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Companion Diagnostics and Cancer Biomarkers

BRAF V600E Is a Determinant of Sensitivity to Proteasome
Inhibitors

Davide Zecchin1,3, Valentina Boscaro2, Enzo Medico1,3, Ludovic Barault3, Miriam Martini1,3, Sabrina Arena3,
Carlotta Cancelliere3,4, Alice Bartolini3, Emily H. Crowley3, Alberto Bardelli1,3,4, Margherita Gallicchio2, and
Federica Di Nicolantonio1,3

Abstract
A critical step toward defining tailored therapy in patients with cancer is the identification of genetic

interactions that may impair—or boost—the efficacy of selected therapeutic approaches. Cell models able to

recapitulate combinations of genetic aberrations are important to find drug–genotype interactions poorly

affected by the heterogeneous genetics of human tumors. In order to identify novel pharmacogenomic

relationships, we employed an isogenic cell panel that reconstructs cancer genetic scenarios. We screened

a library of 43 compounds in human hTERT-HME1 epithelial cells in which PTEN or RB1 were silenced in

combination with the targeted knockin of cancer-associated mutations in EGFR, KRAS, BRAF, or PIK3CA

oncogenes. Statistical analysis and clustering algorithmswere applied todisplay similar drug responseprofiles

and mutation-specific patterns of activity. From the screen, we discovered that proteasome inhibitors show

selectivity toward BRAFV600E–mutant cells, irrespective of PTEN or RB1 expression. Preferential targeting of

BRAF-mutant cells byproteasome inhibitorswas corroborated in a secondBRAFV600E isogenicmodel, aswell

as in a panel of colorectal cancer cell lines by the use of the proteasome inhibitor carfilzomib. Notably,

carfilzomib also showed striking in vivo activity in a BRAF-mutant human colorectal cancer xenograft model.

Vulnerability to proteasome inhibitors is dependent on persistent BRAF signaling, because BRAF V600E

blockade by PLX4720 reversed sensitivity to carfilzomib in BRAF-mutant colorectal cancer cells. Our findings

indicated that proteasome inhibition might represent a valuable targeting strategy in BRAF V600E–mutant

colorectal tumors. Mol Cancer Ther; 12(12); 2950–61. �2013 AACR.

Introduction
Over the past decade, research has demonstrated that

the clinical benefit from targeted therapies is dependent
upon our knowledge of the presence of specific genetic
aberrations within the tumor (1–9). To maximize therapy
efficacy, treatmentmust be tailored to the geneticmilieu of

a specific tumor, to deliverwhat is referred to as ‘precision
medicine’.

This approach has led to progress in the treatment of
specific malignancies including breast cancers overex-
pressing or harboring amplified EGF receptor 2 (HER-
2) that can be successfully treated with trastuzumab (5).
In addition, lung cancers carrying specific mutations in
the EGF receptor (EGFR) are particularly sensitive to
the EGFR tyrosine kinase inhibitors gefitinib and erlotinib
(1–4). In addition, recent examples include selective clin-
ical activity of the BRAF inhibitors vemurafenib or dab-
rafenib in melanomas with BRAF V600E mutation (6, 7),
or the efficacy of the ALK inhibitor crizotinib for the
treatment of lung cancers carrying translocation of the
anaplastic leukemia kinase (ALK; refs. 8, 9).

However, only approximately 50% of patients with
BRAF-mutant melanoma, 30% of patients with HER2-
amplified breast cancer, and 60% of patients with
EGFR-mutant or ALK-translocated lung cancer respond
to blockade of the corresponding targets (1–9). Simple
binary relationships between genetic aberrations and
drug response are complicated in these cases by the
intricate genetic landscape of solid tumors (10). Indeed,
in most instances, multiple tumor suppressor mutations
and oncogene variants occur in the same solid tumor
[http://cancergenome.nih.gov/], and it is thought that,
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together, these molecular alterations contribute to
patients’ response to specific anticancer treatment. It
has been reported, for instance, that the sensitivity of
the EGFR-mutant lung cancer cells to EGFR tyrosine
kinase inhibitors is reduced by inactivation of PTEN
(11, 12). The activation of the phosphoinositide 3-kinase
(PI3K) pathway, defined by PTEN loss and/or PIK3CA
mutation, was also associated with poor response to
trastuzumab and shorter survival time in HER-2–positive
metastatic breast cancer (13, 14). This indicates that the
influence of tumor complex genetics on therapy response
warrants further consideration.
Nevertheless, there is a paucity of functional studies

that systematically evaluate the effect of complex geno-
types in the modulation of drug responses. We believe
that such experimental approaches are fundamental in
order to identify novel drug-genotype interactions that
are unaffected by the concomitant presence of other com-
mon genetic alterations. On the other hand, these studies
may improve our ability to predict response to existing
anticancer therapies based on the plethora of genetic
aberrations present in a solid tumor.
In this report, we employed a previously characterized

panel of isogenic human cell lines that recreate possible
molecular scenarios observed inhuman cancer (15).Using
a homologous recombination, we introduced the activat-
ing mutations EGFR delE746-A750, PIK3CA H1047R,
PIK3CA E545K, KRAS G13D, and BRAF V600E into the
genome of the nontransformed human cell line hTERT-
HME-1 (abbreviated as HME-1), which already harbors
the C176F on TP53. This TP53 mutation was previously
reported to impair the TP53 checkpoint response to gen-
otoxic stress in HME-1 cells (15). PTEN or RB1 tumor
suppressor genes have been systematically silenced in
these isogenic cell lines generating a combinatorial model
referred to as the "matrix" (See Supplementary Fig. S1).
Using the HME-1 matrix, we investigated the role of

single ormultiple cancer genetic alterations inmodulating
the response to antineoplastic drugs. This approach
uncovered a novel pharmacogenetic interaction between
proteasome inhibitors and the BRAF V600E allele.
The BRAF V600E mutation occurs in 5% to 8% of

advanced colorectal cancer samples. Patients with meta-
static colorectal cancer with BRAF-mutant tumors have a
poor prognosis and do not respond to BRAF inhibitors in
monotherapy (16, 17). Accordingly, the development of
therapeutic strategies for metastatic BRAF mutated colo-
rectal cancer represent an urgent and unmet clinical need.
We, therefore, elected toevaluate theactivityofproteasome
inhibitors in BRAF-mutant colorectal cancermodels. Final-
ly, we investigated the ability of selective BRAF targeted
agents to modulate response to the proteasome inhibitor
carfilzomib in BRAF-mutant colorectal cancer cells.

Materials and Methods
Cells and cell culture reagents
The HME-1 cell line was obtained from the American

Type Culture Collection (ATCC; LGC Standards S.r.l,

Milan, Italy) in October 2005. The CACO2, NCI-H716,
HuTu80, COLO201, SW1417, and LS411N cell lines were
purchased from the ATCC in June 2010; COLO320 and
HCA7wereobtained from theEuropeanCollectionofCell
Cultures (ECACC) in September 2009 (distributed by
Sigma-Aldrich Srl, Milan, Italy). CaR1 and OUMS23 cell
lines were purchased from the Japanese Collection of
Research Bioresources (JCRB) (Tokyo, Japan) in January
2011. TheHDC135 cell linewasobtained from theGerman
Collection of Microorganisms and Cell Cultures (DSMZ)
repository (Braunschweig, Germany) in November 2010.
The NCI-H630, KM20, and SNU-C5 cell lines were pur-
chased from the Korean Cell Bank (Seoul, Korea) in
February 2011. VACO432 and RKO cells were obtained
from Horizon Discovery (Cambridge, United Kingdom)
in March 2011. The LIM1215, LIM2405, and LIM2537 cell
lines (18, 19) were provided by Prof. R. Whitehead, Van-
derbilt University, Nashville, with permission from the
Ludwig Institute for Cancer Research,Melbourne branch,
Australia in August 2011. The DiFi and OXCO1 cell lines
were a kind gift from Dr J. Baselga in November 2004
(Oncology Department of Vall d’Hebron University Hos-
pital, Barcelona, Spain) and Dr V. Cerundolo in March
2010 (Weatherall Institute ofMolecularMedicine, Univer-
sity of Oxford, Oxford, United Kingdom), respectively.
The genetic identity of the cell lines used in this studywas
confirmed by STR profiling (Cell ID, Promega) no longer
than 6months before drug-profiling experiments.All cells
were cultured as previously described (15) or according to
the manufacturers’ instructions. All cell culture media
were supplemented with 10% FBS or 5% for HME-1
(Sigma-Aldrich), 50 U/mL penicillin, and 50 mg/mL
streptomycin. Geneticin (G418) was purchased from
Gibco and puromycin from Sigma-Aldrich.

Construction of isogenic models
The generation of theHME-1matrix has been previous-

ly reported (15). All experimental procedures for BRAF
V600E targeting vector construction, adeno-associated
virus (AAV) production, cell infection, and screening for
recombinants have been described previously (20, 21).

Drug proliferation assay
Parental and mutated cells were seeded in 100 mL

complete growth medium at a density of 3 � 103 cells/
well in 96-well plastic culture plates.After serial dilutions,
100 mL of drugs in serum-freemediumwere added to cells
with a multichannel pipette. Vehicle- and medium-only–
containing wells were added as controls. Plates were
incubated at 37�C in 5% CO2 for 96 hours, after which
cell viability was assessed by ATP content using the
CellTiter-Glo Luminescent Assay (Promega). To account
for clonal variability, two independent isogenic knockin
(KI) clones infected with scramble short hairpin RNA
(shRNA), or with shRNAs targeting PTEN or RB1 were
tested. All luminescence measurements [indicated as rel-
ative light units (RLU)] were recorded by the Victor X4
Multilabel Plate Reader (PerkinElmer). In Supplementary
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Table S1, we have reported a list of tested compounds,
their chemical formula, their molecular weight (MW), the
solvent used for suspension, the concentration of stock
solutions, the concentrations tested in the experiments,
and the storage conditions used for the stock. Each com-
pound was preliminarily tested on HME-1 parental cells
infected with scramble shRNA to determine the concen-
tration referred to as the highest no-observed effect level
(NOEL), the IC50, and the IC90 values, as previously
reported (20). The three concentrations of each compound
tested on the entire isogenic cell panelwere selected on the
basis of these premises.

Proteasome activity assay
Proteasome activitywas assayedusing Proteasome-Glo

Chymotrypsin-Like Cell-Based Assay (Promega). Cells
were seeded 16hours prior to drug treatment. Proteasome
activity was measured after 2-hour incubation with
proteasome inhibitors, according to the manufacturer’s
instructions.

