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Abstract 

 

Water samples from subterranean systems (caves and abandoned mines) and from lake epilimnion 

were optically characterised and irradiated under simulated sunlight, to study the effects that 

sunlight exposure before sampling may have on the properties and photochemical behaviour of 

chromophoric dissolved organic matter (CDOM). Differently from lakes, absorption spectra of 

subterranean water samples showed variations from the typically observed, featureless exponential 

decay of absorbance vs. wavelength. Fluorescence spectra suggested that, compared to lake water 

and with a single exception, subterranean water had higher proportion of aquagenic/autochthonous 

CDOM (e.g. proteinaceous material) compared to pedogenic/allochthonous one (e.g. humic and 

fulvic substances). Irradiation of subterranean water produced very significant spectral changes, and 

finally yielded lakewater-like exponential absorption spectra. In contrast, irradiation of lake water 

produced photobleaching (decrease of the absorbance) but the shapes of absorption spectra 

underwent very limited variations. Tyrosine and humic acids were irradiated as proxies of the 

CDOM fractions identified by fluorescence. Irradiated tyrosine underwent a significant increase of 

the absorbance and finally yielded an exponential absorption spectrum, with close resemblance to 

the behaviour of a protein-rich and humic-poor sample of subterranean water. In contrast, irradiated 

humic acids underwent photobleaching in a similar way as lake water, but they retained their typical 

exponential spectrum. The present findings suggest that exposure of CDOM to sunlight may play a 

key role in shaping the exponential absorption spectra that are typically observed in surface waters. 
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1. Introduction 

 

Chromophoric (or Coloured) Dissolved Organic Matter (CDOM) is the fraction of organic material 

dissolved in natural waters that is able to absorb radiation. CDOM can be optically characterised by 

means of its absorption of radiation above 200 nm, although absorption above 250 nm is usually 

preferred to avoid interference by nitrate [1]. However, from an environmental point of view it is 

the CDOM ability to absorb sunlight that is most important. CDOM is usually the main radiation 

absorber in water in the 300-500 nm wavelength interval, and its ability to absorb UVA and UVB 

radiation has important consequences for aquatic organisms. Indeed, CDOM protects the aquatic 

biota from exposure to UV radiation [2], which can be very significant during summertime in 

CDOM-poor environments such as mountain lakes located above the tree-line [3]. Another 

important issue is that radiation absorption by CDOM yields reactive species, such as 
•
OH, 

1
O2 and 

the triplet states 
3
CDOM*, which can be involved into transformation of dissolved compounds, 

including xenobiotics, as well as into the photoprocessing of CDOM itself [4-7]. 

The absorption spectra of CDOM in surface waters usually show an almost featureless 

exponential decrease with wavelength, which accounts for the widespread use of the spectral slope 

S for a qualitative or semi-quantitative description of CDOM characteristics such as molecular 

weight and aromaticity [8, 9]. Note that S values are obtained by fitting the absorbance (Aλ) spectra 

of natural waters with the equation λ

λ

⋅−
⋅=

S

o eAA . The small deviations of the CDOM spectrum 

from a purely exponential decay, which can be evidenced by considering the S trend with 

wavelength (S(λ) and/or ∂S/∂λ), can be used to differentiate between “different CDOM 

environments” [10]. However, the amount of knowledge that is presently available is far too limited 

to enable the full exploitation of S(λ) or ∂S/∂λ as tools for CDOM characterisation. Another very 

useful technique for the study of CDOM is the emission-excitation matrix of fluorescence (EEM). 

EEM is only capable of detecting fluorophores in CDOM (thus yielding the so-called FDOM, 

Fluorescent Dissolved Organic Matter), but it is very useful for distinguishing between humic and 

fulvic substances, proteinaceous material, plankton pigments, and even man-made fluorescent 

xenobiotics (whitening agents) [11]. 

Irradiation of CDOM by sunlight causes a decrease of the absorbance (photobleaching), because 

sunlight-absorbing compounds are often transformed into less absorbing or even non-absorbing 

ones [12-14]. Photoinduced mineralization (loss of Dissolved Organic Carbon, DOC) can also be 

observed [15-17]. Interestingly, it has been found that CDOM in subterranean water (groundwater 

that was collected and irradiated, without pre-exposure to sunlight before sampling) is much more 

susceptible to photomineralization than CDOM in lake water [18]. A possible explanation is the fact 
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that groundwater CDOM is shielded from sunlight, which could prevent photolabile species from 

undergoing phototransformation/mineralization. In contrast, lake water undergoes exposure to 

sunlight prior to sampling, which could transform photolabile species and cause the remaining 

CDOM to be rather photostable [18].  

