm is that it halts prior to solving the

problem. This sort of error has not occurred with mAbducer, and so it is capable of automatic

programming (for other methods, see 41-43). Suppose that naive individuals familiar with the

railway environment have to deduce the consequences of the reversal algorithm for the train,

ABCDEF. They should carry out this task by mentally simulating a sequence of operations. Of

course, the task of imagining this sequence could be too difficult for most individuals without

access to pencil and paper, and so one aim of our empirical research was to determine whether

they could cope with it. The primary factor that should cause difficulty in such simulations,

given that they are of comparable numbers of moves and operands, is the Kolmogorov

complexity of the algorithms.

Mental simulations 13

 We have outlined the model theory, and its computer implementation, of how individuals

solve rearrangement problems, how they use simulations to abduce algorithms to solve them, and

how they use simulations of the algorithms to deduce their consequences. We now turn to

empirical tests of the theory’s predictions that number of moves and operands should determine

the difficulty of solving problems, whereas Kolmogorov complexity should determine the

difficulty of the abductions and deductions.

Experiment 1 Problem solving

The experiment examined the ability of 20 students to solve rearrangement problems – a

prerequisite for the subsequent studies, because if individuals cannot solve these problems with

reasonable efficiency, they can hardly devise algorithms for their solution. But, the experiment

was also a test of the first component of mAbducer – its procedure for solving rearrangement

problems. It uses a single algorithm to carry out a partial means-ends analysis in order to decide

what move to make next, which may have one or more operands. The experiment allowed the

participants to manipulate the trains (on a computer screen), and so they did not have to simulate

the process of solution, but could carry out it directly. The aim was to determine whether naïve

individuals could carry out the task, whether its difficulty depended on mAbducer’s numbers of

moves and operands, and whether they tended to err in overlooking parsimonious moves. The

problems were presented using a graphical interface on a computer, and consisted of all 24

possible rearrangements of trains containing four cars.

 The important result was that naive individuals were able to solve these problems with

ease. They produced very few incorrect solutions. We dropped the two extreme problems from

the statistical analysis so that they would not bias the results, i.e., the problem that required only

Mental simulations 14

one move to solution, and the problem that had a total of 12 operands. The participants’ mean

number of moves to solve a problem increased with the mAbducer’s number of moves (Page’s

trend test, L = 1809.5, z = 8.47, p < .0001) and the mean number of moves also increased with

mAbducer’s number of operands (Page’s trend test, L = 276, z = 5.69, p < .0001; see SI 2 for

means and additional analyses). In other words, as the number of operands increased so did the

mean number of moves, independently of the number of moves in a mAbducer’s solution. The

latency results likewise corroborated both of these effects. There was a reliable tendency for the

participants to make redundant moves. Every participant made at least one redundant move, and

we replicated this tendency in a follow-up experiment designed to elicit such errors. The main

reason for redundant moves was perseveration. That is, when the participants moved a single car

from siding to left track, they often overlooked the possibility of moving two cars together from

left track to right track. The participants differed reliably in their ability to find parsimonious

solutions (Friedman test, χ2 = 45.05, p < .001), and the best participant made a mean of 5.63

moves over all the problems, and the worst participant made a mean of 7.54 moves over all the

problems. After the end of the experiment proper, the participants had to think aloud as they

tackled two further problems, and their protocols corroborated the use of a partial means-ends

analysis in which they focused on the successive parts of the goal rather than the goal as a whole.

