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Abstract

Culture independent methods first appeared in the food microbiology field at the end of the
90s and since then they have been applied extensively. These methods do not rely on
cultivation and target nucleic acids (DNA and RNA) to identify and follow the changes that
occur in the main populations present in a specific ecosystem. The method that has most
often been used as a culture independent method in food microbiology is denaturing
gradient gel electrophoresis (DGGE). The number of papers dealing with DGGE grew
exponentially in the late nineties and, by analysing the studies available in the literature, it is
possible to describe a trend in the subjects that have been investigated. DGGE was first used
as a tool to monitor the ecology of fermented food, such as fermented sausage, cheese and
sourdough, and later it also showed its potential in microbial spoilage process. In the last
few years, the main application of DGGE has been to study fermented food from Asia, Africa
and South America.

The information collected using DGGE has made it possible to confirm the existing
knowledge on food fermentation and spoilage. However, in some cases, new evidence that
helps scientists to fully comprehend a specific microbial ecosystem has emerged.

In this review, the roadmap of culture independent methods in food microbiology will be
summarized, focusing on the DGGE technique. Examples of how this approach is useful to
obtain a better understanding of microbial diversity are reported for several kinds of
fermented food, such as fermented sausage, cheese and wine.

The future of culture independent methods in food microbiology, with the increasing
availability of next generation sequencing techniques, is also discussed.

Key-words: culture independent methods; DGGE; food fermentation; food spoilage;

microbial ecology.



1. Introduction

The last 30 years have been characterized by a significant change in the approaches used for
the microbiological examination of food. The invention of PCR (Mullis et al., 1986) has led to
new strategies to study food-borne microorganisms. Although, in the past, synthetic media,
which were used to cultivate microorganisms, were the only way of conducting a
microbiological analysis of food, with the arrival of PCR it has become possible to investigate
microorganisms without any cultivation. In its early stages in food microbiology, PCR was
mainly used as a detection method (Rossen et al., 1991). At the end of the 90s, a number of
techniques were developed and, coupled with PCR, these techniques offered scientists the
possibility of studying the ecology of complex microbial ecosystems. In this context, the term
“culture-independent techniques” was coined. This term indicates the use of methods that
are not based on cultivation to study microorganisms in a specific ecosystem. Undoubtedly,
culture-independent methods offer a number of advantages over culture-dependent
methods. Microorganisms are studied not because they are able to grow on a specific
microbiological medium, but because they possess DNA, RNA and proteins, which are the
preferred targets for such approaches. Moreover, the physiological status of the microbial
cell does not affect the outcome of the investigation. In traditional microbiological
examinations, cells that are stressed and injured are often not able to grow on synthetic
media that contain agents, such as antibiotics, to make them selective towards a specific
microorganism, and this can lead to false-negative results. Finally, populations that are
numerically less important are not detected by means of traditional methods, because they
are masked on the plates. Most of these issues can be solved by culture-independent

methods (Cocolin and Ercolini, 2008).



The introduction of culture-independent methods allowed scientists to understand the
limitation of microbial cultivation and, in 1998, Hugenholtz et al. published a paper in which
it was stated that “our knowledge of the extent and character of microbial diversity has been
limited, however, by reliance on the study of cultivated microorganisms. It is estimated that
>99% of microorganisms observable in nature typically are not cultivated by using standard
techniques”. Such evidence encouraged researchers to use culture independent methods in
different fields of microbiology. In food microbiology, the late 90s — early 20s represents a
key period for the application of these approaches and the first papers, dealing with the
study of microbial ecology of fermented foods, started to appear in scientific journals. One
of the aspects that was immediately highlighted by these pioneer studies was the presence
of non culturable populations in food systems, and these outcomes were in agreement with
results obtained in other branches of microbiology, such as environmental and intestinal
microbiology. Since they had never been detected by traditional methods, these populations
were described for the first time by culture independent methods. This state, defined as
viable but not culturable (VBNC), was defined by Oliver (1993) as “a cell which is
metabolically active, while being incapable of undergoing the cellular division required for
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growth in or on a medium normally supporting growth of that cell”, can be considered as a
survival strategy and response to adverse environmental conditions (e.g. starvation or acid
stress) (Rowan, 2004) that can easily be found in food fermentation and processing. The
VBNC state is of concern when associated to food-borne pathogens, because there is a
general lack of knowledge on the risks from VBNC cells. It cannot be assumed that such cells
will not emerge from this state after entering the human body and cause disease. Moreover,

a possible impact in food fermentation can be considered if the VBNC cells are responsible

for biochemical activities involved in the formation of the final characteristics of the product.



