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Abstract  

Background. Left atrial appendage (LAA) is the major source of cardiac thrombi in 

atrial fibrillation (AF) and plays a major role in cardioembolic events.  

Objective. To investigate the correlation between LAA morphology and the burden of 

silent cerebral ischemia (SCI) as a new thromboembolic risk marker in AF patients. 

Methods: 348 AF patients undergoing trans-catheter ablation were enrolled. A cerebral 

MR was performed to assess SCI burden, while LAA morphology was studied by 

magnetic resonance (MR) or computed tomography (CT) and categorized as: Cactus in 

52 (14.9%) patients, ChickenWing in 177 (50.9%), WindSock in 101 (29.0%), and 

Cauliflower in 18 (5.2%).  

Results: SCIs were detected in 274 (84.8%) patients, with a median number of lesions of 

23. SCI burden related to LAA complexity: 30.8% and 17.3% patients with Cactus,  

30.5% and 22.0% with ChickenWing, 13.9% and 27.7% with Windsock, and 16.7% and 

38.9% with Cauliflower LAA were in the first and fourth quartile of number of SCI per 

patient, respectively (p=0.035). Following adjustment for potential confounders, only age 

(beta 0.12, 95% CI 0.08-0.16; p<0.001), ChickenWing (beta [-0.28], 95%CI [-0.51]-[-

0.04]; p=0.021), WindSock (beta 0.38, 95%CI 0.12-0.65; p=0.005) and Cauliflower (beta 

0.61, 95%CI 0.07-1.14; p=0.026) LAA morphologies significantly related to SCI burden.  

Conclusion. LAA morphology relates to the burden of SCI in AF patients. Future 

research should corroborate if accessible methods (e.g. echocardiography) are able to 

describe LAA morphology permitting its use within universal thromboembolic risk 

predictors in AF patients.  
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Introduction 

Independently from the presence of comorbidities AF relates to enhanced mortality and 

thromboembolism, particularly to the brain. In fact, patients with AF present an 

approximately five-fold higher risk of symptomatic cerebral events compared to the 

general population1.  

To predict the risk of thromboembolic events in AF patients a number of clinical scores 

have been evaluated2. However, the occurrence of an event, despite low risk score (e.g. 

CHA2DS2-VASc 0-1) unfortunately remains not unusual3,4. In this setting, the recently 

published data of a multicenter study showing a correlation between left atrial (LA) 

appendage (LAA) morphology and the risk of symptomatic stroke in patients with AF 

seems  promising5.  

In the attempt to ameliorate thromboembolic event prediction, the present study aims to 

relate the morphology of the LAA, one of the major sources of cardiac thrombus 

responsible for cerebral embolism in patients with AF, to the burden of silent cerebral 

ischemia (SCI)6,7,8.  
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Methods 

 

Study population 

In this multicenter retrospective study, 359 consecutive patients with AF referred for 

transcatheter ablation were enrolled from November 2008 to April 2010. For each patient 

cardiac magnetic resonance (MR) or computed tomography (CT) and cerebral MR were 

performed.   

Exclusion criteria have been elsewhere reported5. In addition eleven patients (3.1%) were 

excluded due to low quality of the CT/MR scans not permitting LAA visualization. 

All patients provided written informed consent and the study was conducted in 

accordance to the latest Declaration of Helsinki update. 

 

Baseline evaluation 

All subjects underwent extensive clinical assessment, including: medical history (targeted 

to presence of heart disease, comorbidities), thromboembolic risk assessment (CHA2DS2-

VASc score2), physical examination and 12-lead electrocardiogram.  

All patients underwent transthoracic and transesophageal echocardiography and the 

following parameters were measured9: left ventricle ejection fraction; LA antero-

posterior (A-P), medial-lateral (M-L) supero-inferior (S-I) diameters; and LAA outflow 

velocity.  

 

Imaging protocols 

Cardiac MR and CT imaging of the LA was performed as previously detailed5.  
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LAA morphology was categorized, based on previous literature10, in one of the four 

progressively more complex types: Cactus, a dominant central lobe with small chambers 

extending in all directions; ChickenWing, an obvious bend in the proximal or middle part 

of the dominant lobe; WindSock, a dominant lobe plus secondary or even tertiary lobes 

arising from the dominant lobe; and Cauliflower, complex internal characteristics with 

lack of a dominant lobe. The total number of lobes for each LAA morphology was also 

recorded11.  