Experiment 2 Abduction of algorithms

The experiment examined the model theory of how naïve individuals abduce informal algorithms

that solve rearrangement problems. They should rely on mental simulations of solutions of the

problems. The experiment accordingly tested three empirical predictions. First, algorithms to

solve rearrangements of trains of 8 cars should be easier to create than those for trains of any

Mental simulations 15

length. The former do not require loops of operations and so they should be simpler to deal with

than the latter. Second, the difficulty in formulating algorithms should depend on their

Kolmogorov complexity, not on metrics such as edit distance or number of moves (see Table 1

above). Third, if participants use mental simulation, then they should be biased in favor of

while-loops rather than for-loops, because they can observe the condition on the track when a

while-loop ends, whereas the abduction of a for-loop calls for mental arithmetic to solve

simultaneous equations. The experiment examined the three sorts of problem with static loops,

namely, reversals, palindromes, and parity sorts, which call for loops with a constant number of

operands in their instructions (see SI 3). The 20 participants, who were not programmers, first

solved five practice problems (different from those in the experiment) using the railway

environment. The environment was then switched off, and they had to create algorithms for

solving the three sorts of problem either for trains of 8 cars or for trains of any length. The

problems of these two sorts were presented in separate blocks in two counterbalanced orders to

make a total of 6 trials. The participants wrote their algorithms in everyday language, and here is

a typical example of a participant’s correct algorithm for a reversal of trains of any length: Move

all cars to the right of A to the side. Then move A to the right. Shift B to left, then right. Shift C to

left, then right...repeat until pattern is reached. It is based on a while-loop (for other examples of

informal algorithms, see SI 3). Because solutions were near ceiling for the 8 car trains (92%

correct), Fig. 2 presents the percentages of correct algorithms and the times the participants took

to produce them (whether correct or not) only for trains of any length. The results corroborated

the three predictions of the model theory. First, it was easier to formulate algorithms for trains of

8 cars (92% correct) than for trains of any length (52% correct, Wilcoxon test, z = 3.29, p <

.001). Second, the three sorts of rearrangement yielded the predicted trend in accuracy, i.e.,

Mental simulations 16

reversals (90% correct), palindromes (70% correct), and parity-sorts (63% correct, Page’s trend

test, L = 256.5, z = 2.60, p < .005). Participants created accurate algorithms more often when

they tackled 8 car trains in the first block than when they tackled trains of any length in the first

block (82% vs. 65%, Mann-Whitney test, z = 1.70, p < .05). However, there was a three-way

interaction (Mann-Whitney test, z = 1.94, p < .05) in that 8 car problems were close to ceiling

regardless of block or sort of problem, whereas algorithms for trains of any length were affected

by both variables. Once again, the latencies showed the same pattern of results (see SI 4). Third,

analyses of the algorithms revealed that the participants used reliably more while-loops than for-

loops. For trains of 8 cars, 61% of correct algorithms embodied loops (38% while-loops and 23%

for-loops). For trains of any length, correct solutions were bound to use loops (82% while-loops

and 18% for-loops). These data are based on the 18 participants who formulated at least one

correct algorithm for trains of any length; 12 of them used more while-loops than for-loops and

there were 3 ties (Binomial test, p < .02). The bias towards while-loops was greater for trains of

any length (Wilcoxon test, z = 2.4, p < .01). The use of while-loops had a reliable correlation

with accuracy (r = .43, p < .005), whereas the use of for-loops tended towards a negative

correlation with accuracy (r = -.26, p = .09). Finally, the participants, who knew nothing about

programming, differed overall in their ability to formulate correct algorithms (Friedman non-

parametric analysis of variance, χ2 = 35.96, p = .01). The best participant was correct on every

problem, whereas the worst participant was correct for less than 20% of the problems.