This paper reports on a study of spectral CDOM variations upon irradiation under simulated 

sunlight, comparing lake water samples with samples taken from ponds located in mines and caves. 

In the latter case, the relevant water as well as its CDOM stayed for prolonged time (months to 

some years) away from sunlight exposure. The experimental procedures allowed differences to be 

highlighted, both in the initial samples and in water samples after irradiation.  

 

 

2. Experimental section 

 

Humic acid sodium salt, L-tyrosine (98%) and H2O2 (30%) were purchased from Aldrich. Water 

samples were collected in ponds present in the studied caves/mines or from the epilimnion of the 

studied lakes. Table 1 reports sampling sites and dates. The samples, kept in the dark, were 

transported to the laboratory under refrigeration, vacuum filtered on 0.22 µm cellulose acetate 

membranes, and stored at 4°C until analysis or irradiation. 

Fluorescence measurements were carried out with an Agilent Cary Eclipse fluorescence 

spectrophotometer. The slit widths were set at 10 nm for both excitation and emission. To obtain 

fluorescence EEM (Excitation-Emission Matrix) spectra, excitation wavelengths (λex) were varied 

from 210 to 500 nm at 10 nm steps. For each excitation wavelength, the emission (λem) was 

detected from 220 to 600 nm at 10 nm steps, using a scanning speed of 600 nm min
−1

 and a 

photomultiplier voltage of 600 V. The Raman peak of ultra-pure water, obtained with an excitation 

wavelength of 350 nm, was used as a test for signal stability during measurements. The reported 

fluorescence spectra are an average of triplicate runs.  

The dissolved organic carbon (DOC) was measured as NPOC (Non-Purgeable Organic Carbon) 

by means of a Shimadzu TOC-VCSH total organic carbon analyser, fed with zero-grade air (SIAD, 

Bergamo, Italy). For NPOC measurements, before injection, samples were added with 1.5% v/v of 

2 M HCl and sparged for 10 min with zero-grade air.  

Irradiation experiments were carried out under a solar simulator (Solarbox, manufactured by 

CO.FO.ME.GRA., Milan, Italy), equipped with a 1500 W Xenon lamp and a 320-nm cut-off filter. 

Solutions to be irradiated (10 mL total volume) were placed inside cylindrical Pyrex glass cells (4.0 

cm diameter, 2.5 cm height) and magnetically stirred during irradiation. The lamp UV irradiance 

(290-400 nm) on top of the solutions was 30±2 W m
−2

, measured with a CO.FO.ME.GRA. power 

metre. The spectral photon flux density of the lamp (p°(λ)), taken with an Ocean Optics USB2000 

CCD spectrophotometer and normalised to actinometry results [18, 19] is reported in Figure 1. Note 

that 7.3 hours continuous irradiation at that irradiance will deliver the same amount of UV energy 

per unit surface area, as given by the sun in a fair-weather summer day (e.g. 15 July) at 45°N 

latitude [19]. Conversely, every day (24 h) of irradiation under the lamp would correspond to 3.3 
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fair-weather summer days. Dark experiments were carried out by wrapping the cells in double 

aluminium foil, and by placing them under the same lamp adopted for irradiation. 

After the scheduled reaction time, absorption spectra of samples were taken by means of a 

Varian Cary 100 Scan UV-Vis spectrophotometer, adopting Hellma quartz cuvettes with 1 cm 

optical path length. The measured water spectra are reported as A1(λ) in cm
−1

 units, and are the 

average of quintuplicate runs. The spectral slope S was determined by fitting the A1(λ) vs. λ values 

with the equation λ
λ

S

o eAA
−

=)(1  [20]. The fit interval (280-330 nm) was chosen to ensure a 

reasonable exponential (or pseudo-exponential) trend of A1(λ) vs. λ for all investigated samples and 

a straightforward comparison of S values among samples. The choice of the wavelength range was 

limited by sample 3, which showed negligible absorbance above 330 nm. 