Cerebral scans were performed as previously detailed12. According to anatomo-

pathological criteria13 SCI were defined as focal, sharply demarcated, regularly or 

irregularly shaped areas hyperintense on T2-FLAIR or isointense in T1 weighted image. 

Each individual SCI detected was registered, independently from size. 

All MR/CT scans were independently analyzed by two operators, blinded to clinical data; 

conflict was resolved by common agreement referring to a third expert.  

 

Statistical analysis 

Continuous variables, presented as means and standard deviations (SD), were compared 

by Student’s t-test or analysis of variance (ANOVA) after normal distribution was 

assured by Shapiro-Wilk test. Number of SCI, instead, was presented as median and 

quartiles and compared by Kruskal-Wallis test. Categorical variables, presented as counts 

and percentages, were compared by cross tabulation tables by Pearson's chi-square or 

Fisher’s exact tests, as appropriate. Interobserver agreement between readers (for each 

imaging modality) was evaluated by Cohen’s kappa for LAA morphology classification 

and by coefficient of reproducibility (Bland-Altman analysis based on average and 
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difference of both examiners (100*SD(difference)/mean(average)) for SCI detection. A 

linear regression multivariate model, adjusted for all parameters emerged as potential 

confounders at univariate analysis (p-value below 0.1) was run to assess if LAA 

morphology (considered as each LAA morphology against all others by insertion in the 

model of an individual “dummy variable” for each of the four morphologies) 

independently related to the number of SCI (regression coefficients [beta] and 95% 

confidence intervals [95%CI] reported).  

All analyses were performed by 18.0 SPSS package for Windows (SPSS Inc, Chicago, 

IL, USA) and a two-sided p-value below 0.05 was considered as statistically significant. 
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Results  

Baseline characteristics of the 348 patients enrolled are listed in Table 1.  

Cactus type LAA was found in 52 patients (14.9%), ChickenWing in 177 (50.9%);  

WindSock in 101 patients (29.0%) and Cauliflower in 18 (5.2%; Figure 1). No significant 

bias was noted in classifying LAA morphology by operators both using MR (Cohen’s 

kappa 0.81, 95%CI 0.75-0.87) than CT (Cohen’s kappa 0.84, 95%CI 0.61-0.96).  

At cerebral MR at least one SCI (Figure 2) was detected in 295 (84.8%) patients, with a 

median number of lesions in each patient of 23, inter quartiles (IQ) 6-43. Interobserver 

variability, expressed as coefficient of reproducibility assessed by Bland-Altman method, 

was 5.6% (from -3.8 to +4.0%; p<0.01). 

Table 2 illustrates LA and LAA echocardiographic and MR/CT measurements stratified 

by SCI burden. Out of these, LA A-P and S-I diameters (p=0.0035 and p=0.001, 

respectively) related to SCI distribution in the population. The total number of lobes in 

each LAA - one lobe in 38.7% patients, while 2 or more lobes in the remaining cases (2 

lobes, 42.6%; 3 lobes, 16,1%; 4 lobes, 2.3%; and 6 lobes, 0,3%) - instead, did not relate 

to SCI burden (p=0.698). 

Eventually, the median number of SCI significantly differed by LAA morphology 

(p=0.028);  the correlation between SCI quartiles and LAA type is illustrated in Figure 3. 

In fact, 30.8 and 17.3% patients with Cactus and 30.5 and 22.0% with ChickenWing, the 

simplest morphologies, compared to 13.9 and 27.7% with Windsock, and 16.7 and 38.9% 

with Cauliflower LAA,  the most complex LAAs, were in the first and fourth quartile of 

number of SCI per patient, respectively (p=0.035).  

To detect if LAA morphology relates to SCI burden independently from other clinical or 
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instrumental variables recorded and possibly involved, a multivariate model, adjusted for 

all parameters emerged as potential confounders at univariate analysis (p-value below 

0.1), was computed. By this analysis, only age (beta 0.12, 95% CI 0.08-0.16; p<0.001), 

ChickenWing (beta [-0.28], 95%CI [-0.51]-[-0.04]; p=0.021), WindSock (beta 0.38, 

95%CI 0.12-0.65; p=0.005) and Cauliflower (beta 0.61, 95%CI 0.07-1.14; p=0.026) 

LAA morphologies resulted as independently related to SCI burden (Table 3).  
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Discussion  

The main results of the present study are that age and LAA morphology independently 

relate to SCI burden in AF patients referred for transcatheter ablation. If the fact that 

advancing age is linked to an increasing risk of cerebrovascular events is well         

known14, the role of the LAA, although a recognized source of cardiac thrombi has not 

been sufficiently investigated.  