SDS-PAGE and Western blot analysis
Cell lysates were prepared in boiled Laemmli buffer

(2.5% SDS, 125 mmol/L Tris–HCl, pH 6.8). Lysates were
sonicated, cleared by centrifugation at 14,000 rpm for 10
minutes at room temperature, and the supernatant con-
taining soluble protein was removed. The protein con-
centration of the supernatant was determined by micro-
BCA protein assay (Pierce). An equal amount (25 mg) of
whole-cell lysate per lane was boiled in lithium dodecyl
sulfate (LDS) buffer and reducing agent, according to the
manufacturers’ instructions, and separated by SDS-PAGE
on 10% precasted polyacrylamide mini-gels (Invitrogen).
The separated lysates were then transferred to a nitrocel-
lulose membrane. The blot was incubated with blocking
buffer [Tris-buffered saline (TBS)–10% BSA] for 1 hour at
room temperature and incubated overnight with the pri-
mary antibody (diluted according to the manufacturer’s
instructions in TBS–5% BSA) at 4�C. The blot was then
washed 3 times for 10 minutes in washing buffer (TBS
containing 0.2% Tween 20), incubated with secondary
antibody horseradish peroxidase (HRP)-conjugate (Sig-
ma; diluted 1:10,000–1:2,000) and washed a further 3
times. ECL solution (EnhancedChemioluminescence Sys-
tem, Amersham) was then added to the filter, and the
chemiluminescent signal was acquired by the LAS4000
Image reader (Fujifilm). Antibodies used for immunoblot-
ting were: anti-P21, anti-PARP, anti-PTEN, and anti-RB1
(Cell Signaling Technology); anti-EGFR (clone 13G8, Enzo
Life Sciences); anti-Ubiquitin (Santa Cruz Biotechnology);
and anti–actin (Sigma-Aldrich).

Pharmacology data analysis ("Pharmarray")
Cell viability at each drug concentration was initially

normalized to vehicle-treated cells for each cell line, and
triplicate observations within the same experiment were
averaged. We then calculated, within each experiment,
the drug response as follows: we considered the differ-

ence between the Log2 viability of the parental cell line
and the Log2 viability of a given mutant/genotype. All
drug concentrations were tested on each cell line at least 3
times. Drug responses associated to a given mutant and
obtained in individual experiments were considered as
distinct entities in the subsequent clustering analysis.
Similarly, responses to different concentrations of each
compound were analyzed as distinct elements in the
clustering experiments. All data were clustered and visu-
alized using the publicly available GEDAS software
(ref. 22; http://sourceforge.net/projects/gedas).

An array of data was generated in which the red color
indicates higher sensitivity (i.e., lower Log2 viability
respect to the parental cell line) of a given mutant to a
specific drug concentration whereas the green color indi-
cates lower sensitivity (i.e., higherLog2viability respect to
the parental cell line).

The genotypes of the cell lines tested in individual
experiments were displayed on the horizontal axis, and
we performed an unsupervised, average linkage hierar-
chic clustering by an uncentered Pearson correlation coef-
ficient. Different drug concentrations were listed in the
vertical axis and clustered by the C-means Fuzzy algo-
rithm using an average cosine correlation coefficient. The
different clustering metrics were chosen based on the
results of the clustering optimization tool included in
GEDAS.

Combination effects of PLX4720 and carfilzomib were
assessed using the method established by Poch and col-
leagues (23). We elected to employ the methods of Poch
and colleagues as they propose a corrective factor for
dose–response curves having a slope different from 1,
such as those shown by PLX4720 in most BRAF-mutant
colorectal cancer cell lines. For this reason, the Poch
method results in a more accurate estimation of combi-
nation effects when the agents show a relatively flat dose–
response curve.

Statistical analysis
Unsupervised clustering analysis was paralleled by

statistical evaluation of the genotype-specific differences
of the drug responses performed by a t test. Specifically,
the statistical test compared the responses of the different
mutant cell lines to a given compound with the response
of the wild-type (WT) scramble control cells. With this
aim, a heteroscedastic two-tailed t test was employed for
all mutants as well as for all compounds (see Supplemen-
tary Table S2 for the complete list of t tests). In the other
experiments, statistically significant differences between
groups were determined by using the heteroscedastic
Student two-tailed t test. A P value less than 0.05 was
considered statistically significant.

Xenograft studies
All animal procedures were approved by the Ethical

Commission of the Institute for Cancer Research and
Treatment and by the Italian Ministry of Health. RKO
cells were injected subcutaneously into the right posterior
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flanks of 7-week-old female CD-1 nude mice (six animals
per group; Charles River, Calco, Italy). Tumor volumes
were determined using [D � (d2)]/2, in which D repre-
sents the largest diameter of the tumor, and d represents
the largest perpendicular volume to D. When tumors
reached a volume of approximately 200 to 250 mm3, mice
were randomly assigned to treatment with vehicle or
drug. For in vivo experiments, carfilzomibwas formulated
in an aqueous solution of 10% (w/v) sulfobutylether-b-
cyclodextrin (Captisol, a free gift from CYDEX Pharma-
ceuticals Inc) and 10 mmol/L sodium citrate (pH 3.5).
Carfilzomib solutions were diluted daily with vehicle
before tail-vein injections. Carfilzomib was administered
on days 1, 2, 8, 9, 15, and 16 in 28-day cycles at a dose of
4 mg/kg.

Results
The isogenic "matrix" of genotypes recapitulates
known interactions between drugs and multiple
genetic alterations
We initially assessedwhether theHME-1 cellularmatrix

could recapitulate pharmacogenomic relationships previ-
ously established experimentally and clinically.
Previous research showed that EGFR kinase inhibitors

are more effective in cells carrying EGFR mutations, but
the concomitant loss of PTEN impairs this response
(11, 12).
Therefore, we focused on HME-1 isogenic cell lines KI

for the EGFR E746-A750 allele and on their isogenic
counterpart lacking PTEN expression. We evaluated the
genotype-dependent response of these models to EGFR
tyrosine kinase inhibitors as a test case.
We observed that erlotinib, canertinib, and lapatinib,

classified as inhibitors of theHER family receptor tyrosine
kinase, as well as the dual EGFR–VEGFR inhibitor van-
detanib affected the growth ofHME-1 isogenic cell lines in
which the EGFR E746-A750 allele was knocked in. Con-
comitant inactivation of PTEN partially rescued this phe-
notype (Fig. 1A and B).
In addition, we observed that the KI of BRAF V600E

allele conferred resistance to EGFR inhibitors (Fig. 1A)
confirming previous findings (24, 25).
These results indicate that HME-1 isogenic models

harboring multiple genetic alterations can recapitulate
complex drug–genotype relationships found in patients.

Drug screening of isogenic cell lines carrying
combinations of genetic alterations
Next, we exploited the isogenic HME-1 matrix to seek

novel pharmacogenetic interactions.
We assembled a library of 43 compounds (Supple-

mentary Table S3), including: (i) molecules targeting
tyrosine kinase receptors (RTK) or their effectors (e.g.,
anti-HERs, anti-MEK, anti-SRC, anti-AKT, anti-mTOR);
(ii) compounds that do not target members of the RTK
signaling pathways, but are employed as anticancer
therapies (PARP, proteasome, HSP90 inhibitors, epige-

netic modulators); (iii) drugs in clinical use aside from
cancer therapy but that have been shown to have anti-
proliferative and antineoplastic activity (indomethacin,
statins). Most of the drugs included in the list are
approved by the U.S. Food and Drug Administration
(FDA)/European Medicines Agency (EMA) or are un-
dergoing clinical trials in patients with cancer.

Each compound was tested on parental HME-1 cells
and on their derivatives infected with a scramble (non-
target) shRNA to verify whether and to what extent
infection by lentivirus impacted drug response. No sig-
nificant differences in response were detected (data not
shown). Furthermore, no significant differenceswere also
observed when we evaluated the effect of lentiviral infec-
tion on proliferation of the KI cells carrying oncogenic
mutations inKRAS, BRAF, PIK3CA, orEGFR as compared
with their WT counterpart (Supplementary Fig. S2).
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Figure 1. HME-1–mutant cells display drug responses resembling those
of tumors carrying equivalent mutations. A, the effect of erlotinib,
canertinib, vandetanib, or lapatinib treatment on cellular proliferationwas
assessed for HME-1 isogenic clones carrying the indicated mutations.
Drugswere used at the given concentrations. Cell viability was estimated
by determining ATP content in three replicate wells. Results are
normalized to the growth of cells treated with dimethyl sulfoxide (DMSO)
and are represented as mean � SEM of at least three independent
experiments. B, multiple concentrations of erlotinib were tested on HME-
1 isogenic clones carrying the indicated mutations. Cell viability was
evaluatedbydeterminingATPcontent in three replicatewells. Results are
normalized to the growth of cells treatedwithDMSO, and are represented
as mean � SD of one representative experiment out of three. P values
were determined by Student t test. �, P < 0.01; ��, P < 0.001.
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The matrix was subsequently assayed for drug
responses by a proliferation assay, using at least three
drug concentrations and two clones for each different KI
genotype. All drugs were tested at least 3 times on each
cell line. Drug responses of mutant cells were normalized
to the response of parental scramble HME-1 as described
in the Materials and Methods section. Normalized data
was then clustered and plotted on an array using the
GEDAS software (22). This approach was previously
developed and described for the analysis of differential
drug activity in KI isogenic models and is defined as a
"Pharmarray" (20). Cell lines and drugs were clustered on
the basis of their response profile. The entire analyzed
dataset is shown in Supplementary Fig. S3. Magnification
of a drug cluster is shown in Fig. 2 as a relevant example.
The Pharmarray analysis revealed that, in most cases, the
genotypes sharing a KI mutation or a knocked down
tumor suppressor gene were clustered together.

The presence of these clusters suggested that the geno-
type of HME-1 isogenic models strongly influenced the
pattern of response of these cells to the compounds.

BRAF-mutant isogenic HME-1 cells show increased
sensitivity to proteasome inhibitors

The cluster of drugs in Fig. 2 preferentially inhibited the
PIK3CA E545K, KRAS G13D, and BRAF V600E mutated
genotypes. Intriguingly, this cluster of compounds
included three different concentrations of the proteasome
inhibitor bortezomib. We focused further on the effect of
this compound toward BRAF-mutant cells, as this drug–
genotype interaction was the most novel in our panel and
of potential translational relevance. Indeed, no influence
of PTEN or RB1 knockdown on bortezomib activity was
observed in the cluster.

The preferential targeting of HME-1 BRAF KI clones by
proteasome inhibitors was confirmed using the nonboro-
nic agent carfilzomib (Fig. 3A and B). These results point-
ed at proteasome per se as a key molecular determinant of
the pharmacologic response.

In order to elucidate the relationship between BRAF
mutated cell lines and proteasome inhibitors, we mea-
sured the amount of ubiquitinated proteins following
bortezomib treatment. We found that BRAF-mutant cells
accumulated more ubiquitinated protein with respect to
the WT counterpart (Fig. 3C). This was also observed
following carfilzomib treatment (Supplementary Fig. S4).