In the field of food microbiology, culture-independent techniques, used as tools to profile
microbial ecosystems, have been used more in the food fermentation and food spoilage
fields, although, in a few cases, they have also been exploited to study the ecology of food-

borne pathogens (Cocolin et al., 2002b, 2005).

2. Culture-independent methods used in food microbiology

Most of the techniques used for culture independent analysis are PCR-based. After
amplification of the nucleic acids extracted directly from the food matrix, the PCR product is
subjected to specific analyses that are able to highlight differences in the amplified DNA
sequences.

One of the most important aspects that should be considered, in order to properly profile
microbial populations in food ecosystems, is the selection of the DNA region that has to be
amplified. The target gene has to have two basic characteristics: (i) it should be present in all
members of the microbial group that is under consideration, (ii) it should have conserved
regions, in which universal primers can be designed, and variable regions, in which
differentiation is possible. Genes encoding for ribosomal RNA (rRNA) fall into this category.
Various regions of the 16S rRNA coding gene have been used in bacteria, while the 26S rRNA
coding gene is commonly the target in yeasts. One important advantage of the use of these
two genes is that large sequence databases exist. On the other hand, one drawback of the
use of rRNA coding genes is the inherent sequence heterogeneity within the same species,
which is the result of multi-copies of the genes with small differences in the sequence (Fogel
et al., 1999). These multi-copies often result in multi-signals, which complicate the analysis.
The rpoB gene, encoding for the B-subunit of the RNA polymerase, has been proposed as an

alternative, but its application is still limited (Dahllof et al., 2000; Rantsiou et al., 2004)



In post amplification analysis, the goal is to detect DNA sequence heterogeneity. Such a goal
is reached using denaturing/temperature gradient gel electrophoresis (D/TGGE) and single
strand conformation polymorphism (SSCP) through the study of the electrophoretic mobility
of completely or partially denatured PCR products, respectively, or by using restriction
endonucleases in terminal restriction fragment length polymorphism (TRFLP).

D/TGGE consists of an electrophoretic separation of PCR products in a polyacrylamide gel
containing a gradient of chemical (urea and formamide in DGGE) or physical (temperature in
TGGE) denaturants. As the DNA molecule encounters the appropriate denaturant gradient, a
sequence-dependent, partial denaturation of the double strand occurs. This change in the
conformation of the DNA structure causes a reduced migration rate of the molecule. When
the method is used for microbial profiling, after amplification, the complex mixture of the
DNA molecules can be differentiated and characterized. Bands visible in D/TGGE gels
represent components of the microbiota. They can be excised and, after re-amplification,
can be sequenced in order to obtain the corresponding microbial species. Using these
methods, it is possible not only to profile the microbial populations, but also to follow their
dynamics over time. It should be noted that these methods are not quantitative (Ercolini,
2004a).

In the case of SSCP, the differentiation is based on the mobility of single strands of DNA.
Small changes in the sequence can be detected because the single strand may create
intrastrand base pairing, which results in loops and folds that give the single strand a unique
3D structure, and this affects its mobility through a gel. In SSCP analysis, the amplified
product is denatured to a single-stranded form and subjected to non-denaturing
polyacrylamide gel electrophoresis. In the last few years, SSCP methods have been based on

amplification with fluorescein-labelled primers and detection of the signals by fluorescence.



When SSCP is used to profile a complex microbial ecosystem, a robust database should be
created in order to be able to identify each single component by comparing the retention
time of each signal with a reference time in the database. If matching does not occur,
identification cannot be obtained (Hayashi, 1992)

Finally, in T-RFLP, one of the PCR primers is labelled with fluorescent dye and used to amplify
a selected region of a gene of interest by means of PCR. The resulting PCR fragment is
digested with one (or more) restriction endonuclease(s) and the resulting fragments are
separated by means of an automated DNA analyser. Microbial diversity in a community can
be estimated by analysing the number and peak heights of patterns. T-RFLP is an effective
tool for characterizing the dynamic changes that occur in complex microbial ecosystems over
time. However, the technique is best suited for microbial communities with low to
intermediate richness (Sibley et al., 2012).