ESI (Electro Spray Ionization) experiments were conducted with a Thermo Finnigan Advantage 

Max Ion Trap spectrometer in negative ion mode. Sheath gas flow rate was set at 25 (arbitrary unit), 

auxiliary gas flow rate at 5 (arbitrary unit), spray voltage at 3.25 kV, capillary temperature at 270 

°C, capillary voltage at −7 V, and tube lens offset at −60.00 V. Nitrogen (99.998%, SIAD, 

Bergamo, Italy) was used as sheath and auxiliary gas. 

 

 

3. Results and Discussion 

 

3.1. Measurement of DOC and water absorbance 

The results of DOC analysis are reported in Table 1. Lake water samples were generally richer in 

DOC compared to subterranean ones. However, there is the important exception of sample 2 that 

was collected from a mine pond, which presumably had significant DOC contribution from rotting 

wooden material that had been used in the past mining activity. The ratio between the absorbance at 

254 nm (A254nm) and the DOC can give useful information concerning the origin of CDOM 

(pedogenic or allochthonous – e.g. humic-like material – vs. aquagenic or autochthonous) [21]. 

Table 1 shows that samples 1 and 2 (from abandoned mines rich of rotting wood) have A254nm 

DOC
−1

 ≥ 0.030 L (mg C)
−1

 cm
−1

, not so far from the value of 0.044 L (mg C)
−1

 cm
−1

 observed for 

fulvic acids [21]. In contrast, sample 3 (from a natural oligotrophic cave) shows a very low A254nm 

DOC
−1

 value. It would not only suggest the presence of purely autochthonous CDOM, but also of 

autochthonous CDOM absorbing significantly less than average. Concerning samples A-C, their 

A254nm DOC
−1

 values are well within the range of typical lake water in NW Italy [22]. 

 

3.2. EEM fluorescence spectra 

Figure 2 reports the EEM contour plots of investigated water samples. The EEM plots show some 

linear features, namely the Rayleigh-Tyndall scattering signal (λex = λem) and its second harmonic 

(λex = ½ λem), as well as the Raman scattering of water (λex < λem) and its harmonic [23]. Apart 

from these features that occur in every EEM plot, peaks are present that are peculiar to the 

fluorescent moieties of CDOM, also termed FDOM. From the peak position, identified by the (λex, 
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λem) couple of values, it is possible to identify different fluorescent substances that may occur in 

surface waters [11, 24, 25]. 

Interestingly, all the samples except sample 3 show the presence of very significant amounts of 

humic-like substances, which are identified from their peak A (λex = 210/275 nm, λem =375/500 

nm) and peak C (λex = 270/325 nm, λem = 400/430 nm) [11]. Such peaks are quite high in sample 2, 

taken from a mine pond characterised by the presence of rotten wood material, which could be a 

reasonable source of lignin-derived humic substances. Apart from this peculiarity, the peaks of 

humic-like substances are considerably higher in lake-water samples (A-C) compared to mine (1) or 

cave (3) ones. 

In the case of sample 3, the most important peak is located at λex = 220 nm and λem = 294 nm (it 

is also observed in the other samples but it is not that prominent). There is also a very small peak 

that can be attributed to humic-like substances. The former peak is defined as peak TUV in the 

literature and is accounted for by aromatic amino acids (tryptophan, tyrosine, phenylalanine and the 

peptides that contain them), as well as by miscellaneous phenolic compounds [11]. Usually, these 

species are part of the so-called autochthonous organic matter that is produced by in-water 

biological processes [26]. Overall, EEM spectra confirm the results already obtained with A254nm 

DOC
−1

, namely that in sample 3 there is a strong prevalence of aquagenic material over humic or 

fulvic compounds, while the other samples show a significant contribution from humic substances. 

 

3.3. Irradiation experiments 

First of all, it should be observed that irradiation of the studied samples caused no 

photomineralization, i.e. no significant DOC decrease. This finding is in agreement with previous 

results of irradiation of non-acidified lake water under simulated sunlight [18]. 