Treatment of HME-1 BRAF V600E with clinically rele-
vant concentrations of bortezomib resulted in increased
p21 levels and PARP cleavage (Fig. 3C). Proteasome inhi-
bitors appear, therefore, to elicit a greater growth inhibitory
and apoptotic response in BRAF V600E KI cell lines likely
due to an accumulation in ubiquitinated protein.

Increased accumulation of ubiquitinated protein in
BRAF KI cell lines following treatment with proteasome
inhibitors may be due to a higher basal proteasome
activity in these cells. To investigate this hypothesis, we
measured the proteasome activity in WT versus BRAF
V600E cell lines under basal conditions and following

proteasome inhibitor treatment. To this aim,we employed
a cell-based proteasome activity assay, which determines
the chymotrypsin-like activity associated with intact pro-
teasomes toward a luminogenic peptide substrate. We
showed that BRAF mutated HME-1 had higher basal
chymotrypsin-like activity with respect toWT cells under
basal conditions. Bortezomib treatment reduced activity
to comparable levels in all isogenic cell lines (Fig. 3D). The
greater fold inhibition of proteasome activity correlates
with the increased rate of ubiquitinylated protein accu-
mulation in BRAF V600E with respect to the WT.

BRAF-mutant colorectal cancer cells display
increased sensitivity to proteasome inhibitors

We then elected to assess the interaction between BRAF
inhibitors and response to proteasome inhibitors in colo-
rectal cancer, a malignancy in which the BRAF mutation
confers poor prognosis in the metastatic setting. To this
end, we generated a BRAF V600E isogenic cell line using
LIM1215 cells, which are WT for KRAS, BRAF, and
PIK3CA (18, 26). Using a previously developed method-
ology (20), we infected LIM1215 cells with a recombinant
adeno-associated viral vector carrying the BRAF V600E
allele. After selection,we isolated two independent clones
in which the mutation was introduced (KI) by homolo-
gous recombination in heterozygosity under the gene’s
own promoter. Bortezomib and carfilzomib preferentially
inhibited the growth ofBRAFKI cloneswith respect to the
parental counterpart (Fig. 4A and B). This confirmed that
our findings in the breast cancerHME-1matrix can also be
applied to the colorectal cancer cell line LIM1215.

Taking advantage of recent molecular profiling efforts
in which the genomic landscape of a large panel of cell
lines were characterized (27, 28), we sought to further
validate this pharmacogenomic relationship using 12
colorectal cancer cell lines harboring BRAF V600E muta-
tions. In addition, we selected eight colorectal cancer cell
lines WT for BRAF and KRAS as negative controls. We
independently verified by Sanger sequencing the muta-
tional status of selected hotspots, includingBRAF exon 15,
KRAS exons 2-3-4,NRAS exons 2–3, and PIK3CA exons 9–
20.Weobserved that colorectal cancer cell lineswithBRAF
V600Emutations were particularly responsive to carfilzo-
mib, whereasWT cells were significantly less affected (P <
0.05; Fig. 4C). In addition, we showed that sensitivity to
carfilzomib is independent of the PTENor RB1 expression
status in colorectal cancer cell lines (Fig. 4D).

These results confirmed that oncogenic BRAF is a novel
determinant of sensitivity to proteasome inhibitors. How-
ever, the presence of few outlier nonresponder cell lines
highlighted the potential influence of additional factors,
beyond PTEN or RB1 in shaping drug response.

We have recently proposed that EGFR expression can
be a determinant of resistance to BRAF orMEK inhibitors
in BRAF-mutant colorectal cancer cells (29). We asked
whether EGFR expression could also be related to the
lack of activity of the proteasome inhibitor in some colo-
rectal cancer models. However, we did not detect any
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association between response to carfilzomib and EGFR
expression in this panel of cancer cells, independently
from BRAF status (Fig. 4D).

Next, we sought to investigate whether the addiction
of BRAF-mutant cells to proteasome function was depen-
dent upon the activity of the BRAF V600E–mutant
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protein. To this aim, two BRAF-mutant colorectal cancer
lines sensitive to proteasome inhibition (SNU-C5 and
LS411N) were treated with carfilzomib and with the
BRAF V600E inhibitor PLX4720, alone or in combina-
tion. Indeed, PLX4720 cotreatment impaired the
response to the proteasome inhibitor and antagonism
between these drugs was observed in both cell lines
(Fig. 5). These findings suggest that the persistent acti-
vation of BRAF V600E signaling is required for the

activity of proteasome inhibitors in BRAF-mutant colo-
rectal cancer cell lines.

Finally, we tested the in vivo efficacy of the proteasome
inhibitor carfilzomib as single agent on BRAF-mutant
xenografts. To this aim, we used immunodeficient mice
xenografted with human RKO cells. Nineteen days after
cell injection, palpable tumorswere present in all animals,
and cohorts of mice were treated with vehicle or
carfilzomib. Figure 6A shows that treatment of mice with
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carfilzomib generally elicited a potent growth inhibition
of RKO colorectal cancer tumors. Moreover, proteasome
inhibitor promoted severe shrinkage in most of the indi-
vidual treated tumors (Fig. 6B). These encouraging results
support the clinical testing of carfilzomib inBRAF-mutant
metastatic patients with colorectal cancer.

Discussion
Establishing pharmacogenomic relationships between

genetic aberrations and targeted therapies is an important
goal for researchers and clinicians in the era of "precision
medicine". However, the presence of a single genetic
lesion that is known to be a potential driver of malignant
proliferation in aparticular cancerdoesnot alwayspredict
a priori response to treatment. Indeed, recent clinical

evidence has indicated that combinations of genetic
alterations within the same tumor can influence drug
response (12, 14). Thus, the development of a model in
which mutations can be systematically combined and
tested for drug sensitivity or resistance is of increasing
importance.

Several previous studies have attempted to unveil
cancer pharmacogenomic relationships. Isogenic cell
models able to effectively recapitulate single genetic
aberrations have been employed extensively to establish
binary drug–genotype associations (20, 30, 31). Never-
theless, limited efforts have been dedicated to dissect
the role of combinations of mutations in determining
drug response. Among these studies, it is worth men-
tioning the use of isogenic cell lines to evaluate the
influence of KRAS or TP53 status on the sensitivity to
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specific anticancer therapies in defined genetic back-
grounds (32–35).

This report aimed to identify new pharmacogenomic
relationships by screening 43 selected compounds on a
panel of isogenic models harboring multiple cancer asso-
ciated alterations. In comparison with previous studies,
two major improvements have been implemented. First,
we employed epithelial human cell models that closely
recapitulated combinations of cancer mutations. Indeed,
KI of nucleotide changes in oncogenes and knockdown of
tumor suppressor genes were coupled to build a genetic
‘matrix’ in the human breast epithelial cell line HME-1
(15). The advantage of this matrix is that expression levels
of mutant oncoproteins are similar to levels observed in
human tumors, as they are controlled by endogenous
genomic elements. Second, we screened a panel of 43
selected compounds, including a number of last genera-
tion and FDA-approved targeted therapies, to maximize
the translational impact of the screening outcome.

The "Pharmarray" approach that we previously devel-
oped (20) was then applied to analyze the drug screening
profiles of the combinatorial HME-1 ‘matrix’ (15). By the
use of the cell matrix, previous observations that EGFRKI
cells show increased sensitivity to the EGFR kinase inhi-
bitors gefitinib and erlotinib (20) were extended to novel
HER-targeted agents such as vandetanib, canertinib, and
lapatinib. Consistent with previous studies, this pheno-
type was partially rescued by the silencing of the PTEN
tumor suppressor gene, confirming that ourmodel system
can recapitulate complexpharmacogenomic relationships

found in lung tumors (12). We envision that the use of
more dedicated methods of analysis of the Pharmarray
data will unveil other similar interactions in which the
drug response is impacted by PTEN or RB1 silencing in
specific KI genotypes. Indeed, those relationships might
become evident by systematically analyzing drug
responses normalized versus different genotypes instead
of WT cells.

However, in the present work, we aimed to show novel
pharmacogenomic relationships thatwere not significant-
ly affected by the concomitant inactivation of the tumor
suppressor genes analyzed in the matrix. Pharmarray
analysis showed that the BRAF-mutant cells were prefer-
entially targeted by the proteasome inhibitor bortezomib
independently from the silencing of PTEN or RB1.

The genotype-specific activity of bortezomib was cor-
roborated by the use of an irreversible proteasome inhib-
itor, carfilzomib, suggesting that this effect was due to
target inhibition and not to peculiar pharmacologic prop-
erties of bortezomib. Interestingly, this pharmacogenomic
relationship was also observed in KRAS G13D–mutant
cells albeit less pronounced than inBRAFV600E cells. Our
results, therefore, support claims that proteasome inhibi-
tors, such as MG132 and bortezomib, display synthetic
lethality with respect to KRAS mutations in cancer cells
(36).

Selective targeting ofBRAF-mutant cells by proteasome
inhibitors was not affected by concomitant inactivation of
PTEN or RB1 tumor suppressors. This is different from
what was previously reported for BRAF/MEK inhibitors
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as concomitant mutational inactivation of PTEN or RB1
diminished response to those agents in melanomas har-
boring BRAF V600E (37). Therefore, targeting the protea-
some may represent a valuable alternative to BRAF or
MEK kinase inhibition for the treatment of BRAF-mutant
tumors harboring PTEN or RB1 alterations.
BRAF inhibitors showed poor activity also in BRAF

mutated metastatic colorectal cancer (17, 29), and novel
treatment strategies are required to improve treatment
options and survival in such patients.
Although bortezomib was the first proteasome inhibitor

to showantitumor activity against a variety of hematologic
malignancies, it demonstrated poor efficacy as a single
agent in both phase 1 and 2 trials on a broad range of solid
tumors, including colorectal cancer (38–40). Carfilzomib is
the first new-generation FDA-approved proteasome inhib-
itor. Differently from bortezomib, carfilzomib is an irre-
versible inhibitor, characterized by a potent and persistent
proteasome inhibition and greater selectivity for the chy-
motrypsin-like activity of the proteasome (41). It showed
antitumor activity on xenografted cancer cell lines origi-
nating from solid tumors (42). A phase 1 study of carfilzo-

mibhas shown that it iswell toleratedwith consecutiveday
dosing (43), and a phase 1b/2 study on relapsed solid
tumors is ongoing [http://www.clinicaltrials.gov].

For the abovementioned reasons, we sought to confirm
the preferential targeting of BRAF-mutant cells by carfil-
zomib in cancermodels of colorectal cancer origin. Impor-
tantly, we demonstrated that carfilzomib preferentially
inhibited the growth of mutant BRAF with respect to the
WT colorectal cancer cell lines, corroborating the results
obtained in the isogenic models. Carfilzomib exhibited a
potent antineoplastic activity as single agent also in vivoon
the RKO BRAF-mutant colorectal cancer cell line.

The encouraging results from preclinical trials and the
findings reported in this work suggest that new-genera-
tion irreversible proteasome inhibitors may represent a
valuable approach to target colorectal cancer cells harbor-
ing the BRAF V600E mutation.