These PCR-based assays all suffer from amplification bias. Appropriate primer selection is
essential, but it must be noted that a perfect universal primer set does not exist for
community profiling. Usually they are reproducible, however low number populations
signals may not always be detected if multiple runs of the same sample are carried out.
Regarding the sensitivity it has been recognized that these methods are able to detect as low
as 1% of the total community, however this limit depends on the composition of the
microbial ecosystem and on the detection strategy (gel based or by using fluorescent dyes in
capillary electrophoresis). For DGGE analysis the limit of detection has been described to be
about 10° colony forming units (cfu)/ml or g (Cocolin et al., 2001a; Cocolin et al., 2001b).
Among the culture-independent methods, one of the few that do not rely on PCR
amplification is fluorescence in situ hybridization (FISH). This technique is based on the

hybridization of fluorescein-labelled probes to specific sequences of the rRNA. Target cells



are immobilized on a microscope glass and then subjected to a permeabilisation step in
order to allow the probe to penetrate into the cell. After hybridization, the results are
visualized under a UV microscope (Bottari et al., 2006). FISH has not been used intensively in
food microbiology, although it has the great potential of being able to localize microbial
populations in a solid food matrix (Ercolini et al, 2003).

Considering the wide application of DGGE and its extensive literature in the field of food

microbiology, this review will be focused on this method.

3. DGGE applications in food microbiology: a temporal evolution

As reported above, DGGE is the culture-independent technique that has been used most
often in food microbiology. The first paper to exploit the potential of DGGE, by Muyzer et al.,
was published in 1993. They investigated the microbial ecology of mats taken from different
depths and bacterial biofilms isolated from aerobic and anaerobic wastewater treatment
reactors. Only in the late 90s, was DGGE introduced into food microbiology and since then
an extensive number of studies, exploiting DGGE as a method to profile microbial ecology in
food, have been reported (Table 1). It is interesting to note that DGGE has been applied to
all areas of food microbiology, such as food fermentation, food spoilage and food safety, the
former being the richest in terms of scientific literature. DGGE is most suitable for the study
of the microbial ecology of spontaneous fermentations. Wine, meat and meat products, milk
and dairy products are the most frequently studied kinds of food, both in terms of
fermentation and spoilage processes, while sourdough and vegetables have been
investigated to a lesser extent using culture-independent methods. DGGE has been the
subject of several review papers, some of which have focused on its general aspects and

applications (Ercolini 2004a), while others have dealt with specific reviews in the dairy sector



(Jany and Barbier, 2008; Quigley et al., 2011), meat fermentations (Rantsiou and Cocolin,
2006; Cocolin et al., 2011b), grape surface in relation to wine production (Barata et al.,
2012), wine and beer fermentation (Cocolin et al., 2011a; Bokulich et al., 2012) and spoilage
of meat (Doulgeraki et al., 2012).

A search conducted in Scopus (www.scopus.com) in December 2012, using DGGE and food
as keywords, resulted in more than 400 hits, with the first one dating back to 1999 (Ampe et
al., 1999). The trend presented in Figure 1 has been obtained considering the number of
papers published each year, from 1998 up to now. As it can be observed, three time spans
can be distinguished. Period 1, from the late 90s to 2004, is characterized by a slight, but
steady increase in the number of papers published. This is followed by the second period,
from 2005 to 2008, in which the studies exploiting DGGE almost triplicate in just 4 years. The
number of DGGE papers reaches a peak in the third period (2009-present), in 2010, after
which a decrease can be observed.