Based on previous literature LAA morphology has been standardized in four different 

types, characterized by increasing complexity (Cactus, ChickenWing, WindSock, 

Cauliflower)10. LAA type is to date easily recognized by commonly performed imaging 

techniques in patients referred for AF transcatheter ablation, as CT and MR.  

On the other side, evaluation of the thromboembolic risk was based on the presence of 

SCI, evaluated by cerebral MR. Silent ischemic cerebral damage potentially includes a 

broad spectrum of lesions determined by several ethio-pathological causes. In the last 

years, however, several Authors have analyzed in post mortem studies the relationship 

between MR findings and the neuro-pathological specimens aiming to optimize a SCI 

definition able to selectively describe the small cerebral hyperintensities, as those 

described in the present study and highlighted in Figure 2, most likely related to embolic 

causes13. In fact, the MR imaging protocol hereby performed allows to differentiate, by 

T2-FLAIR cerebral MR weighted sequences, AF related gliotic ischemic lesions 

(hyperintense on T2-FLAIR weighted sequences and isointense in T1 sequences) from 

other unspecific findings as perivascular spaces and lacunes (hypointense on T2-FLAIR 

weighted sequences)15,16.  

The sensitivity of this recently introduced MR technique is, therefore, the most plausible 
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cause of the high SCI prevalence reported. In fact, our data seem more in agreement with 

MR based studies reporting SCI in AF patients ranging from 75 to 86%17,18 compared to 

those based on cerebral CT scans ranging from 13% to 48%19,20.  

Thromboembolic events in AF patients are known to be due to endothelial dysfunction, 

abnormal blood stasis and hypercoagulable state (the Virchow’s triad)21,22 resulting in 

gliotic ischemic lesions. The silent lesions detected by cerebral MR, deriving from 

microembolization of multiple small platelet thrombi in the terminal brain vessels 

(especially the leptomeningeal arteries), therefore represent a quantifiable measure of the 

thromboemoblic risk of the patient. Not surprisingly SCI have widely proved to predict 

the subsequent risk of symptomatic strokes23,24. Although no strong evidence exists in 

favor of a prevention or reduction of SCI by antiaggregants/anticoagulation it is 

reasonable (and supported by small previous studies17,25) to suppose that these therapies 

may prevent events also in the early stages of the AF-related cerebral damage, including 

cognitive impairement6.  

The observation that different LAA morphologies relate to SCI burden may hence be 

explained assuming that a more complex internal anatomical structure, such as that of the 

WindSock and Cauliflower LAAs, more intensively promotes local blood stasis and 

thrombogenesis compared to a simpler structure, as the ChickenWing LAA. The 

correlation between LAA morphology and thromboembolic risk in patients with AF is an 

original topic. To the best of our knowledge the first time this relationship was 

investigated was in a multicenter study, performed by the same centers involved in the 

present study, reporting a protective odds ratio for symptomatic stroke and TIA in AF 

patients with ChickenWing, compared to other LAA morphologies5. The latter report, 
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although performed on a considerable number of patients (932), relied on the distribution 

of symptomatic cerebrovascular events, suffered by a small proportion of the population 

(8%). This, together with the low prevalence of the Cactus LAA (30% and 15%, 

respectively in these two experiences), are the most plausible reasons explaining the lack 

of a protective effect proved by the simplest LAA morphology itself. Given these 

limitations, in the attempt to strengthen previous findings, the present work assessed, in a 

population at lower risk, the correlation between LAA morphology and burden of SCI, a 

more prevalent incident within AF patients.  

Of note, in the present study, hypertension, contrary to other previous reports14, did not 

emerge as a predictor of SCI. The SCI definition and MR protocol, in fact, prevented 

from including perivascular lacunar lesions, closely related to the hypertension-related 

microvascular damage. In addition, the present is a relatively young population (mean 

age 57 years) hypothetically not yet suffering the typical detrimental effects of long-term 

hypertension.  

In the present population, no peri-procedural overt cerebrovascular accident was 

encountered. During a clinical follow-up of about three years, instead, overt 

cerebrovascular accidents occurred in two (0.6%) patients, both presenting a 

ChickenWing LAA (the most prevalent morphology). This low incidence of overt events, 

surely influenced by the high rate of conversion and maintenance of sinus rhythm 

following AF ablation and by the fact that the majority of the patients were kept on oral 

anticoagulants after the procedure, does not permit any statistical inference computation 

but surely inspires further studies on the subject. Future research should also corroborate 

if LAA morphology results reproducibly assessable by easily available imaging methods 
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(e.g. bi and/or three dimensional echocardiography), to consider if its routine evaluation 

could improve the traditional thrombembolic risk assessment, especially in “low risk” AF 

patients.  