It should be acknowledged that our screening showed
exceptions to the selective targeting of BRAF-mutant
colorectal cancer cells by carfilzomib. We believe that the
characterization of those outliers is important to under-
stand the basis of the genotype-specific inhibition by
antiproteasome compounds. In addition, this approach
mayhelp in better defining the subset of patients thatmost
likely would benefit from antiproteasome treatments
because there are currently no predictive biomarkers for
this class of agents.

We hypothesized that some of those exceptions may be
explained by known mechanisms of resistance to BRAF
inhibitors in BRAF-mutant colorectal cancer cells. It was
shown that EGFR expression confers primary resistance to
BRAF inhibition in BRAF V600E–mutant colorectal cancer
(29). Nevertheless, EGFR expression did not correlate with
sensitivity to proteasome inhibitors in our cell panel.
Another hypothesis relies on the observation that BRAF-
mutant colorectal cancer samples are frequently associated
to microsatellite instable (MSI) phenotype (44). As many
BRAF-mutant cell lines employed in the present study are
MSI, including the LIM1215 KI BRAF isogenic models, we
cannot rule out the possibility thatmicrosatellite instability
contribute together with BRAFV600Emutation to increase
the sensitivity to proteasome inhibition.

To our knowledge, this is the first report to show that
proteasome inhibition could act preferentially on cancer
cells with oncogenic BRAF. Mechanistically, we speculate
that BRAF-mutant cells may experience a nononcogenic
addiction to the proteasome function because the protein
degradation mediated by the ubiquitin–proteasome sys-
tem is needed to counterbalance the proteotoxic stress
induced by the mutant protein. Indeed, different onco-
genes havebeen associated toproteotoxic stress responses
(45) and phenomena of nononcogenic addiction to
the proteasome activity have been shown also for
KRAS-mutant cells (36, 46). The evidence that—following
proteasome blockade—a higher accumulation rate of ubi-
quitinated proteins occurred in mutant cells with respect
to theWT supports our model. Importantly, in support of
our hypothesis,we also showed that the dependence from
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proteasome function is dependent upon the persistence of
BRAF V600E activity.

In conclusion, we have shown that isogenic models in
the "matrix" described in this article can be exploited for
synthetic lethality screenings to identify drugs that are
selectively toxic for cancer cells carrying complex tumor
genotypes. Indeed, this analysis led to the identification of
the new, potentially relevant drug–genotype correlation
between BRAF mutation and proteasome inhibition.

We acknowledge that combinations of multiple drugs
are often needed to maximize the antitumor effect and to
delay the onset of resistance (47). The next challenge of
personalized medicine will be tailoring the right combina-
torial therapy to the right complex tumorgenotype. Indeed,
approaches to perform high-throughput screenings of
combinations of compounds have been published and
showed remarkable results also in the analysis of BRAF-
mutantmelanomacells (48, 49). Therefore,weenvision that
the screeningofdrugcombinationson specific components
of thematrix, such as genotypesharboringBRAFmutation,
will represent a valuable strategy to unveil more effective
therapy–genotype correlations.
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Supplementary Figure S1 

     Scramble shRNA PTEN shRNA RB1shRNA 
HME-1 parental 
KI BRAF V600E  
KI EGFR del746-750  
KI KRAS G13D  
KI PIK3CA E545K 
KI PIK3CA H1047R 

A 

B 

Supplementary Figure S1. 
A. Genotypes included in the combinatorial genetic matrix. The chart shows how the 
aberrations are combined in a “matrix”. Every symbol corresponds to a different KI or 
shRNA vector. In rows are reported the parental genetic background or the knocked-in 
mutations (represented by squares), in columns are reported shRNAs used to infect cells 
(represented by circles). HME-1 cells were used as a background 
B. PTEN or RB1 were silenced by shRNA in isogenic KI cells. Knockdown levels were 
evaluated by western blot analysis of the target proteins. Protein levels in shRNA-infected 
cells were compared to those observed in cells infected with the scramble non-target 
shRNA (SCRA) 
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Supplementary figure S2 
Comparison of the proliferation rates of the ‘matrix’ isogenic cellular models. Average cell 
number at each time point (days from seeding are reported on the x axis) was estimated 
by determining ATP content in quadruplicate wells. Data are represented as fold change in 
the mean±SD of three independent experiments. RLUs, relative light units. 
  



Supplementary 
Figure S3 

Scramble shRNA PTEN shRNA RB1shRNA 
HME-1 parental 
KI BRAF V600E  
KI EGFR del746-750  
KI KRAS G13D  
KI PIK3CA E545K 
KI PIK3CA H1047R 



Supplementary figure S3 
Pharmarray analysis of the isogenic cellular matrix. The cell line genotype is 
shown on the horizontal axis at the top of the array. Genotypes are defined 
according to the color code indicated in the legend. Cells carrying the 
indicated genetic alterations were clustered using a hierarchical un- 
supervised algorithm; Drugs were clustered on the vertical axis using un- 
supervised C-means Fuzzy algorithm. For each compound the lowest 
concentration used was annotated with the number 1, intermediate 
concentration with 2 and the highest with 3. The drug name is followed by the 
molecular target on which the compound is reported to act (in brackets). The bar 
below drug clusters indicates the probability of membership of each element to that 
cluster, with blue color annotating high probability and black low probability. Red- 
colored boxes indicate drugs that, at the indicated concentrations, 
preferentially inhibited the growth of mutated cells, whilst green boxes show 
compounds to which mutated cells were more resistant compared to the wild 
type counterpart. Black boxes indicate no significant difference in response 
between mutant and parental cells, whilst grey boxes indicate experiments not 
performed.  



Supplementary Figure S4 

HME-1 WT HME-1 KI BRAFV600E 

Supplementary figure S4  
Biochemical effects induced by treatment with carfilzomib 200nM were tested by 
Western Blot on HME-1 wild type or BRAF KI. Cells were incubated with the drug 
for the times indicated on the upper part of the panel. Antibody against actin was 
used as a loading control.  
Densitometric quantification of the ubiquitin smears are divided by the intensity of 
the respective actin bands, normalized to the sample HME-1 WT NT and reported 
above the lanes.  
H, hours. 

1   1.4    1.9   2.7   1.1  1.5   2.3  3.1 
+ Carfilzomib 200nM 



Drug Formula MW Supplier solvent STOCK Tested Storage
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-4.698970004
-7.38552463391;
-6.38552463391;
-5.385524634
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-4.26760624
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-7.52287874528;
-6.522878745
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-5.920818753952;
-5.318758763
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-5.346787486225;
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-6; 
-5.69897000434;
-5.397940009
-5.301029995664;
-4.698970004336;
-4.096910013
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-4.744727495
-6.602059991328;
-6.124938736608;
-5.647817482
-6.301029995664;
-5.823908740944;
-5.346787486
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-5.471726222833;
-5.295634964
-6;
-5;
-4
-5.49485002168;
-4.795880017344;
-4.096910013
-6.698970004336;
-5.397940008672;
-4.096910013
-6.455931955649;
-5.756961951314;
-5.057991947
-6.301029995664;
-5.823908740944;
-5.346787486
-8.397940008672;
-7.397940008672;
-6.397940009
-6.602059991328;
-5.301029995664;
-4
-5.698970004336;
-5.221848749616;
-4.744727495
-6.301029995664;

-20°C

Lapatinib (GW572016) C29H26ClFN4O4S 581.06 Sequoia DMSO 20 -20°C

L744832 C26H45N3O6S2·2HCl

-20°C

XL-765 C31H29N5O6S 599.66 Selleck DMSO 10 -20°C

GDC-0941 C23H27N7O3S2·2CH3SO3H  705.83 AXON 
Medchem DMSO 20

-20°C

NVP-BEZ235 C30H23N5O 469.55 AXON 
Medchem DMSO 5 -20°C

Saracatinib (AZD0530) C27H32ClN5O5 542.03 Sequoia DMSO 20

-20°C

Bosutinib C26H29Cl2N5O3 530.4 Sequoia DMSO 10 -20°C

AZD6244 (selumetinib;
ARRY-142886) C17H15BrClFN4O3

PLX4720 C17H14ClF2N2O3S 413.83 Selleck DMSO 50 -20°C

632.7 Alexis DMSO 20

457.69 Selleck DMSO 20

Supplementary table S1.
List of compounds employed in the present work. Chemical formulas, the molecular weights (MW), the solvents used for suspension, 
the concentrations of stock solutions, the concentrations tested in the experiments and the storage conditions used for the stock are 
also reported.

-20°C

PHA-665752 C32H34Cl2N4O4S 641.61 Tocris DMSO 20 -20°C

BMS-536924 C25H26ClN5O3 479.96 Selleck DMSO 20

-20°C

-20°CNVP-AEW541  C27H29N5O 439.55 Selleck DMSO 10

Cediranib C25H27FN4O3 450.51 Selleck DMSO 10

-20°C

Vatalanib C20H15ClN4 · 2HCl 419.7 ChemieTek H2O 20 -20°C

Sorafenib C21H16ClF3N4O3·C7H8O3S 637 Sequoia DMSO 20

-20°C

Sunitinib C22H27FN4O2·C4H6O5 532.5 Sequoia H2O 20 -20°C

Vandetanib (ZD6474) C22H24BrFN4O2 475.36 Sequoia DMSO 20

  4°C

Canertinib (CI-1033) C24H25ClFN5O3 485.94 AXON 
medchem DMSO 20 -20°C

Trastuzumab  C6470H10012N1726O2013S42 148058 Hospital 
Pharmacy

Ready 
to use 0.14184

-20°C

Cetuximab C6484H10042N1732O2023S36 145782 Hospital 
Pharmacy

Ready 
to use 0.01372   4°C

Erlotinib C22H23N3O4 489.5 Sequoia DMSO 20



Drug Formula MW Supplier solvent STOCK Tested Storage
-5.698970004336;
-5.096910013
-6.602059991328;
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-5.602059991
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-6;
-4;
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-5.301029995664
-8;
-7;
-6
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-5.790484985457;
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-7.397940008672;
-6.698970004336;
-6
-9.903089986992;
-8.602059991328;
-7.301029996
-7;
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-5
-4.841637507905;
-4.364516253185;
-3.887394998465
-4.091514981121;
-3.614393726402;
-3.137272472
-5.356547323514;
-4.356547323514;
-3.356547324
-7;
-6.301029995664;
-5.602059991
-6.45593195565;
-5.853871964322;
-5.251811973
-5.823908740944;
-5.221848749616;
-4.619788758
 -2.82390874094;
-2.221848749616;
-1.619788758