Analysing the temporal evolution of the use of DGGE in food microbiology, it is worth
noticing that a correlation exists between the subjects considered in the papers and their
distribution in the three time spans described above. In the first years of application, DGGE
was mostly used to study well established food fermentations in industrialized countries.
Fermented sausage (Cocolin et al., 2001a), cheese (Ercolini et al., 2001) and wine (Cocolin et
al., 2001b) were the first products to be investigated, although studies focusing on the
ecology of Mexican pozol (Ampe et al., 1999; Ben Omar and Ampe, 2000) were also
published. The portfolio of food investigated by means of DGGE expanded in the following
years, when studies on sourdough (Meroth et al., 2003a), whisky (van Beek et al., 2002) and

raw milk ecology (Lafarge et al., 2004) became available.
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A remarkable increase in the number of DGGE papers can be observed for the following time
period. This could be correlated to an intensification of the studies on the fermented
products described above (especially fermented sausage and cheese), but also to the
exploitation of DGGE to follow the dynamic changes that occur during food spoilage. The
first examples of DGGE application to investigate spoilage organisms date back to 2004,
when two papers, one focusing on the late blowing of cheese (Cocolin et al., 2004a) and the
other on fresh sausage storage at refrigeration temperatures (Cocolin et al., 2004b) were
published. An important contribution to the increasing trend of DGGE papers in this period
was given by the spoilage studies from 2006, when, for the first time, DGGE was applied to
investigate the microbiota of fresh meat during refrigerated storage under different
packaging conditions (Ercolini et al., 2006).

The growing trend observed in Figure 1 until 2010 could be due to the increase in studies in
which DGGE was used as a tool to study the ecology of different kinds of fermented food
from the ones described above. Kimchi (Lee et al., 2005) and cocoa (Nielsen et al., 2005)
were among the first products to be investigated, and these have been followed in recent
years by soybean-based foods (Kim et al., 2009, 2010; Park et al., 2009; Lee et al. 2010). The
decrease in the number of studies should be considered carefully, and it is necessary to
consider that information related to the 2012 papers will only become available at the

beginning of 2013.

4. What have we learnt from the application of DGGE in food microbiology?
The results obtained by applying DGGE as a culture-independent method to food
fermentation have generally confirmed previous knowledge obtained through traditional

microbiological methods. Members of lactic acid bacteria (LAB) were found to be the main
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microorganisms active in food fermentation, but also involved in spoilage processes together
with Pseudomonas spp. and Enterobacteriaceae (Table 1). From this point of view, the
novelties introduced by the application of DGGE are related not so much to the discovery of
new microbial species, but to a new way of globally investigating the ecology of food during

microbial transformations.

4.1 DNA versus RNA DGGE analysis

One of the potentials of DGGE is that it offers the possibility of performing ecological studies
that target both nucleic acids, that is, DNA and RNA. It should be underlined that these two
molecules have completely different biological meanings, since DNA contains hereditary
messages, and RNA has a direct involvement in its translation into proteins. Moreover, DNA
shows remarkable stability in the environment, as can be seen from the recovery of DNA,
and the successful amplification by PCR, from archaeological and paleontological samples,
which can be thousands of years old (Landweber, 1999), while RNA, and more specifically
messenger RNA (mRNA), persists for short periods of time in actively growing bacteria cells,
with an average half-life measured in minutes (Arraiano et al., 1988). Studying the DNA of a
microbial ecosystem in ecological studies allows the microbial ecology and diversity to be
defined, while RNA analysis is able to better highlight the microbial populations that are
metabolically active, and thereby contribute to the microbial process. Since the number of
intact ribosomes approximately reflects the rate of protein synthesis, ribosomal RNA (rRNA)
can be used as a marker for general metabolic activity (Gosalbes et al., 2011), although it
must be accepted that these molecules are characterized by a much higher level of
protection, than mRNA (sometimes even weeks). Another strategy to detect viable

population is the use of ethidium monoazide (EMA) and propidium monoazide (PMA), DNA-
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intercalating agents able to selectively penetrate the membranes of dead cells and form
stable DNA monoadducts upon photolysis, resulting in DNA which cannot be amplified by
PCR. While this approach has been frequently used to differential live and dead cells of
pathogenic microorganims (Rudi et al., 2005), its perfromances in complex microbial
ecosystems has been tested.