Figure 3A shows the time trends of the absorption spectra of water sample 1 (from an 

abandoned mine) upon irradiation. An interesting issue of the initial spectrum is the presence of a 

couple of shoulders around 270 nm and at 310-320 nm. As far as the latter case is concerned, there 

is literature evidence that it may be caused by material released from plankton [27, 28]. A 

remarkable feature of sample 1 irradiation was the decrease of the absorbance after three days 

(photobleaching), followed by a considerable modification of the spectrum shape. Indeed, from 

about 6 day irradiation onwards the absorption spectrum acquired a typical, featureless quasi-

exponential decay with wavelength, which is very often observed in surface waters [29]. For 

irradiation time ≥ 6 days, photobleaching was detectable but limited. The spectral shape 

modification is quite interesting. Indeed, a rather atypical initial situation (presence of two 

shoulders), in a water sample that had evolved in the absence of light, was soon changed by 

irradiation into a more common scenario. Such a finding might imply that sunlight processing of 

CDOM could have a role in producing the typical shape of absorption spectra that is usually 

observed in surface waters.  

Figure 3b shows the time trend upon irradiation of the spectral slope S, compared with the trend 

in the dark. Interestingly, a significant decrease of S could be detected in the irradiated vs. dark 
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samples, which would imply an increase of CDOM molecular weight and/or aromaticity [9, 21, 30]. 

This means that the compounds initially present in the sample would be smaller or less aromatic 

than those formed upon irradiation.  

Note that dark evolution of all the studied samples including 1, which could possibly be 

accounted for by microbiological processes, produced much lower changes in absorption spectra 

(A1(λ) vs. λ) compared to irradiation. 

Figure 4a reports the trend of the absorbance vs. irradiation time for a mine pond sample 

(sample n°2), characterised by a rather elevated content of organic matter from decomposition of 

wood material. The initial spectrum already showed an exponential decay that could be consistent 

with the occurrence of humic-like species from lignin decomposition. Irradiation caused 

photobleaching, with limited changes in the spectral shape. Figure 4b shows the time trend of S vs. 

time, under irradiation and in the dark. The spectral slope underwent much smaller changes in 

sample 2 compared to sample 1, and the S values of sample 2 after irradiation were higher than in 

the dark. This finding implies that irradiation decreased the molecular weight and/or aromaticity of 

CDOM in sample 2, a result that is not unusual for humic substances [31]. 

Figure 5a reports the time evolution of A1(λ) upon irradiation of a natural cave sample (n° 3), 

characterised by low DOC content and low initial absorbance. In addition to featuring very low 

absorption of radiation, the spectrum of sample 3 significantly departed from an exponential trend. 

Irradiation for 3 days led to a considerable increase of the absorbance and yielded an absorption 

spectrum that closely followed an exponential trend. For irradiation times longer than three days, 

the exponential shape of the spectrum was maintained but photobleaching was observed. Figure 5b 

reports the time trend of S, and shows that the spectral slope significantly decreased upon 

irradiation. S was also lower for the irradiated sample than for the dark one. Molecular weight and 

aromaticity of CDOM in sample 3 would thus increase upon irradiation, which is a similar 

behaviour as that of sample 1.  

Figures 6-8 report the corresponding time trends of absorption spectra and S values for lake 

water samples (A-C), taken for comparison. In the case of lake water, photobleaching was always 

observed, with limited changes in the spectra shape. Such behaviour is quite similar to that of mine 

sample 2 and quite different from the case of samples 1 and 3. The S values of A-C were modified 

upon irradiation, but the differences between the S trends of irradiated and dark samples were much 

lower for lake water than for samples 1 and 3 of subterranean water. 

Overall, it appears that the effect of irradiation on the CDOM spectral shape (and, therefore, on 

its molecular weight/aromaticity) was higher for subterranean than for lake water. Moreover, the 

irradiation effect on lake water samples was rather uniform (photobleaching, with few changes in 

spectral shape), while for subterranean samples it was a different issue. First of all, in one case 

(sample 3) a significant increase of the absorbance was observed rather than photobleaching. 

Significant changes of spectral shape were then observed for both samples 1 and 3, and irradiation 

probably produced an increase of the molecular weight and/or aromaticity of CDOM. Even more 
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interestingly, absorption spectra after irradiation of samples 1 and 3 assumed an exponential-like 

trend that made them quite similar to lake-water ones.  