-20°C

Olaparib (AZD2281) C24H23FN4O3 435.08 Selleck DMSO 20 -20°C

BI-2536 C28H39N7O3

Decitabine C8H12N4O4 228.21 Sequoia DMSO 20

Thalidomide C13H10N2O4 258.2 LKT 
Laboratories DMSO 0.7776

Prepare 
before 
using

521.66 AXON 
Medchem

Prepare 
before 
using

Metformin C4H11N5·HCl 165.62 Sigma Medium 200

Prepare 
before 
using

Rosuvastatin (C22H27FN3O6S)2Ca 1001.1 SRP MeOH 25
Prepare 
before 
using

Atorvastatin C66H68CaF2N4O10 1153.6 SRP MeOH 10

-20°C

OSU-03012 C26H19F3N4O 460.5 Echelon DMSO 10 -20°C

Indomethacin C19H16ClNO4 357.7 Sigma m DMSO 200

-20°C

Lenalidomide C13H13N3O3 259.26 Selleck DMSO 20 -20°C

Elesclomol C19H20N4O2S2 400.5 Selleck DMSO 20

-20°C

Obatoclax C20H19N3O·CH4O3S 413.49 Cayman 
Chemicals DMSO 20 -20°C

STF-62247 C15H13N3S 267.35 Selleck DMSO 20

-20°C

GW 843682X C22H18F3N3O4S 477.46 AXON 
Medchem DMSO  20 -20°C

DMSO 10

VX-680 C23H28N8OS 464.59 Sequoia DMSO 10

Prepare 
before 
using

Vorinostat (SAHA) C14H20N2O3 264.3 Selleck DMSO 20 -20°C

Valproic Acid C8H15NaO2 166.2 LKT 
Laboratories Medium 200

-20°C

NVP TAE 684 C30H40ClN7O3S 614.22 AXON 
Medchem DMSO 20 -20°C

Bortezomib C19H25BN4O4 384.24 Sequoia DMSO 20

-80°C

17-AAG C31H43N3O8 585.7 ChemieTek DMSO 2 -20°C

Everolimus C53H83NO14 958.22 Sigma DMSO 20

-20°C

MK-2206 C25H23Cl2N5O 480.39 Selleck DMSO 20 -20°C

Perifosine C25H53NO4P 462.66 Selleck Water 20

-20°C



Drug Name Olaparib Olaparib Olaparib Elesclomol Elesclomol Elesclomol MK-2206 MK-2206 MK-2206 Lenalidomide Lenalidomide Lenalidomide Metformin Metformin Metformin GW843682X GW843682X GW843682X 

Conc 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Rb180210.17 0.018 0.113 0.480 0.492 0.456 0.658 0.589 0.550 0.509 0.369 0.659 0.302 0.082 0.111 0.055 0.197 0.091 0.118
PTEN80210.1 0.013 0.002 0.050 0.047 0.714 0.645 0.369 0.725 0.458 0.872 0.385 0.570 0.679 0.919 0.259 0.116 0.418 0.391

PI3Kex9-1 SCRAMBLE 0.772 0.192 0.109 0.239 0.000 0.000 0.114 0.037 0.255 0.418 0.653 0.496 0.124 0.040 0.001 0.000 0.010 0.158

PI3Kex9-2 SCRAMBLE 0.362 0.242 0.240 0.389 0.019 0.031 0.042 0.050 0.865 0.356 0.739 0.100 0.713 0.083 0.046 0.032 0.146 0.505
PI3Kex20-1 
SCRAMBLE 0.005 0.102 0.551 0.269 0.285 0.332 0.341 0.223 0.033 0.758 0.423 0.966 0.852 0.468 0.267 0.819 0.528 0.612
PI3Kex9-1+Rb1 0.427 0.010 0.045 0.214 0.001 0.000 0.384 0.147 0.096 0.379 0.812 0.110 0.089 0.060 0.251 0.001 0.060 0.165
PI3Kex9-2+Rb1 0.276 0.084 0.118 0.341 0.001 0.000 0.579 0.096 0.270 0.046 0.972 0.009 0.002 0.204 0.584 0.021 0.013 0.291
PI3Kex20-1+Rb1 0.369 0.320 0.700 0.619 0.757 0.972 0.590 0.145 0.048 0.799 0.031 0.000 0.022 0.005 0.275 0.054 0.008 0.041
PI3Kex9-1+PTEN 0.363 0.024 0.245 0.566 0.000 0.000 0.723 0.173 0.048 0.337 0.528 0.591 0.605 0.374 0.007 0.114 0.022 0.064
PI3Kex9-2+PTEN 0.399 0.000 0.084 0.379 0.000 0.000 0.241 0.040 0.075 0.236 0.264 0.406 0.085 0.425 0.017 0.000 0.008 0.664
PI3Kex20-1+PTEN 0.003 0.295 0.979 0.514 0.031 0.151 0.529 0.087 0.001 0.734 0.471 0.018 0.208 0.316 0.029 0.543 0.611 0.313
KRAS 1 SCRAMBLE 0.642 0.312 0.445 0.296 0.002 0.021 0.724 0.873 0.411 0.173 0.104 0.008 0.023 0.024 0.099 0.002 0.000 0.000
KRAS 2 SCRAMBLE 0.107 0.062 0.019 0.854 0.692 0.356 0.339 0.581 0.165 0.097 0.598 0.605 0.005 0.000 0.002 0.000 0.000 0.438
KRAS 1 Rb1 0.597 0.628 0.994 0.900 0.000 0.002 0.612 0.236 0.669 0.247 0.184 0.103 0.056 0.033 0.113 0.001 0.001 0.000
KRAS 2 Rb1 0.829 0.676 0.482 0.072 0.013 0.010 0.408 0.430 0.681 0.362 0.685 0.052 0.190 0.009 0.027 0.208 0.180 0.223
KRAS 1 PTEN 0.459 0.505 0.836 0.958 0.000 0.010 0.826 0.937 0.909 0.091 0.350 0.136 0.249 0.110 0.003 0.021 0.042 0.011
KRAS 2 PTEN 0.930 0.829 0.428 0.518 0.051 0.108 0.223 0.536 0.768 0.483 0.661 0.324 0.549 0.030 0.001 0.111 0.151 0.095
EGFR 1 SCRAMBLE ND ND ND 0.128 0.000 0.007 ND 0.071 ND 0.810 0.598 0.010 0.728 0.232 0.044 ND ND 0.023
EGFR 2 SCRAMBLE ND ND ND 0.490 0.000 0.000 0.318 0.165 0.040 0.297 0.558 0.057 0.399 0.038 0.001 0.032 0.002 0.174
EGFR 1 Rb1 ND ND ND 0.800 0.000 0.003 ND 0.178 ND 0.712 0.842 0.013 0.031 0.222 0.106 ND ND 0.032
EGFR 2 Rb1 ND ND ND 0.569 0.000 0.000 0.205 0.337 0.066 0.496 0.317 0.375 0.052 0.003 0.051 0.000 0.000 0.037
EGFR 1 PTEN ND ND ND 0.061 0.005 0.000 ND 0.167 ND 0.940 0.645 0.000 0.026 0.000 0.177 ND ND 0.000
EGFR 2 PTEN ND ND ND 0.217 0.000 0.000 0.000 0.208 0.233 0.145 ND ND 0.664 0.917 0.494 ND ND 0.679
BRAF 1 SCRAMBLE 0.355 0.502 0.099 0.864 0.000 0.000 0.820 0.557 0.635 0.545 0.048 0.005 0.320 0.039 0.000 0.266 0.289 0.656
BRAF 2 SCRAMBLE 0.134 0.008 0.103 0.274 0.132 0.000 0.967 0.485 0.435 0.470 0.961 0.332 0.133 0.027 0.189 0.049 0.011 0.019
BRAF 1 Rb1 ND ND ND 0.034 0.002 0.000 0.561 0.772 0.885 0.897 0.447 0.462 0.706 0.307 0.000 0.155 0.159 0.476
BRAF 2 Rb1 ND ND ND 0.609 0.124 0.002 0.781 0.816 0.613 0.988 0.975 0.585 0.250 0.079 0.432 0.026 0.002 0.000
BRAF 1 PTEN 0.168 0.020 0.357 0.407 0.019 0.114 0.097 0.016 0.004 0.891 0.006 0.000 0.125 0.940 0.000 0.914 0.367 0.603
BRAF 2 PTEN 0.000 0.005 0.800 0.179 0.167 0.805 0.244 0.104 0.485 0.030 0.832 0.608 0.370 0.307 0.408 0.045 0.011 0.005

Supplementary Table S2.
List of t-tests p values comparing the responses of the different mutant cell lines to a given drug concentration with the response of the WT Scramble control cells.  The genotypes of the cell lines are 
listed on the vertical axis and they are highlighted with different colors according to the KI genotype. Drugs are listed on the horizontal axis. For each compound the lowest concentration used was 
annotated with the number 1, the median concentration with 2 and the highest with 3. Cells reporting p values lower than 0.05 are highlighted in red.



OSU-03012 OSU-03012 OSU-03012 NVP-
AEW541 

NVP-
AEW541 

NVP-
AEW541 

Canertinib Canertinib Canertinib STF-62247 STF-62247 STF-62247 BMS-536924 BMS-536924 BMS-536924 XL-765 XL-765 XL-765 Obatoclax Obatoclax 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
0.481 0.885 0.694 0.821 0.786 0.592 0.714 0.703 0.936 0.233 0.426 0.577 0.979 0.420 0.031 0.110 0.478 0.175 0.808 0.279
0.488 0.385 0.984 0.413 0.581 0.655 0.742 0.608 0.138 0.644 0.098 0.199 0.772 0.851 0.940 0.305 0.925 0.941 0.504 0.600

0.454 0.865 0.292 0.960 0.077 0.002 0.162 0.139 0.028 0.003 0.361 0.054 0.049 0.061 0.040 0.311 0.493 0.388 0.788 0.133

0.118 0.001 0.611 0.877 0.999 0.317 0.006 0.003 0.000 0.452 0.837 0.028 0.095 0.038 0.002 0.953 0.158 0.805 0.913 0.110