RNA has not been used extensively in DGGE studies, but, when targeted, it has allowed some
new evidence to be highlighted, especially in food fermentation. In dairy fermentation, the
differentiation between starter LAB (SLAB), mainly Lactococcus spp., Streptococcus
thermophilus and several Lactobacillus spp., and non-starter LAB (NSLAB), belonging to
Lactobacillus spp., Leuconostoc spp. and Pediococcus spp. (Fox et al., 2004), is generally
scientifically accepted. The former are responsible for the acidification of milk and curd in
the early stages of cheese manufacturing, while NSLAB are considered as secondary
microbiota, associated with the organoleptic development of cheese during ripening. Studies
conducted on different types of cheese (Dolci et al., 2008, 2010; Rantsiou et al., 2008) have
confirmed this switch in LAB populations through traditional methods. However, they have
also highlighted the presence of stable signals of L. lactic and S. thermophilus at an RNA level
in the late stages of ripening. This new information leads to the conclusion that SLAB are not
only involved in the acidification process and in the proteolysis that results from their
production of proteolytic enzymes, but may also play a role in the development of the
organoleptic characteristics of cheese during the ripening period. Recently, it has been
demonstrated that, during ripening, L. lactis may be involved in several pathways, such as
carbohydrate and amino acids metabolisms, protein degradation and lipolysis (Desfossés-

Foucault 2012).
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Apart from the detection of a metabolically active population, RNA targeted DGGE has
recently shown another advantage, compared to DGGE, when analyzing DNA. In a study
performed by Dolci et al. (2012) on the surface microbiota of Fontina, a smear cheese from
the Aosta Valley region, North Italy, it was noticed that when subjected to an image analysis,
the DGGE profiles obtained from the RNA extracted from the surface of the cheese, were
clustering apart from the respective DNA samples. This result allowed the authors to
speculate that RNA molecules may be a better target to describe the microbial ecology of
complex microbial ecosystems, such as the rind of smear cheeses. This evidence could be
due to the high number of ribosomes that metabolically active cells possess. In these
circumstances, the PCR amplification should also be able to pick out microbial populations
that are numerically low, but metabolically active, and should allow their specific signals to
be detected in the DGGE gels. This outcome has also recently been described for table olive

fermentation (Cocolin 2012, personal communication).

4.2 DGGE is a useful tool to assess product-specific microbial biodiversity

Food fermentations are microbial transformations in which a large number of
microorganisms, belonging to different species and genera, compete to establish their
supremacy. DGGE has been demonstrated to be able to follow the dynamic changes that
occur during food fermentation and highlight dominant microbial populations. Its potential
has been demonstrated by Cocolin et al. (2007) in a study in which an optimisation of the
DGGE procedures was carried out to study different sets of primers that are often used in
DGGE analysis, denaturing gradients and electrophoretic conditions. When the optimised
protocol was applied to fresh and ripened meat as well as dairy products, the ecological

pressure exerted by certain microbial groups, namely LAB, during the fermentation process,
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became evident. The fresh produce was characterized by higher biodiversity, as observed
from the complex patterns, while ripened products presented just a few bands,
corresponding to the species that were able to dominate the microbial ecosystem. In the
specific sector of meat fermentation, the main products that were investigated by DGGE
were sausages from Italy, Argentina and Portugal (Table 1). LAB and coagulase negative cocci
(CNC) are the main microbial groups responsible for fermentation and transformation, and
this evidence was confirmed through an analysis of the DGGE profiles obtained in the above-
mentioned studies. However, it should be noted that microbial competition occurs in the
very early stages of fermentation, since, as demonstrated by Cocolin et al. (2001a), already
at the third day, the signals of Lb. sakei and Lb. curvatus, the main species involved in
sausage fermentation, became predominant. In studies conducted on fermented sausage
ecology it has often been highlighted how DGGE profiles could be used to differentiate
products from different geographic regions and production plants. This result was obtained
for Argentinian sausages (Fontana et al., 2005a), and also for sausages produced in North-
East Italy (Rantsiou et al., 2005). More specifically, in the latter study, the microbial changes
that occurred during fermentations of the three products, with a ripening period of 28, 45
and 120 days, respectively, were investigated. Through a cluster analysis of the DGGE
profiles, it was demonstrated that sausages at the beginning of the fermentation (from 3 to
7 days) present DGGE patterns that do not show any similarity with other samples, while
from day 10 onwards the different types of sausages started to group together in a product-

specific clustering manner.