 

3.4. Irradiation of model compounds (tyrosine and humic acids) 

 

Figure 9a reports the absorption spectra of a solution containing 1 mM tyrosine + 1 mM H2O2, 

before irradiation and after 60 h irradiation. No change of the tyrosine spectrum was detected in the 

dark. Hydrogen peroxide was added as source of 
•
OH, a reactive species that is photochemically 

produced by several photosensitisers in surface waters (nitrite, nitrate and most notably CDOM) 

[18, 30, 32, 33]. Here H2O2 was added because it is a rather “clean” 
•
OH source, limiting the 

formation of additional transients [34]. 

 

H2O2 + hν → 2 
•
OH        (1) 

 

The very significant increase of the absorbance and the resulting exponential spectrum after 

irradiation suggest the formation of chromophoric species upon irradiation of tyrosine + H2O2. It 

also suggests a very interesting similarity between tyrosine and sample 3 (see Figure 5). The EEM 

fluorescence spectrum of sample 3 (Figure 2) indicated the presence of protein-like material 

including aromatic amino-acids, of which tyrosine is a reasonably representative compound. 

Therefore, it is possible that comparable processes take place in both cases. As far as tyrosine is 

concerned, literature data suggest that absorbance increase would be accounted for by formation of 

melanin-like pigments upon tyrosine oxidation [35]. This is a reasonable explanation when 

considering that the spectral slope S decreased upon irradiation, from 0.24±0.01 nm
−1

 of initial 

tyrosine to 0.012±0.001 nm
−1

 after 60 h irradiation. Such a remarkable decrease would be connected 

with a considerable increase of molecular weight, consistent with the formation of oligomeric 

compounds. The ESI-MS analysis of tyrosine solutions (Figure 10) suggests first of all a 

fragmentation of tyrosine upon irradiation. The ion with mass/charge ratio m/z = 180 before 

irradiation would correspond to deprotonated tyrosine (Figure 10a), which is no longer present after 

60 h irradiation (Figure 10b). In contrast, the ion with m/z = 117 is probably an extensively oxidised 

compound that underwent cleavage of the aromatic ring. Indeed, it is quite problematic to assign an 

aromatic structure of that mass to a compound that could reasonably be formed from tyrosine. No 

significant ions with m/z < 2000 could be detected (there may be some, but they are very near the 

background noise, data not reported). This implies that either photogenerated chromophoric 

compounds had larger mass, or that they underwent very low to negligible ionisation by the ESI(-) 

source. The use of ESI in positive ion mode did not improve the results. 

Figure 9b reports the absorption spectra of 30 mg L
−1

 humic acids (HA), before and after 

irradiation. Photobleaching is clearly observed, together with a small increase of S from 

0.010±0.001 nm
−1

 before irradiation to 0.013±0.001 nm
−1

 after 60 h irradiation. The significant 

photobleaching is a typical feature of humic acids [36], and makes the studied HA sample quite 
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similar to humic-rich samples 2 (subterranean water) and A, B, C (lake water). Unfortunately, HA 

were not ESI-MS amenable, which prevented their m/z characterization.  

Overall, an interesting similarity could be seen between the photochemical behaviour of protein-

rich sample 3 and tyrosine, and between humic-rich samples 2, A, B, C and HA. In particular, the 

formation of chromophoric compounds (possibly melanin-like pigments) upon tyrosine 

photooxidation, featuring an exponential spectrum may suggest that similar processes could also 

take place in the protein-rich and humic-poor sample 3. 

 

 

4. Conclusions 

 

The studied subterranean water samples were quite different from lake water ones. Differences 

concerned specific absorbance, EEM spectra, and absorption spectral shape. In two out of three 

cases, the spectral shape of subterranean water was very different from the typical exponential 

decay with wavelength that was observed in lake water. However, irradiation modified the spectral 

shape of subterranean water to finally produce an exponential trend. Interestingly, the production of 

an exponential absorption spectrum in those samples was accompanied by an increase of CDOM 

molecular weight and/or aromaticity. In contrast, lake water spectra showed photobleaching but 

underwent more limited variations of spectral slope. It is, therefore, suggested that pre-exposure to 

sunlight before sampling could play a very significant role in shaping the typically observed 

exponential spectra of CDOM in surface waters.  