0.614 0.220 0.082 0.945 0.853 0.231 0.477 0.572 0.210 0.018 0.449 0.514 0.004 0.003 0.022 0.274 0.101 0.059 0.149 0.117
0.528 0.642 0.114 0.644 0.178 0.000 0.601 0.280 0.202 0.835 0.231 0.068 0.215 0.133 0.034 0.338 0.420 0.515 0.568 0.516
0.203 0.439 0.798 0.373 0.632 0.253 0.070 0.000 0.009 0.591 0.024 0.285 0.029 0.004 0.000 0.408 0.110 0.987 0.044 0.316
0.425 0.849 0.070 0.204 0.401 0.861 0.849 0.042 0.009 0.117 0.683 0.210 0.052 0.065 0.017 0.965 0.715 0.835 0.815 0.331
0.546 0.092 0.246 0.367 0.169 0.000 0.132 0.028 0.020 0.812 0.007 0.125 0.111 0.104 0.062 0.342 0.337 0.746 0.737 0.017
0.200 0.304 0.506 0.217 0.303 0.020 0.002 0.000 0.033 0.392 0.212 0.419 0.064 0.040 0.015 0.762 0.195 0.837 0.146 0.048
0.894 0.998 0.066 0.962 0.543 0.857 0.177 0.000 0.000 0.000 0.179 0.480 0.611 0.415 0.290 0.681 0.031 0.073 ND ND
0.109 0.426 0.941 0.680 0.077 0.066 0.169 0.000 0.000 0.187 0.705 0.000 0.906 0.747 0.044 0.839 0.996 0.561 0.753 0.783
0.823 0.661 0.604 0.627 0.425 0.133 0.037 0.000 0.003 0.625 0.197 0.029 0.037 0.012 0.047 0.100 0.297 0.149 0.602 0.948
0.363 0.816 0.672 0.952 0.315 0.115 0.367 0.001 0.000 0.511 0.345 0.000 0.619 0.185 0.045 0.434 0.930 0.072 0.687 0.657
0.432 0.442 0.568 0.501 0.844 0.308 0.147 0.000 0.000 0.164 0.012 0.002 0.740 0.586 0.025 0.035 0.522 0.194 0.699 0.676
0.253 0.593 0.066 0.288 0.003 0.000 #DIV/0! 0.000 0.000 0.720 0.145 0.002 0.937 0.924 0.036 0.861 0.764 0.149 0.954 0.766
0.347 0.134 0.816 0.235 0.166 0.001 0.218 0.000 0.000 0.305 0.210 0.007 0.254 0.998 0.005 0.124 0.430 0.181 0.712 0.925
0.893 0.024 0.939 0.389 ND ND ND 0.000 ND ND 0.259 0.059 ND ND ND 0.000 0.000 0.002 0.070 ND
0.148 0.007 0.065 0.186 0.013 0.063 0.142 0.000 0.001 0.015 0.767 0.271 0.558 0.799 0.846 0.561 0.347 0.448 0.179 0.002
0.030 0.065 0.118 0.970 ND ND ND 0.001 ND ND 0.429 0.163 ND ND ND 0.288 0.090 0.340 0.077 ND
0.643 0.001 0.124 0.068 0.007 0.024 0.008 0.000 0.002 0.011 0.862 1.000 0.494 0.556 0.490 0.858 0.433 0.283 0.400 0.004
0.494 0.031 0.069 0.531 ND ND ND 0.000 ND ND 0.148 0.038 ND ND ND 0.321 0.049 0.004 0.011 ND
0.379 0.093 0.064 ND ND ND 0.669 0.250 ND 0.219 0.409 0.563 ND ND ND 0.346 0.212 0.621 0.902 0.005
0.643 0.417 0.617 0.241 0.297 0.001 0.407 0.001 0.000 0.174 0.758 0.100 0.029 0.020 0.005 0.827 0.244 0.245 0.789 0.094
0.248 0.091 0.458 0.324 0.960 0.405 0.108 0.001 0.000 0.175 0.779 0.016 0.719 0.480 0.857 0.838 0.576 0.503 0.382 0.775
0.416 0.950 0.588 0.000 0.007 0.000 0.251 0.000 0.000 0.246 0.488 0.003 0.099 0.125 0.006 0.967 0.333 0.722 0.672 0.261
0.730 0.025 0.996 0.545 1.000 0.476 0.009 0.002 0.002 0.122 0.716 0.010 0.104 0.885 0.323 0.600 0.544 0.655 0.358 0.541
0.686 0.130 0.312 0.931 0.539 0.023 0.433 0.000 0.000 0.620 0.184 0.012 0.177 0.300 0.000 0.810 0.270 0.197 0.873 0.054
0.448 0.371 0.386 0.823 0.519 0.445 0.111 0.000 0.000 0.422 0.940 0.000 0.057 0.024 0.136 0.490 0.530 0.483 0.526 0.275



Obatoclax BI-2536 BI-2536 BI-2536 Decitabine Decitabine Decitabine SAHA SAHA SAHA Valproic Acid Valproic Acid Valproic Acid Cediranib Cediranib Cediranib Vatalanib Vatalanib Vatalanib NVP TAE 
684 

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
0.375 0.856 0.499 0.656 0.650 0.827 0.840 0.891 0.840 0.537 0.157 0.798 0.920 0.572 0.837 0.851 0.888 0.216 0.081 0.554
0.487 0.596 0.495 0.146 0.834 0.517 0.715 0.252 0.465 0.553 0.184 0.628 0.938 0.882 0.697 0.735 0.846 0.235 0.177 0.914

0.199 0.599 0.365 0.453 0.013 0.046 0.274 0.149 0.186 0.817 0.607 0.583 0.114 0.315 0.658 0.092 0.474 0.820 0.000 0.079

0.280 0.362 0.710 0.095 0.054 0.509 0.439 0.366 0.491 0.388 0.767 0.976 0.184 0.510 0.656 0.000 0.098 0.652 0.127 0.043

0.363 0.415 0.649 0.004 0.388 0.507 0.694 0.470 0.524 0.329 0.569 0.278 0.486 0.423 0.977 0.002 0.378 0.696 0.244 0.544
0.484 0.861 0.922 0.750 0.765 0.054 0.009 0.234 0.294 0.541 0.353 0.811 0.095 0.765 0.455 0.059 0.336 0.760 0.117 0.142
0.434 0.597 0.737 0.104 0.775 0.287 0.308 0.184 0.421 0.964 0.069 0.704 0.083 0.843 0.674 0.000 0.302 0.225 0.001 0.075
0.329 0.274 0.989 0.435 0.382 0.390 0.745 0.880 0.655 0.779 0.917 0.742 0.675 0.385 0.632 0.684 0.682 0.026 0.000 0.643
0.150 0.685 0.682 0.610 0.971 0.143 0.012 0.498 0.724 0.305 0.178 0.220 0.093 0.390 0.375 0.000 0.699 0.521 0.776 0.198
0.201 0.422 0.814 0.231 0.171 0.538 0.876 0.335 0.871 0.887 0.194 0.785 0.091 0.922 0.834 0.000 0.465 0.567 0.729 0.120
ND 0.097 0.074 0.886 0.466 0.014 0.090 0.164 0.163 0.374 0.204 0.072 0.060 0.609 0.346 0.809 0.907 0.024 0.949 0.763

0.794 0.273 0.006 0.020 0.564 0.231 0.398 0.129 0.161 0.729 0.382 0.190 0.054 0.201 0.443 0.024 0.290 0.169 0.369 0.761
0.351 0.524 0.000 0.102 0.230 0.973 0.340 0.991 0.104 0.242 0.877 0.124 0.077 0.725 0.350 0.649 0.344 0.865 0.866 0.921
0.722 0.381 0.044 0.054 0.183 0.266 0.633 0.948 0.352 0.602 0.156 0.158 0.072 0.857 0.430 0.014 0.506 0.446 0.275 0.619
0.810 0.769 0.006 0.404 0.238 0.020 0.226 0.366 0.682 0.656 0.300 0.165 0.167 0.456 0.727 0.452 0.892 0.924 0.573 0.164
0.888 0.357 0.024 0.218 0.709 0.634 0.725 0.711 0.389 0.027 0.306 0.063 0.052 0.879 0.661 0.008 0.432 0.624 0.910 0.691
0.197 0.624 0.002 0.311 0.566 0.783 0.165 0.131 0.916 0.053 0.002 0.029 0.193 0.540 0.924 0.673 0.402 0.974 0.311 0.919
0.060 0.054 ND 0.662 0.479 0.049 0.174 0.128 0.079 0.332 0.719 0.053 0.562 ND ND ND 0.053 0.091 0.000 0.205
0.040 0.054 0.010 0.004 0.051 0.000 0.014 0.271 0.098 0.000 0.221 0.062 0.082 0.540 0.106 0.119 0.262 0.205 0.358 0.423
0.032 0.095 ND 0.872 0.678 0.516 0.868 0.161 0.030 0.411 0.065 0.591 0.603 ND ND ND 0.027 0.035 0.005 0.381
0.210 0.799 0.004 0.000 0.146 0.001 0.010 0.058 0.000 0.012 0.019 0.047 0.053 0.457 0.964 0.003 0.371 0.206 0.207 0.347
0.134 0.286 ND 0.024 0.774 0.948 0.593 0.069 0.000 0.224 0.104 0.227 0.239 ND ND ND 0.014 0.062 0.003 0.463
0.090 0.857 0.391 ND 0.818 0.259 0.036 0.221 0.001 0.111 0.416 0.028 0.106 ND 0.555 0.934 0.648 0.962 0.841 0.316
0.755 0.059 0.629 0.029 0.067 0.080 0.513 0.834 0.104 0.001 0.272 0.891 0.672 0.658 0.893 0.556 0.901 0.481 0.684 0.880
0.342 0.829 0.016 0.958 0.375 0.114 0.047 0.276 0.053 0.240 0.699 0.460 0.298 0.964 0.064 0.324 0.090 0.324 0.272 0.907
0.809 0.459 0.044 0.216 0.102 0.370 0.816 0.158 0.021 0.184 0.436 0.780 0.993 0.772 0.896 0.090 0.173 0.002 0.369 0.121
0.588 0.957 0.028 0.396 0.706 0.203 0.169 0.631 0.162 0.462 0.659 0.696 0.538 0.183 0.099 0.603 0.318 0.280 0.140 0.744
0.127 0.212 0.502 0.700 0.018 0.603 0.534 0.151 0.125 0.099 0.713 0.615 0.617 0.072 0.792 0.348 0.190 0.491 0.544 0.928
0.805 0.644 0.001 0.000 0.456 0.067 0.197 0.266 0.153 0.034 0.668 0.143 0.265 0.470 0.340 0.308 0.612 0.446 0.616 0.688



NVP TAE 
684 

NVP TAE 
684 

saracatinib saracatinib saracatinib L744832 L744832 L744832 GDC-0941 GDC-0941 GDC-0941 NVP-BEZ235 NVP-BEZ235 NVP-BEZ235 Perifosine Perifosine Perifosine Bosutinib Bosutinib Bosutinib

2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
0.627 0.899 0.026 0.134 0.002 0.997 0.282 0.790 0.723 0.786 0.732 0.286 0.736 0.870 0.784 0.590 0.820 0.846 0.730 0.376
0.956 0.856 0.062 0.015 0.461 0.099 0.053 0.392 0.350 0.514 1.000 0.396 0.737 0.907 0.861 0.081 0.780 0.540 0.029 0.164

0.010 0.016 0.153 0.000 0.001 0.041 0.484 0.317 0.181 0.011 0.817 0.163 0.669 0.403 0.616 0.722 0.479 0.355 0.004 0.000

0.000 0.038 0.003 0.037 0.000 0.000 0.000 0.885 0.780 0.820 0.007 0.351 0.447 0.080 0.790 0.298 0.054 0.021 0.002 0.000