Experiment 3 Deduction from algorithms

The model theory postulates that when naïve individuals deduce the consequences of carrying

out an algorithm on a particular train, they rely on simulating the sequence of the algorithm's

Mental simulations 17

operations. Hence, according to the theory, the difficulty of the task should depend, not on the

number of moves to be carried out, but on the Kolmogorov complexity of the algorithm. The

experiment tested this prediction using while-loops for all four sorts of problem in Table 1, i.e.,

reversals, palindromes, parity sorts, and faro shuffles. Each of them, however, was described in

exactly the same number of words. The participants, who were not programmers, first watched a

movie that explained and illustrated the railway environment. They then had no access to this

environment for the deduction task, and they were not allowed to write anything down. After

two simple practice problems, they had to deduce the consequences of the descriptions of

algorithms on a given train of 6 cars. They did the task twice for each of the four sorts of

algorithm, once with trains labelled with letters and once with trains labelled with numbers. The

descriptions of the algorithms were in Polish, the native language of the participants, and they

were not the minimal descriptions in Table 1, but were rewritten to be as clear as possible and to

contain the same number of words (see SI 5).

 The percentages of correct deductions for the 43 participants who produced at least one

complete answer corroborated the model theory’s predictions. The participants were correct for

41% of reversals, 35% of palindromes, 32% of parity sorts, and 23% of faro shuffles (Page’s L

test, z = 1.94, p < .03). The latencies of correct deductions also supported this trend for those

participants who were correct on at least one deduction of each sort, i.e., 77 s for reversals, 130 s

for palindromes, 106 s for parity sorts, and 151s for faro problems. The means are slightly

misleading because the stochastic increase in latencies for individual participants corroborated

the predicted trend in a highly reliable way (Page’s L, z = 3.55, p < .0005). The number of

moves in the simulations, the number of operands, or the edit distance (see Table 1) cannot

explain the trends in accuracy and latency. The participants differed overall in their ability to

Mental simulations 18

make correct deductions (Friedman non-parametric analysis of variance, χ2 = 17.29, p < .001).

The best participants got all eight problems correct; the worst got none of them correct.

General Discussion

In reasoning, the mind is fallible about both logical and probabilistic conclusions (44-46), but it

has a striking ability to make mental simulations. They can be static mental models or kinematic

sequences of them in which the sequences represent temporal orders (11). The model theory that

we outlined in this article, and its computer implementation in mAbducer, show how such

simulations can underlie the abduction of algorithms and the deduction of their consequences –

at least in the case of a seemingly simple environment of toy trains. The environment is easy to

understand and, skeptics may say, too easy because its problems are as narrow and trivial as toy

trains. In fact, unlike, say, syllogistic inferences (7), the number of rearrangement problems is

unbounded, and some of them call for considerable computational power. Faro shuffles (43), as

illustrated in Table 1, call for the use of two stacks so that a car shifted from the siding to left

track has to be shifted back to the siding again. The computational power needed here – two

stacks – exceeds the power embodied in a well-known conjecture about the syntax of natural

languages (47).

 Individuals readily solve problems in the railway domain when they manipulate the cars

on the track. The difficulty of solving these problems, as Experiment 1 showed, depends on

mAbducer’s number of moves in a solution, but also independently on the number of cars in

these moves. Participants often overlooked parsimonious moves of more than one car at a time.

In the experiment, they did not have to simulate the moves, because they could use the track

itself.

Mental simulations 19

 The ability to solve problems is a prerequisite for abducing algorithms for their solution.

The mAbducer program depends on simulating solutions using schematic models that it updates

kinematically. Given that a loop of operations has to be repeated, it formulates a while-loop

from its observations of the halting condition in the simulations. The program can also describe

a for-loop and determine the number of times that the loop should iterate from its solution of a

pair of simultaneous equations. The task of abducing algorithms is difficult, and at first we

doubted whether naive individuals would be able to perform it, because previous studies of

informal programming showed that they avoided the use of loops (25-27). But, without access to

the railway environment, as Experiment 2 showed, they were able to simulate loops of

operations, to figure out what was going on in them, and to describe them in informal

algorithms. The participants had the predicted bias towards while-loops rather than for-loops.

Likewise, the difficulty of the four sorts of rearrangement depended, not on the numbers of

moves or cars to be moved, but on the Kolmogorov complexity of the Lisp algorithms that

mAbducer creates (see Table 1).

Prudent programmers debug their code by deducing its consequences for specific inputs.