Furthermore, a subterranean water sample containing significant amounts of protein-like 

material, as suggested by EEM fluorescence, underwent considerable absorbance increase upon 

irradiation. This behaviour was quite similar to that of photo-oxidised tyrosine, also concerning the 

final exponential shape of the absorption spectrum. In the case of tyrosine, and possibly also of the 

subterranean sample, the absorbance increase would be due to formation of chromophoric material 

(possibly melanin-like pigments) upon initial substrate photo-oxidation. 
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Table 1. Features of the studied lake and subterranean water samples. The error bounds represent ±σ of runs carried out at least in quadruplicate on 

different aliquots of the same sample. 

 

Sample 

acronym 

Sample 

source 

Location 

Municipality 

(Province) 

Coord 

UTM 

Sampling 

date 

DOC, 

mg C L
−−−−1

 

IC, 

mg C L
−−−−1

 

A254nm DOC
−−−−1

, 

L cm
−−−−1

 (mg C)
−−−−1

 

1 

Abandoned 

Talc Mine 

Santa Barbara 

Prali (Torino) 

32T 

348074 

4977205 

26 Mar 

2010 
1.28±0.02 27.2±0.3 0.037±(6⋅10

−4
) 

2 

Abandoned 

Talc Mine 

Gianfranco 

Prali (Torino) 

32T 

348059 

4977358 

26 Mar 

2010 
2.75±0.05 74.7±0.6 0.030±(5⋅10

−4
) 

3 
Barôn Litrôn 

Cave 

Valdieri 

(Cuneo) 

32T 

373117 

4902365 

25 Apr 

2010 
0.58±0.02 24.6±0.2 0.006±(2⋅10

−4
) 

A Candia Lake Candia (Torino) 

32T 

414676 

5019591 

22 Sep 

2010 
5.74±0.11 16.5±0.2 0.014±(3⋅10

−4
) 

B 

Avigliana 

Lake 

(Grande) 

Avigliana 

(Torino) 

32T 

372999 

4991538 

13 Jun 

2010 
3.28±0.03 49.1±0.2 0.020±(2⋅10

−4
) 

C 
Laghetto 

Lake 
Coazze (Torino) 

32T 

357492 

4989084 

18 Jun 

2010 
1.30±0.05 1.45±0.01 0.025±0.001 
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Figure 1. Spectral photon flux density (p°(λ)) of the adopted solar simulator. 
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Figure 2. Excitation-emission matrix (EEM) spectra of the studied subterranean water (1-3) and 

lake water (A-C) samples. 
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Figure 3. a) Trend of the absorption spectrum of sample 1 (abandoned mine) with irradiation time, 

under simulated sunlight. 

b) Trend of the spectral slope S of sample 1, upon irradiation under simulated sunlight as 

well as in the dark. 
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Figure 4. a) Trend of the absorption spectrum of sample 2 (abandoned mine) with irradiation time, 

under simulated sunlight. 

b) Trend of the spectral slope S of sample 2, upon irradiation under simulated sunlight as 

well as in the dark. 
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Figure 5. a) Trend of the absorption spectrum of sample 3 (cave) with irradiation time, under 

simulated sunlight. 

b) Trend of the spectral slope S of sample 3, upon irradiation under simulated sunlight as 

well as in the dark. 
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Figure 6. a) Trend of the absorption spectrum of sample A (lake Candia) with irradiation time, 

under simulated sunlight. 

b) Trend of the spectral slope S of sample A, upon irradiation under simulated sunlight 

as well as in the dark. 
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Figure 7. a) Trend of the absorption spectrum of sample B (lake Avigliana) with irradiation time, 

under simulated sunlight. 

b) Trend of the spectral slope S of sample A, upon irradiation under simulated sunlight 

as well as in the dark. 
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Figure 8. a) Trend of the absorption spectrum of sample C (lake Laghetto) with irradiation time, 

under simulated sunlight. 

b) Trend of the spectral slope S of sample C, upon irradiation under simulated sunlight 

as well as in the dark. 
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Figure 9. a) Absorption spectrum of 1 mM tyrosine + 1 mM H2O2, before and after irradiation. 

b) Absorption spectrum of 30 mg L
−1

 humic acids, before and after irradiation. 
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Figure 10. a) ESI(-)-MS spectrum of 1 mM tyrosine + 1 mM H2O2, before irradiation. 

b) ESI(-)-MS spectrum of 1 mM tyrosine + 1 mM H2O2 after irradiation. 

 