0.017 0.075 0.007 0.021 0.004 0.376 0.349 0.001 #DIV/0! #DIV/0! #DIV/0! 0.171 0.200 0.935 0.708 0.267 0.266 0.008 0.031 0.000
0.058 0.024 0.615 0.000 0.029 0.095 0.370 0.782 0.047 0.000 0.262 0.502 0.972 0.392 0.987 0.908 0.485 0.166 0.002 0.000
0.000 0.022 0.007 0.001 0.009 0.003 0.000 0.776 0.004 0.268 0.109 0.484 0.436 0.004 0.779 0.604 0.046 0.003 0.000 0.000
0.086 0.040 0.006 0.001 0.001 0.702 0.295 0.003 ND ND ND 0.158 0.947 0.884 0.576 0.793 0.628 0.011 0.006 0.005
0.044 0.002 0.875 0.173 0.047 0.259 0.652 0.398 0.008 0.024 0.594 0.415 0.610 0.372 0.568 0.555 0.482 0.005 0.001 0.000
0.007 0.013 0.017 0.003 0.000 0.000 0.012 0.865 0.001 0.162 0.959 0.192 0.836 0.097 0.736 0.949 0.481 0.083 0.098 0.000
0.480 0.332 0.546 0.258 0.071 0.000 0.000 0.554 ND ND ND 0.851 0.126 0.939 0.124 0.083 0.459 0.003 0.000 0.002
0.812 0.893 0.000 0.023 0.036 0.062 0.044 0.000 0.519 0.491 0.039 0.059 0.764 0.217 0.755 0.748 0.642 0.110 0.044 0.101
0.410 0.061 0.029 0.064 0.019 0.100 0.116 0.008 0.055 0.051 0.001 0.621 0.928 0.078 0.047 0.002 0.045 0.000 0.000 0.055
0.800 0.867 0.000 0.003 0.000 0.056 0.052 0.000 0.981 0.465 0.001 0.469 0.300 0.320 0.702 0.872 0.389 0.158 0.046 0.002
0.782 0.660 0.000 0.003 0.000 0.303 0.559 0.010 0.208 0.232 0.003 0.929 0.933 0.497 0.058 0.037 0.063 0.001 0.004 0.000
0.283 0.731 0.000 0.086 0.082 0.299 0.354 0.000 0.646 0.976 0.763 0.510 0.854 0.008 0.437 0.832 0.821 0.286 0.401 0.000
0.169 0.253 0.008 0.043 0.043 0.893 0.673 0.002 0.481 0.610 0.013 0.692 0.519 0.461 0.153 0.000 0.073 0.002 0.004 0.000
ND 0.709 0.683 ND 0.002 0.000 0.057 0.006 0.318 0.127 0.000 ND 0.174 0.104 ND 0.055 0.895 0.019 0.032 0.928

0.499 0.175 0.215 0.036 0.008 0.010 0.013 0.914 0.270 0.087 0.421 0.074 0.361 0.011 0.740 0.284 0.067 0.083 0.000 0.001
ND 0.342 0.765 ND 0.478 0.275 0.118 0.001 0.325 0.114 0.000 ND 0.175 0.055 ND 0.123 0.659 0.967 0.431 0.958

0.457 0.214 0.048 0.470 0.856 0.006 0.000 0.195 0.000 0.021 0.130 0.730 0.282 0.006 0.842 0.008 0.056 0.143 0.001 0.000
ND 0.523 0.312 ND 0.000 0.142 0.008 0.003 0.648 0.264 0.000 ND 0.178 0.012 ND 0.001 0.427 0.003 0.001 0.420

0.382 0.530 0.615 0.802 0.258 ND ND ND 0.321 0.231 0.689 ND 0.562 0.121 0.376 0.165 0.092 0.822 0.662 0.258
0.285 0.393 0.005 0.000 0.000 0.676 0.916 0.004 0.000 0.010 0.066 0.461 0.804 0.241 0.600 0.816 0.549 0.330 0.020 0.683
0.978 0.189 0.217 0.106 0.003 0.310 0.397 0.789 0.187 0.017 0.098 0.521 0.907 0.471 0.618 0.908 0.323 0.811 0.169 0.568
0.016 0.061 0.327 0.004 0.038 0.805 0.029 0.583 0.536 0.883 0.328 0.000 0.323 0.018 0.790 0.966 0.418 0.856 0.155 0.636
0.594 0.312 0.770 0.358 0.054 0.451 0.236 0.032 0.242 0.210 0.174 0.942 0.628 0.100 0.800 0.882 0.447 0.988 0.001 0.272
0.582 0.796 0.042 0.000 0.014 0.274 0.381 0.001 ND ND ND 0.143 0.269 0.936 0.138 0.714 0.400 0.061 0.060 0.015
0.296 0.320 0.002 0.000 0.000 0.675 0.377 0.276 0.433 0.622 0.587 0.627 0.086 0.425 0.452 0.634 0.286 0.010 0.000 0.457



PHA-665752 PHA-665752 PHA-665752 AZD6244 AZD6244 AZD6244 PLX4720 PLX4720 PLX4720 Bortezomib Bortezomib Bortezomib Lapatinib Lapatinib Lapatinib Vandetanib Vandetanib Vandetanib Trastuzumab Trastuzumab

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
0.361 0.872 0.093 0.724 0.812 0.191 0.459 0.774 0.966 0.920 0.566 0.234 0.441 0.651 0.663 0.577 0.433 0.371 0.572 0.396
0.576 0.506 0.529 0.003 0.044 0.018 0.413 0.980 0.834 0.977 0.805 0.859 0.441 0.936 0.724 0.538 0.338 0.383 0.460 0.371

0.252 0.374 0.054 0.536 0.165 0.628 0.611 0.853 0.686 0.908 0.009 0.783 0.547 0.564 0.265 0.273 0.085 0.541 0.752 0.586

0.284 0.310 0.022 0.707 0.001 0.002 0.033 0.007 0.514 0.057 0.002 0.000 0.700 0.046 0.716 0.255 0.011 0.012 0.927 0.672

0.524 0.110 0.000 0.408 0.113 0.815 0.014 0.183 0.352 0.236 0.379 0.555 0.306 0.061 0.096 0.765 0.461 0.295 0.315 0.033
0.711 0.442 0.002 0.476 0.164 0.724 0.384 0.939 0.542 0.514 0.065 0.920 0.433 0.573 0.332 0.177 0.022 0.553 0.502 0.866
0.608 0.316 0.105 0.002 0.000 0.002 0.112 0.011 0.603 0.208 0.036 0.000 0.289 0.017 0.244 0.163 0.002 0.002 0.619 0.890
0.782 0.115 0.005 0.095 0.013 0.378 0.771 0.361 0.469 0.390 0.683 0.534 0.030 0.128 0.113 0.688 0.010 0.115 0.056 0.019
0.817 0.520 0.238 0.527 0.040 0.546 0.553 0.931 0.826 0.388 0.205 0.848 0.972 0.538 0.418 0.727 0.128 0.438 0.732 1.000
0.549 0.550 0.327 0.005 0.755 0.430 0.167 0.084 0.256 0.238 0.031 0.745 0.870 0.736 0.631 0.315 0.018 0.400 0.453 0.487
0.292 0.126 0.000 0.207 0.013 0.153 ND ND ND 0.358 0.015 0.161 0.863 0.300 0.094 0.819 0.096 0.422 0.601 0.676
0.083 0.907 0.248 0.056 0.086 0.594 0.081 0.609 0.123 0.820 0.014 0.074 0.633 0.154 0.101 0.079 0.040 0.014 0.009 0.254
0.192 0.638 0.001 0.000 0.002 0.086 0.000 0.065 0.353 0.733 0.989 0.670 0.971 0.017 0.219 0.000 0.001 0.002 0.502 0.386
0.494 0.337 0.085 0.133 0.181 0.300 0.307 0.707 0.090 0.959 0.015 0.007 0.527 0.030 0.096 0.203 0.022 0.022 0.541 0.935
0.719 0.275 0.000 0.002 0.033 0.058 0.096 0.989 0.881 0.397 0.778 0.585 0.997 0.060 0.411 0.012 0.000 0.006 0.191 0.467
0.144 0.966 0.001 0.098 0.255 0.477 0.108 0.162 0.066 0.162 0.262 0.129 0.201 0.721 0.092 0.255 0.120 0.084 0.148 0.661
0.621 0.637 0.493 0.073 0.004 0.041 0.185 0.467 0.744 0.193 0.107 0.842 0.561 0.096 0.133 0.005 0.000 0.015 0.484 0.732
0.068 0.000 ND 0.122 0.056 0.081 0.719 0.610 0.776 0.306 ND 0.770 0.801 0.447 0.900 0.823 ND 0.002 0.196 ND
0.317 0.524 0.342 0.038 0.008 0.220 0.616 0.023 0.023 0.542 0.474 0.389 0.082 0.019 0.091 0.023 0.000 0.001 0.481 0.406
0.000 0.000 ND 0.208 0.019 0.123 0.559 0.514 0.575 0.217 ND 0.774 0.206 0.472 0.716 0.704 ND 0.674 0.000 ND
0.402 0.555 0.083 0.051 0.006 0.795 0.328 0.000 0.016 0.509 0.386 0.046 0.312 0.001 0.108 0.233 0.009 0.002 0.822 0.443
0.000 0.000 ND 0.106 0.110 0.097 0.630 0.273 0.962 0.099 ND 0.848 0.159 0.343 0.768 0.448 ND 0.072 0.009 ND
0.382 0.423 0.008 0.358 0.218 0.008 ND ND ND ND ND ND ND ND ND 0.853 0.102 0.048 ND ND
0.228 0.408 0.000 0.825 0.217 0.157 0.567 0.933 0.698 0.048 0.000 0.000 0.365 0.014 0.971 0.232 0.000 0.000 0.163 0.258
0.870 0.045 0.005 0.239 0.043 0.040 0.719 0.193 0.433 0.329 0.008 0.002 0.472 0.724 0.291 0.463 0.365 0.000 0.342 0.255
0.736 0.573 0.458 0.626 0.709 0.001 0.611 0.578 0.060 0.003 0.000 0.000 0.024 0.603 0.264 0.066 0.000 0.000 0.007 0.000
0.000 0.138 0.493 0.228 0.027 0.000 0.397 0.211 0.240 0.401 0.008 0.000 0.381 0.650 0.621 0.535 0.617 0.007 ND ND
0.385 0.491 0.001 0.560 0.002 0.001 0.933 0.986 0.679 0.284 0.000 0.000 0.431 0.033 0.094 0.013 0.000 0.000 0.000 0.004
0.258 0.381 0.394 0.259 0.004 0.000 0.266 0.369 0.223 0.306 0.001 0.000 0.443 0.719 0.750 0.535 0.727 0.000 0.295 0.787



Trastuzumab 17-AAG 17-AAG 17-AAG Everolimus Everolimus Everolimus Rosuvastatin-
Ca