This task also provided evidence for the role of simulation. With no access to the railway

environment and without being allowed to write anything down, naive individuals in Experiment

3 were able to infer the results of carrying out the four sorts of algorithm on trains containing six

cars. As the theory predicts, the difficulty of making the deductions depended, not on numbers

of moves or cars to be moved, but on the complexity of the algorithms, which varied from

reversing the order of cars to the more complex faro shuffle (see Table 1).

 The evidence we have reported supports the theory of the simulation using kinematic

mental models. It provides a unified account of the abduction of algorithms and the deductions

Mental simulations 20

of their consequences. As far as we know, no other theory of naive reasoning about algorithms

exists. Probabilities hardly enter the process and so Bayesian theories of reasoning may be

irrelevant (5). But, a theory could be developed from an axiomatization of the railway domain in

logic (6). The difficulties for this approach are to frame a complete set of axioms in a way that

captures both what changes and what does not change with each move (48), and to ensure that

the resulting system makes the correct predictions about human performance.

 As we mentioned in the Introduction, psychologists hold almost all possible views about

mental representations, from the claim that they are not needed for intelligent behavior (16) to

the competing views that they are either abstract strings of symbols (18) or rooted in sensory

modalities (19). Our results seem impossible to explain without invoking mental representations,

and, most plausibly, kinematic models with an iconic structure that corresponds to the railway

environment. These models may be mapped into visual images or they may be as abstract as

they are in mAbducer (see 4, 12). Individuals can reason from models without forming visual

images from them, and evidence suggests that images impede reasoning (13). Of course, it does

not follow that all reasoning depends on simulating the world: a person can learn to use formal

rules of inference. Likewise, it does not follow that all mental representations are iconic models

(49). The model theory itself relies on another sort of representation to capture the meaning of

an assertion, which it then uses to construct models (50).

 Mathematicians, logicians, and computer programmers reason about the repeated loops of

operations in algorithms. Previous studies have examined how novice programmers try to

formulate such algorithms in a programming language (e.g., 23-27). But, as computer scientists

often complain, no valid test exists to predict the ability of naive individuals as computer

programmers (51). The results show that individuals differ reliably in their ability to abduce

Mental simulations 21

informal algorithms and to deduce the consequences of these algorithms. It remains to be seen

whether such tasks, which depend on mental simulation, are reliable predictors of ability in

programming. But, the evidence corroborates the theory that naïve individuals use mental

simulations to create informal algorithms, even those containing loops of operations, and to infer

their consequences.

Methods

Experiment 1. Twenty undergraduate students at Princeton University served as participants

(mean age of 19.7 years), and none had had any prior training in logic or computer science. The

participants were tested individually, and carried out the experiment on a PC running LispWorks

4.4. They interacted with the system using the mouse and the keyboard of the computer. They

were shown a three-minute instructional video that guided them through the elements of the

railway environment, and that presented the instructions. The problems showed the initial state

with the cars on the left track, and the required goal state with the cars on the right track. The

participants made moves using a mouse to control a graphical interface. The key instruction

stated that they should try to solve each problem with as few moves as possible. They acted as

their own controls and carried out all 24 problems, which were presented in a different random

order to each of them.

Experiment 2. Twenty participants from the same population as before were tested individually.

The session began with five practice problems akin to those in Experiment 1, which the

participants had to solve by interacting with the railway system. These problems were unrelated

to the experimental problems, and each of them used a train of 6 cars with a solution of 8 moves.