 

Limitations 

The following limitations need to be pointed out. In our analysis we excluded patients 

with history of prior TIA and or stroke to avoid including individuals with an evident 

high thromboembolic risk; generalization of our results to these patients is therefore not 

plausible. Patients with LAA spontaneous echo contrast/thrombi (an exclusion criteria) 

did not undergo cardiac MR; correlation between LAA morphology and this finding is 

hence unknown. As in previous studies on this topic an accurate measurement of the 

effective period of anticoagulant or antiaggregant therapy during exposure to the 

arrhythmia is lacking. Any retrospective correlation between pharmacological treatment 

and cerebral MR findings is therefore avoided. The present study does not present a 

matched control group; comparisons between AF and non-AF matched controls have, 

however, previously been conducted clearly reporting that non-AF patients are less prone 

to SCI (e.g. SCI prevalence of 53.8% and mean number of lesions 11.8 ± 20.417). 

Eventually, heart rhythm at the moment of the MR/CT scans was not recorded: presence 

of AF/sinus rhythm could have therefore hypothetically influenced quantitative measures 

of the LAA and left atrium (Table 2), but it is not expected to alter morphology 

description, being LAA morphology preserved through the different phases of the cardiac 

cycle. 
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Conclusion 

Age and LAA morphology relate to SCI burden in AF patients. If confirmed, LAA 

morphology would allow to refine thromboembolic risk prediction and treatment 

especially in patients with low CHA2DS2-VASc score.  
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Legend 

 

 Figure 1. Examples of the four progressively more complex left atrial appendage 

morphologies: Cactus (A), ChickenWing (B), WindSock (C), and Cauliflower (D). 

 

 Figure 2.  Axial FLAIR T2 images demonstrating a total of 33 silent ischemic 

lesions: 25 subcortical (8 in A, 7 in B, 10 in C, respectively), seven deep white matter (3 

in A, 4 in B, respectively) and one nucleus caudate (A) lesions. Clusters of lesions are 

indicated by arrows.  

 

 Figure 3. Quartile distribution of silent cerebral ischemia (SCI) by left atrium 

appendage (LAA) morphology (1st quartile, ≤ 6 SCI: white; 2nd quartile, 7-23 SCI: light 

grey; 3rd quartile, 24-43 SCI: dark grey; 4th quartile, ≥ 44 SCI: black; p=0.035).  
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Table 1. Baseline characteristics of the study population stratified by quartiles of 

silent cerebral ischemia (ANOVA p-value for continuous variables and Pearson's chi-

square or Fisher’s exact* p-value for categorical variables). 

 
OVERALL 

n=348 

≤ 6 SCI 

n=87 

7-23 SCI 

n=92 

24-43 SCI 

n=86 

≥ 44 SCI 

n=83 
p 

Gender (n, %)            

Male  274(78.7) 66(75.9) 76(82.6) 69(80.2) 63(75.9) 0.622 

Age (years) 57.4(±10.6) 52.5(±12.4) 56.7(±10.5) 58.0(±9.0) 62.8(±7.2) <0.001 

AF duration (months) 79.4(±71.2) 62.2(±56.7) 88.7(±90.4) 81.3(±65.9) 85.4(±63.8) 0.065 

Smoking habit (n,%) 72(20.7) 13(14.9) 20(21.7) 16(18.6) 23(27.7) 0.580 

Comorbidities (n,%)            

Hypertension 178(51.1) 36(41.4) 46(50.0) 47(54.7) 49(59.0) 0.119 

Diabetes 18(5.2) 6(6.9) 5(5.4) 4(4.7) 3(3.6) 0.832* 

Hypercholesterolemia 86(24.7) 15(17.2) 19(20.7) 25(29.1) 27(32.5) 0.071 

Underlying heart disease (n,%) 51(14.7) 19(21.8) 13(14.1) 11(12.8) 9(10.8) 0.809* 

coronary artery disease 25(7.2) 9(10.3) 4(4.3) 6(7.0) 6(7.2)  

Hypertrophic cardiomiopathy 8(2.3) 2(2.3) 3(3.3) 1(1.2) 2(2.4)  

Congenital heart disease 2(0.6) 1(1.1) 0(0) 1(1.2) 0(0)  

Hypocinetic cardiopathy 16(4.6) 6(6.9) 6(6.5) 3(3.5) 1(1.2)  

CHA2DS2-VASc (n,%)           0.240 

0-1 241(69.3) 63(72.4) 63(68.5) 63(73.3) 52(62.7)  

≥ 2 107(30.7) 24(27.6) 29(31.5) 23(26.7) 31(37.3)  
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Table 2. Left atrium and left atrial appendage parameters by echocardiography and 

magnetic resonance stratified by quartiles of silent cerebral ischemia. 