4.3 DGGE analysis highlights hidden populations
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As already mentioned above, one of the main criticisms that is currently directed towards
traditional microbiological methods concerns the impossibility of detecting microorganisms
in low numbers in complex ecosystems with dominant populations. DGGE has partially
overcome this limitation, having a limit of detection of about 10° cfu/ml or g (Cocolin et al.,
2001a; Cocolin et al., 2001b).

In several food fermentation sectors, the DGGE technique has been able to highlight
populations that may have an important impact on the final characteristics of the product,
but which were not well described by means of traditional methods. An interesting example,
in this context, is the application of DGGE to wine fermentation. The ecology of wine yeasts
has been the focus of a large amount of literature, starting from the 80s, which has indicated
Saccharomyces cerevisiae as the main responsible for alcoholic fermentation (Fleet and
Heard, 1993), which is able to dominate over other yeast species, collectively called non-
Saccharomyces. This last group is usually of concern in the wine making sector, since it
contains yeasts that are detrimental to the quality of wine. There is scientific consensus on
the capability of S. cerevisiae to take over the wine fermentation process. However, the role
of non-Saccharomyces is still under debate. The use of DGGE during wine fermentation has
often demonstrated an active participation of non-Saccharomyces yeasts in the
fermentation process, and their persistence is longer than what was previously believed.
Ecological studies on a sweet wine produced in California (USA), called Dolce, produced from
botrytized grapes, highlighted multiple bands in DGGE profiles that, after sequencing, were
identified as putative Candida stellata. These bands were present from the very beginning of
the fermentation and remained stable throughout the fermentation process (Cocolin et al.,
2001b). In another study conducted the following year (Mills et al., 2002), the active

participation of this Candida sp. was confirmed and it was demonstrated, by RNA dot blot
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analysis, that viable populations of at least 10° cfu/ml were present at the end of the
fermentation. This species was classified as a new member of the Candida genus and it was
given the name C. zemplinina by Sipiczki in 2003 and it is nowadays considered as a possible
fermentation partner of S. cerevisiae in mixed fermentations to reduce the acetic acid
content in sweet wines (Rantsiou et al., 2012a). The concept of mixed fermentations is not
new in wine making, however the results obtained by means of culture-independent
methods support the idea of exploiting some positive contributions of non-Saccharomyces

yeasts to obtain wines with more complex organoleptic profiles.

5. Conclusions and future perspective

The application of culture-independent methods to food microbiology is relatively new and

the last 15 years have been particularly exciting for those working in the field of microbial

food ecology. For the first time in the history of microbiological food examination, scientists
have had methods at hand that do not rely on cultivation, and which are able to study
microbial populations that had not been detected previously on synthetic media, because

they had been overgrown with the dominant microbiota, or because they had been in VBNC
states. DGGE, as the most representative technique in this context, has been used

extensively and a large amount of literature has been written for different types of

fermented food and for food spoilage processes.

The last couple of years have seen the introduction of new methodologies in microbial food
ecology and these are expected to increase in number over the next few years. Next generation
sequencing (NGS) has a great advantage over DGGE. In the latter case, only intense and well
separated bands can be sequenced in the profiles, and as a consequence, only a partial fraction

of the microbiota in that specific food sample can be assessed and identified, but with NGS a
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massive quantity of sequences are generated from a single sequencing run, and the analysis of
this run offers the possibility of obtaining a large amount of information in a relatively short
time. When applied to microbial ecology studies, NGS makes it possible to determine how many
reads of different operational taxonomic units (OTUs) occur in a template and therefore to have
an estimation of the percent of occurrence of different OTUs in a specific ecosystem. This
modern molecular approach has been used in the field of applied food microbiology to study
the ecology of pearl millet slurries (Humblot and Guyot, 2009), the microbiota of different kinds
of cheese (Alegria et al., 2012; Quigley et al., 2012; Ercolini et al., 2012; Masoud et al., 2011),
the microbial diversity of Brazilian kefir grains (Leite et al., 2012) and the fermentation dynamics
of different Asian foods (Nam et al., 2012a,b; Park et al., 2012). However, NGS offers the even
more interesting possibility of studying the occurrence and abundance of microbial genesin a
given ecosystem and of establishing how these genes are expressed. Metagenomic and
metatranscriptomic studies represent the future for the study of the microbial ecology of food.
In a few years, detailed data on the ecology of microbial transformations in food will become
available, allowing scientists to fully comprehend the role and impact of specific microorganisms
in defined food sectors. It is expected that new information will become available which will be

used to improve food quality and safety.
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Figure 1. Trend in the publication of papers using DGGE as culture-independent method. The

data were obtained from the Scopus database (www.scopus.com) in December 2012, using

the keywords “DGGE and food”
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Table 1. Studies exploiting the DGGE technique to study the microbial ecology of various

food products.