The experiment proper followed, and the participants’ task was to type out a procedure that

Mental simulations 22

would solve each problem, but they could not interact with the railway environment or write

anything down. They carried out two blocks of trials, one with problems for trains of 8 cars and

one with problems for trains of any length, i.e., a total of 6 trials. The blocks were presented in a

counterbalanced order to two groups of participants. The order of the three sorts of

rearrangement was randomized for each participant within each block. For the problems with

trains of any length, the participants were told that a car containing an ellipsis stood in place for

any number of cars that had the same pattern. They were free to use their own words in any way

that they wanted. Two independent judges – one of the authors and a research assistant – scored

the informal algorithms in terms of whether were correct or incorrect, and whether they

contained a while-loop or a for-loop. The two judges agreed 93% about the accuracy of the

algorithms (111 out of 120 problems, Cohen's κ = .82). The judges agreed 83% about the nature

of the loops in the algorithms (99 out of 120 problems, Cohen's κ = .73). A third independent

judge resolved the discrepant evaluations in both cases.

Experiment 3. Fifty-four undergraduate psychology students from Warsaw University of Social

Science and Humanities took part in the experiment (mean age 21.6 years), and because logic is

obligatory in most Polish universities, over half of them had taken at least one course in logic.

Twenty-two participants were paid a small sum (equivalent to $2) for participating in the

experiment, and the rest took part in exchange for course credit. This difference had no reliable

effect on either of the dependent variables, and so we pooled the data from those two conditions.

Each participant carried out two versions of the reversal, palindrome, parity, and faro problems.

One version had cars labelled with letters, and one version had cars labelled with numbers. Each

description of an informal algorithm started and ended with the same phrases, and each

description contained 109 words in Polish (see SI 4 for the original descriptions and translations

Mental simulations 23

into English). The descriptions were presented in one of eight counterbalanced orders allocated

at random to the participants. The experiment was presented on a computer screen and the

students typed in their answers. They were instructed not to type their response until they knew

the position of all six cars on the right track, and they were not allowed to write anything down.

Acknowledgments

We thank Sam Glucksberg, Adele Goldberg, Geoffrey Goodwin, Louis Lee, David Lobina, Max

Lotstein, Paula Rubio, and Carlos Santamaría, for their advice. Our research was supported by a

National Science Foundation Graduate Research Fellowship to the first author, by the Polish Ministry of

Science and Higher Education Grant No. 2836/01/E/560/S/2012 to the second author, by the Italian

MIUR Grant No. 2010RP5RNM to the third author to study problem solving and decision making, and

by National Science Foundation Grant No. SES 0844851 to the fourth author to study deductive and

probabilistic reasoning.

References

Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:

701-703.

Johnson-Laird PN (1983) Mental Models (Cambridge University Press, Cambridge).

Bower GH, Morrow DG (1990) Mental models in narrative comprehension. Science 247: 44-48.

Hegarty M (2004) Mechanical reasoning as mental simulation. Trends Cogn Sci 8: 280- 285.

Oaksford M, Chater N (2007) Bayesian Rationality: The Probabilistic Approach to Human

Reasoning (Oxford University Press, New York).

Mental simulations 24

Rips LJ (1994) The Psychology of Proof (MIT, Cambridge, MA).

Khemlani S, Johnson-Laird PN (2012) Theories of the syllogism: A meta-analysis. Psychol

Bulletin 138: 427-457.

Johnson-Laird PN (2010) Mental models and human reasoning. Proc Natl Acad Sci USA 107:

18243–18250.

Peirce CS (1931-1958) Collected Papers of Charles Sanders Peirce. Vol 4, eds Hartshorne C,

Weiss P, Burks A (Harvard University Press, Cambridge, MA).

Johnson-Laird PN, Byrne RMJ (1991) Deduction (Erlbaum, Hillsdale NJ).

Schaeken WS, Johnson-Laird PN, d’Ydewalle G (1996) Mental models and temporal reasoning.

Cogn 60: 205-234.

Hegarty M, Stieff M, Dixon BL (2013) Cognitive change in mental models with experience in

the domain of organic chemistry. J Cogn Psychol 25: 220-228.

Knauff M, Fangmeier T, Ruff CC, Johnson-Laird PN (2003) Reasoning, models, and

 images: Behavioral measures and cortical activity. J Cogn Neurosci 4: 559-573.