 

  

OVERALL 

n=348 

≤ 6 SCI 

n=87 

7-23 SCI 

n=92 

24-43 SCI 

n=86 

≥ 44 SCI 

n=83 
p 

TRANSTHORACIC ECHOCARDIOGRAPHIC DATA  

Ejection Fraction (%) 46.6(±7.8) 46.8(±6.6) 47.0(±8.6) 46.9(±7.5) 45.9(±8.4) 0.865 

A-P diameter (mm) 39.8(±15.9) 34.8(±15.7) 41.0(±15.9) 42.1(±16.6) 40.6(±15.0) 0.035 

S-I diameter (mm) 45.3(±6.2) 43.3(±5.6) 46.9(±6.2) 45.0(±6.0) 46.2(±6.5) 0.001 

M-L diameter (mm) 60.6(±7.8) 59.1(±7.5) 60.1(±8.4) 61.3(±7.8) 61.8(±7.2) 0.214 

TRANSESOPHAGEAL ECHOCARDIOGRAPHIC DATA 
 

LAA Peak Flow speed (cm/s) 61.4(±7.1) 61.1(±7.1) 61.3(±7.8) 62.1(±7.1) 61.0(±6.4) 0.737 

   Sinus Rhythm (60.9%) 63.0(±5.6) 62.6(±5.4) 63.1(±5.4) 64.3(±6.3) 62.1(±5.3) 0.310 

   Atrial Fibrillation  (39.1%) 58.8(±8.4) 58.2(±9.0) 58.4(±9.9) 59.7(±7.3) 58.8(±7.6) 0.883 

MRA/CT DATA 

LA volume (cm3) 89.2(±32.8) 83.8(±30.8) 87.0(±28.7) 95.8(±34.5) 91.6(±36.6) 0.119 

LAA volume (cm3) 8.0(±4.4) 8.5(±5.2) 7.7(±3.5) 8.0(±4.6) 8.0(±4.2) 0.784 

LAA ostium                       

Area (cm2) 5.3(±1.8) 5.1(±2.0) 5.5(±1.7) 5.4(±1.8) 5.3(±1.8) 0.474 

Perimeter (cm) 8.9(±1.6) 8.7(±1.7) 9.1(±1.3) 9.0(±1.8) 8.8(±1.7) 0.465 

Dmax (mm) 32.8(±6.5) 32.3(±6.7) 33.6(±5.6) 33.5(±7.3) 31.7(±6.12) 0.203 

dmin (mm) 20.1(±4.6) 19.1(±4.7) 20.7(±4.8) 20.0(±4.7) 20.5(±4.3) 0.120 

 

Dmax, maximum diameter; dmin, minimum diameter 
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Table 3. Multivariate analysis investigating the correlation between recorded clinical and 

echocardiographic parameters (unit for continuous variables reported in brackets), left 

atrial appendage morphology and number of silent cerebral ischemia (unit=10 lesions) 

expressed by regression coefficients (beta) and 95% confidence intervals (95%CI). For 

example, subjects with Cauliflower LAA (beta=0.605) present in mean 0.605*10 = 6.05 

lesions more than those presenting other LAA morphologies. 

 

 Beta 95% CI p 

Age (years) 0.124 0.084–0.163  <0.001 

AF duration (months) -0.005 (-0.011)–0.001 0.077 

Hypercholesterolemia 0.942 (-0.011)–1.895 0.053 

A-P diameter (mm) 0.45*10-4 (-0.025)–0.026 0.994 

S-I diameter (mm) -0.024 (-0.090)–0.042 0.471 

Cactus LAA -0.051 (-0.390)–0.289 0.770 

ChickenWing LAA -0.275 (-0.507)–(-0.043)  0.021 

WindSock LAA 0.384 0.116–0.652 0.005 

Cauliflower LAA 0.605 0.073–1.138 0.026 
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Figure 1.  
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