Food products

Country

Microbial species
identified

Target gene(s)

Reference

Milk and dairy products

Flemish artisan raw milk
Gouda-type cheese

Gouda-type cheeses

Belgium

Enterococcus faecalis,
Lactobacillus parabucheri,
Lactobacillus gallinarum

16S rRNA gene

Van Hoorde et al.,
2008

Lactococcus lactis, Lactobacillus
plantarum, Lactobacillus casei,
Leuconostoc
pseudomesenteroides

16S rRNA gene

Van Hoorde et al.,
2010

Capo Verde cheese

Capo Verde
Islands

Lactococcus lactis subsp. lactis,
Lactobacillus helveticus, Kocuria
rhizophila, Escherichia coli,
Delphinella strobiligena,
Saccharomyces cerevisiae,
Filobasidium elegans

16S and 26S rRNA
genes

Alessandria et al.,
2010

Yoghurt

China

Streptococcus thermophilus,
Lactobacillus delbrueckii,
Lactobacillus crispatus,
Lactobacillus rhamnosus

16S rRNA gene

Ma et al., 2009

Calenzana cheese

Corsica

Lactococcus lactis ssp. lactis,
coryneform bacteria

16S rRNA gene

Casalta et al., 2009

Domiati cheese

Zabady fermented milk

Egypt

Leuconostoc mesenteroides,
Lactococcus garvieae,
Aerococcus viridans,
Lactobacillus versmoldensis,
Pediococcus inopinatus,
Lactococcus lactis, Kocuria
rhizophila, Kocuria kristinae,
Arthrobacter sp.,
Brachybacterium tyrofermentans

16S rRNA gene

El Baradei et al.,
2007

Streptococcus thermophilus,
Lactococcus garvieae,
Lactobacillus raffinolactis,
Leuconostoc citreum

16S rRNA gene

El Baradei et al.,
2008

Different cheeses

Raw milk during
refrigeration

France

Lactococcus lactis, Streptococcus
thermophilus, Lactobacillus
buchneri, Corynebacterium
variabile, Lactobacillus
plantarum

16S rRNA gene

Ogier at al., 2004

Lactococcus lactis,
Staphylococcus warneri,
Staphylococcus epidermidis,
Klebsiella pneumoniae, Kocuria
rosea, Listeria spp., Arthrobacter

sp.

16S rRNA gene

Lafarge et al., 2004
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Table 1. continued

Fermented milk

Ghana

Lactobacillus acidophilus,
Streptococcus salivarius,
Lactobacillus delbrueckii subsp.
delbrueckii, Streptococcus
thermophilus

16S rRNA gene

Obodai and Dodd,
2006

Feta cheese

Greece

Streptococcus thermophilus,
Lactobacillus delbrueckii subsp.
bulgaricus, Kluyveromyces lactis,
Pichia membranifaciens, Pichia
fermentans

16S and 26S rRNA

genes

Rantsiou et al.,
2008

Caciocavallo Silano

Caciotta cheese

Castelmagno cheese

Fontina cheese rinds

Fontina cheese

Gorgonzola rinds

Parmigiano Reggiano
cheese

Pecorino Siciliano
cheese

Italy

Lactobacillus delbrueckii,
Lactobacillus helveticus,
Streptococcus thermophilus,
Lactococcus lactis

16S rRNA gene

Ercolini et al., 2008

Leuconostoc mesenteroides,
Lactobacillus fermentum,
Lactobacillus sakei/curvatus

16S rRNA gene

Agquilanti et al.,
2011

Lactobacillus plantarum,
Streptococcus agalactiae,
Lactococcus lactis subsp. lactis,
Lactococcus lactis subsp.
cremoris, Lactobacillus
kefiranofaciens

16S rRNA gene

Dolci et al., 2008

Lactococcus lactis, Lactobacillus
helveticus, Streptococcus
agalactiae

16S rRNA gene

Dolci et al., 2010

Lactococcus lactis subsp. lactis,
Streptococcus thermophilus,
Arthrobacter nicotianae,
Brevibacterium casei,
Corynebacterium glutamicum,
Debaryomyces hansenii, Candida
sake

16S and 26S rRNA

genes

Dolci et al., 2009

Streptococcus thermophilus,
Enterococcus faecium,
Lactococcus lactis, Macrococcus
caseolyticus, Chryseobacterium

spp.