Margolis E, Laurence S (2007) The ontology of concepts—abstract objects or mental

 representations? Noûs 41: 561-593.

Ramsey WM (2007) Representation Reconsidered. (MIT, Cambridge, MA).

Brooks R (1991) Intelligence without representation. Artif Intell 47: 139-160.

Thelen E, Smith LB (1994) A Dynamic Systems Approach to the Development of Cognition and

Action. (MIT, Cambridge, MA).

Pylyshyn Z (2003) Return of the mental image: Are there really pictures in the brain? Trends

Cognit Sci 7: 113–118.

Mental simulations 25

Barsalou, LW (2008) In Embodied Grounding: Social, Cognitive, Affective, and

 Neuroscientific Approaches, eds. Semin GR, Smith ER (Cambridge University Press,

New York), pp. 9–42.

Rogers H (1967) Theory of Recursive Functions and Effective Computability. (McGraw-Hill,

New York).

Cherubini P, Johnson-Laird PN (2004) Does everyone love everyone? The psychology of

 iterative reasoning. Thinking & Reasoning 10: 31-53.

Mazzocco K, Cherubini AM, Cherubini P (2013) On the short horizon of spontaneous iterative

reasoning in logical puzzles and games. Organ Behav Hum Dec Process in press.

Kurland DM, Pea, RD (1985) Children’s mental models of recursive LOGO programs. J Educat

Comp Res 1: 235-244.

Anderson, J R, Pirolli P, Farrell R (1988) In The Nature of Expertise, eds. Chi M, Glaser R, Farr

M (Erlbaum, Hillsdale NJ), pp 153-183.

Miller L (1974) Programming by non-programmers. Int J Man-Mach Stud 6: 237-260.

Miller L (1981) Natural language programming: Styles, strategies, and contrasts. IBM Sys J 20:

184-215.

Pane JF, Ratanamahatana CA, Myers BA (2001) Studying the language and structure in non-

programmers’ solutions to programming problems. Int J Human-Comp Stud 54: 237-264.

Simon HA (1975) The functional equivalence of problem-solving skills. Cognit Psychol 7: 268-

288.

Simon HA, Reed SK (1976) Modeling strategy shifts in a problem-solving task. Cognit

 Psychol 8: 86-97.

Mental simulations 26

Hopcroft JE, Ullman JD (1979) Introduction to Automata Theory, Languages, and Computation

(Addison-Wesley, Reading, MA).

Peirce CS (1955) Philosophical Writings of Peirce, ed Buchler J (Dover, New York).

Newell A (1990) Unified Theories of Cognition (Harvard University Press, Cambridge,

MA).

Lee NYL, Goodwin GP, Johnson-Laird PN (2008) The psychological problem of Sudoku.

Thinking & Reasoning 14: 342-364.

Halford GS, Wilson WH, Phillips S (1998) Processing capacity defined by relational complexity:

Implications for comparative, developmental, and cognitive psychology. Behav Brain Sci

21: 803-865.

Anderson JR, Betts S, Ferris JL, Fincham JM (2011) Cognitive and metacognitive activity in

mathematical problem solving: prefrontal and parietal patterns. Cogn Affective Behav

Neurosci 11: 52-67.

Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and reversals.

Soviet Physics Doklady 10: 707–710. (Originally published in Russian in: Doklady

Akademii Nauk SSSR 163: 845–848, 1965.)

Ragni M, Khemlani S, Johnson-Laird PN (2013) The evaluation of the consistency of quantified

assertions. Mem & Cog: in press.

Li M, Vitányi P (1997) An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed

(Springer-Verlag, New York).

Chater N, Vitányi P (2003) Simplicity: a unifying principle in cognitive science? Trends in

Cognit Sci 7: 19-22.