Rosuvastatin-
Ca

Rosuvastatin-
Ca

Thalidomide Thalidomide Thalidomide Atorvastatin-
Ca

Atorvastatin-
Ca

Atorvastatin-
Ca

Indometacin Indometacin Indometacin Cetuximab

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
0.645 0.717 0.921 0.490 0.520 0.534 0.751 0.279 0.140 0.249 0.942 0.972 0.867 0.246 0.081 0.201 0.101 0.452 0.489 0.988
0.694 0.405 0.174 0.865 0.766 0.770 0.903 0.372 0.205 0.990 0.278 0.424 0.334 0.183 0.572 0.655 0.698 0.371 0.090 0.013

0.658 0.814 0.688 0.148 0.093 0.461 0.088 0.297 0.474 0.006 0.301 0.241 0.391 0.412 0.788 0.200 0.327 0.831 0.604 0.310

0.803 0.487 0.279 0.003 0.323 0.273 0.260 0.590 0.388 0.951 0.136 0.226 0.342 0.327 0.402 0.614 0.899 0.002 0.007 0.086

0.209 0.697 0.001 0.000 0.078 0.647 0.646 0.752 0.001 0.002 0.785 0.758 0.325 0.066 0.000 0.004 0.288 0.306 0.273 0.080
0.397 0.333 0.493 0.618 0.172 0.893 0.285 0.537 0.593 0.072 0.175 0.232 0.363 0.372 0.719 0.144 0.465 0.389 0.247 0.152
0.505 0.395 0.460 0.000 0.394 0.398 0.407 0.540 0.434 0.651 0.139 0.211 0.338 0.363 0.406 0.535 0.768 0.016 0.326 0.037
0.170 0.436 0.004 0.000 0.026 0.290 0.580 0.783 0.131 0.037 0.942 0.917 0.326 0.191 0.011 0.008 0.053 0.010 0.867 0.024
0.084 0.558 0.478 0.140 0.199 0.600 0.212 0.185 0.275 0.003 0.177 0.225 0.350 0.279 0.825 0.155 0.314 0.782 0.745 0.934
0.180 0.167 0.430 0.407 0.177 0.330 0.143 0.426 0.257 0.366 0.141 0.212 0.351 0.384 0.382 0.265 0.512 0.231 0.001 0.004
0.530 0.018 0.313 0.029 ND ND ND 0.573 0.409 0.001 0.897 0.769 0.317 0.368 0.038 0.001 0.841 0.036 0.558 0.000
0.001 0.417 0.409 0.172 0.958 0.371 0.014 0.899 0.635 0.081 0.289 0.224 0.328 0.764 0.853 0.454 0.392 0.664 0.575 0.015
0.005 0.370 0.002 0.001 0.913 0.256 0.113 0.086 0.064 0.020 0.328 0.272 0.341 0.315 0.002 0.007 0.493 0.005 0.005 0.000
0.005 0.960 0.690 0.374 0.601 0.987 0.883 0.830 0.928 0.185 0.306 0.208 0.336 0.458 0.683 0.534 0.724 0.496 0.820 0.185
0.010 0.672 0.000 0.003 0.091 0.734 0.170 0.723 0.090 0.047 0.227 0.256 0.334 0.295 0.071 0.008 0.771 0.214 0.362 0.003
0.001 0.539 0.888 0.763 0.621 0.273 0.067 0.769 0.114 0.037 0.257 0.197 0.333 0.659 0.042 0.342 0.892 0.623 0.002 0.020
0.008 0.403 0.032 0.020 0.590 0.999 0.068 0.026 0.007 0.078 0.302 0.269 0.336 0.079 0.000 0.037 0.704 0.322 0.000 0.001
0.486 0.479 0.188 0.430 0.928 0.458 0.324 0.766 0.513 0.070 ND ND ND 0.188 0.754 0.349 0.193 0.259 0.060 0.893
0.940 0.749 0.255 0.033 0.500 0.004 0.000 0.172 0.073 0.001 ND ND ND 0.168 0.353 0.005 0.000 0.002 0.000 0.356
0.052 0.006 0.019 0.255 0.399 0.584 0.390 0.903 0.323 0.001 ND ND ND 0.945 0.630 0.019 0.244 0.588 0.001 0.319
0.820 0.180 0.513 0.122 0.273 0.012 0.001 0.032 0.000 0.000 ND ND ND 0.273 0.098 0.003 0.711 0.757 0.000 0.109
0.000 0.076 0.229 0.368 0.630 0.217 0.037 0.064 0.612 0.060 ND ND ND 0.001 0.036 0.178 0.625 0.921 0.063 0.675

#DIV/0! 0.130 0.002 0.617 0.188 0.759 0.155 0.094 0.001 0.002 ND ND ND ND ND ND ND ND ND 0.118
0.007 0.030 0.000 0.000 0.404 0.060 0.005 0.185 0.067 0.000 0.362 0.417 0.632 0.891 0.397 0.064 0.373 0.029 0.001 0.034
0.002 0.126 0.026 0.245 0.604 0.129 0.064 0.374 0.501 0.051 0.488 0.664 0.631 0.418 0.636 0.101 0.609 0.004 0.496 0.000
0.001 0.510 0.165 0.004 0.257 0.002 0.001 0.214 0.018 0.000 0.567 0.610 0.563 0.225 0.727 0.155 0.513 0.205 0.042 0.219
ND 0.248 0.000 0.104 0.578 0.139 0.276 0.602 0.559 0.107 0.536 0.568 0.557 0.440 0.361 0.510 0.681 0.165 0.022 0.227

0.001 0.279 0.030 0.006 0.065 0.563 0.154 0.327 0.027 0.009 0.729 0.751 0.342 0.012 0.875 0.014 0.530 0.018 0.009 0.358
0.048 0.487 0.591 0.088 0.601 0.446 0.950 0.689 0.817 0.048 0.300 0.191 0.333 0.430 0.710 0.039 0.385 0.297 0.001 0.006



Cetuximab Cetuximab Sorafenib Sorafenib Sorafenib Sunitinib Sunitinib Sunitinib Erlotinib Erlotinib Erlotinib

2 3 1 2 3 1 2 3 1 2 3
0.619 0.942 0.417 0.342 0.439 0.305 0.934 0.706 0.371 0.340 0.735
0.021 0.855 0.265 0.257 0.612 0.659 0.106 0.025 0.393 0.727 0.189

0.660 0.293 0.136 0.206 0.721 0.678 0.753 0.612 0.370 0.979 0.440

0.032 0.905 0.207 0.299 0.011 0.399 0.007 0.273 0.730 0.184 0.003

0.084 0.025 0.184 0.832 0.531 0.390 0.002 0.136 0.156 0.002 0.001
0.557 0.242 0.174 0.224 0.735 0.906 0.882 0.549 0.193 0.881 0.846
0.004 0.608 0.174 0.230 0.011 0.280 0.003 0.429 0.607 0.000 0.000
0.005 0.003 0.064 0.091 0.029 0.173 0.012 0.110 0.132 0.000 0.004
0.423 0.144 0.081 0.201 0.843 0.372 0.815 0.720 0.689 0.117 0.796
0.928 0.726 0.232 0.610 0.821 0.434 0.718 0.417 0.734 0.012 0.447
0.017 0.002 ND ND ND 0.822 0.029 0.003 0.012 0.000 0.019
0.010 0.612 0.197 0.000 0.054 0.551 0.125 0.015 0.795 0.001 0.049
0.000 0.000 0.000 0.149 0.014 0.017 0.077 0.024 0.356 0.000 0.003
0.003 0.081 0.007 0.000 0.025 0.620 0.037 0.044 0.020 0.001 0.037
0.000 0.001 0.083 0.007 0.011 0.613 0.448 0.008 0.167 0.000 0.000
0.687 0.401 0.047 0.000 0.019 0.956 0.408 0.276 0.778 0.000 0.000
0.000 0.009 0.063 0.070 0.012 0.101 0.361 0.936 0.564 0.004 0.013
0.053 0.000 0.358 ND 0.624 0.956 0.522 0.021 0.712 0.064 0.039
0.018 0.000 0.424 0.158 0.043 0.624 0.798 0.966 0.010 0.000 0.032
0.615 0.633 0.699 ND 0.222 0.126 0.525 0.111 0.969 0.162 0.095
0.024 0.000 0.000 0.000 0.012 0.129 0.576 0.758 0.084 0.001 0.012
0.591 0.021 0.342 ND 0.625 0.536 0.171 0.002 0.375 0.236 0.061
0.395 0.167 ND ND ND 0.722 0.242 0.345 0.621 0.005 0.916
0.021 0.373 0.203 0.007 0.014 0.399 0.558 0.649 0.601 0.001 0.023
0.000 0.161 0.113 0.026 0.015 0.075 0.272 0.708 0.003 0.000 0.120
0.907 ND 0.000 0.054 0.008 0.093 0.016 0.003 0.259 0.884 0.533
0.748 0.184 0.302 0.000 0.008 0.295 0.141 0.664 0.424 0.000 0.182
0.052 0.008 0.073 0.027 0.020 0.002 0.012 0.000 0.029 0.023 0.000
0.944 0.889 0.135 0.003 0.008 0.982 0.120 0.010 0.252 0.013 0.038



Drug Target(s)
Erlotinib EGFR
Cetuximab EGFR
Trastuzumab HER2
Canertinib (CI-1033) HER1, HER2 and HER4
Lapatinib (GW572016) EGFR, HER2
Vandetanib (ZD6474) EGFR + VEGFR
Sunitinib VEGFR-1,2, PDGFR, c-kit , Flt3
Sorafenib VEGFR-1,2,3 PDGFR,RAF, c-kit 
Vatalanib VEGFR-1,2, PDGFR, c-kit , c-Fms
Cediranib (AZD-2171) VEGFR-1,2,3
NVP-AEW541 IGF-1R
BMS-536924 IGF1R&FAK
PHA-665752 MET
L744832 FTS
PLX4720 BRAF
AZD6244 (ARRY-142886) MEK
Bosutinib ABL, SRC
Saracatinib ABL, SRC
NVP-BEZ235 PI3K
GDC-0941 PI3K
XL-765 PI3K
Perifosine AKT
MK-2206 AKT
Everolimus mTOR
17-AAG HSP-90
Bortezomib Proteasome
NVP TAE 684 ALK
Valproic Acid Histone deacetylase
Vorinostat (SAHA) Histone deacetylase
Decitabine DNA methyltransferase
BI-2536 Polo-like kinase
GW 843682X Polo-like kinases-1&3
STF-62247 VHL
Obatoclax Bcl2 Antagonist 
Elesclomol Apoptosis
Olaparib AZD2281 PARP
Thalidomide TNF-α; IL-6
Lenalidomide TNF-α; IL-6
Indomethacin COX
OSU-03012 PDK-1
Atorvastatin HMG-COA reductase
Rosuvastatin HMG-COA reductase
Metformin AMPK

Supplementary Table S3. 
List of the drugs included in the library and tested on HME-1 cell lines. The table also 
includes the target on which compounds are known to act.
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