Mental simulations 27

Diaconis P, Graham RL, Kantor WM (1983) The mathematics of perfect shuffles. Adv Appl

Math 4: 175–196.

Koza JR (1994) Genetic Programming II: Automatic Discovery of Reusable Programs (MIT,

Cambridge, MA).

Flener P, Yilmaz S (1999) Inductive synthesis of recursive logic programs: Achievements and

prospects. J Logic Program 41: 141-195.

Gulwani, S. (2010). Dimensions in program synthesis. In Proceedings of the 12th International

ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (pp.

13-24). Hagenberg, Austria.

Johnson-Laird PN (2006) How We Reason (Oxford University Press, New York)

Nickerson RS (2008). Aspects of rationality (Psychology Press, New York).

Khemlani S, Lotstein M, Johnson-Laird PN (2012) The probability of unique events. PLOS-ONE

7: 1-9.

Gazdar G (1981) On syntactic categories. Phil Trans Royal Soc London, B 295: 267-283.

McCarthy J (1986) Applications of circumscription to formalizing common-sense knowledge.

Artif Intellig 28: 89-116.

Khemlani S, Orenes I, Johnson-Laird PN (2012) Negation. J Cogn Psychol 24: 541-559.

Khemlani S, Johnson-Laird PN (2012). The processes of inference. Argument and Computation,

1–17, iFirst.

Bornat, R, Dehnadi S, Simon (2008) Mental models, consistency and programming aptitude.

Proc Tenth Austral Comp Educ Conf 10: 53–61.

Mental simulations 28

Table 1. Examples of four sorts of rearrangements, the informal algorithms for trains of any

length that mAbducer discovered from simulating solutions, the total number of moves for each

example of 6 cars, their mean number of operands, their edit distance, and the Kolmogorov

complexities of the Lisp functions for re-arranging trains of any length.

Rearrangements
of ABCDEF

mAbducer’s informal algorithms No. of
moves

Mean no.
operands

Edit
distance

Kolmogorov
complexity

Reversal yields:
FEDCBA

Move one less than cars to siding.
While there are more than zero cars
on siding
 move one car to right track
 move one car to left track.
Move one car to right track.

12 1.3 6 1288

Palindrome
yields:
AFBECD

Move one less than half the cars to
siding.
While there are more than two cars on
left track
 move two cars to right track
 move one car to left track.
Move two cars to right track.

6 1.6 4 1295

Parity sort
yields:
ACEBDF

While there are more than two cars
on left track
 move one car to right track
 move one car to siding.
Move one car to right track.
Move one less than half the cars to
left track.
Move half the cars to right track.

7 1.4 4 1519

Faro shuffle
yields:
ADBECF

Set the number of operands to be
moved, n-of-s, to one less than half
the cars.
 Set the decrement to one.
 While n-of-s is more than zero,
 move one car to right track,
 move n-of-s cars to siding,
 move one car to right track,
 move n-of-s cars to left track,
 take decrement from n-of-s.
 Move two cars to right track.

9 1.3 4 1771

Mental simulations 29

Fig 1.

The railway environment with an example of an initial configuration in which a set of cars is on

the left side (A) of the track, the siding (B) can hold one or more cars while other cars are moved

to the right side of the track (C). The program allows individuals to select a car, e.g., the

highlighted “E” car, and to move it and all the cars in front of it to the siding or right track.

Mental simulations 30

Fig 2. The proportions of correct algorithms in Experiment 2 for trains of any length depending

on the sort of rearrangement and whether the participants carried out problems of trains of any

length in the first block (A) or the second one (B).

Mental simulations 31

Fig. 3. The percentages of correct algorithms for trains of any length and their mean latencies (in s)

depending on the sort of rearrangement, and the order of the two blocks.

	Abstract
	We present a theory, and its computer implementation, of how mental simulations underlie the abductions of informal algorithms and deductions from these algorithms. Three experiments tested the theory’s predictions, using a novel environment of a sin...