16S rRNA gene

Giannino et al.,
2009

Arthrobacter sp., Staphylococcus
sp.

16S rRNA gene

Cocolin et al.,
2009a

Lactobacillus fermentum,
Lactobacillus casei, Lactobacillus
paracasei, Lactobacillus
helveticus, Lactobacillus
delbrueckii subsp. lactis

16S rRNA gene

Gala et al., 2008

Streptococcus bovis, Lactococcus
lactis

16S rRNA gene

Randazzo et al.,
2006

Streptococcus thermophilus,
Enterococcus durans,
Lactobacillus rhamnosus,
Lactobacillus casei

16S rRNA gene

Randazzo et al.,
2008
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Table 1. continued

Ragusano Cheese

Raw milk

Robiola di Roccaverano

Surface microbiota of
Taleggio, Gorgonzola,
Casera, Scimudin and

Formaggio di Fossa
Italian cheeses

Taleggio cheese

Tosela cheese

Water-Buffalo
Mozzarella Cheese

Italy

Streptococcus thermophilus,
Lactococcus lactis, Lactobacillus
delbrueckii, Enterococcus
faecium

16S rRNA gene

Licitra et al., 2007

Leuconostoc sp., Lactococcus
lactis, Macrococcus caseolyticus,
Streptococcus thermophilus,
Lactobacillus delbrueckii,
Lactobacillus fermentum

16S rRNA gene

Randazzo et al.,
2002

Candida spp., Kluyveromyces
spp.

26S rRNA gene

Cocolin et al.,
2002a

Lactococcus lactis subsp. lactis,
Geotricum spp., Kluyveromyces
lactis

16S and 26S rRNA
genes

Bonetta et al.,
2008

Psychrobacter celer,
Psychrobacter aquimaris,
Micrococcus luteus,
Staphylococcus equorum

16S rRNA gene

Fontana et al.,
2010

Arthrobacter spp.,
Brevibacterium spp.,
Pseudoalteromonas agarivorans,
Brevibacterium linens

16S rRNA gene

Feligini et al., 2012

Lactobacillus paracasei,
Streptococcus macedonicus,
Lactobacillus rhamnosus

16S rRNA gene

Settanni et al.,
2011

Streptococcus thermophilus,
Lactococcus lactis, Lactobacillus
delbrueckii, Lactobacillus
crispatus

16S rRNA gene

Ercolini et al.,
2004b

Tarag cheese

Mongolia

Lactobacillus helveticus,
Lactococcus lactis subsp. lactis,
Lactobacillus casei

16S rRNA gene

Liu et al., 2012

Oscypek cheese

Poland

Lactococcus lactis, Lactobacillus
plantarum, Leuconostoc citreum,
Streptococcus vestibularis,
Debaryomyces hansenii, Candida
pararugosa

16S and 26S rRNA
genes

Alegria et al., 2012

Bukuljac cheese

Serbia

Leuconostoc mesenteroides

16S rRNA gene

Nikolic et al., 2010

Cabrales Spanish
blueveined cheese

Casin cheese

Spain

Lactococcus garvieae,
Lactococcus lactis subsp. lactis,
Lactobacillus raffinolactis,
Penicillium roqueforti,
Geotrichum candidum

16S and 26S rRNA
genes

Flérez and Mayo,
2006

Streptococcus thermophilus,
Lactococcus lactis, Streptococcus
parauberis, Lactobacillus
plantarum, Geotrichum
candidum, Kluyveromyces lactis

16S and 26S rRNA
genes

Alegria et al., 2009

Kefir grains

Taiwan

Lactobacillus kefiranofaciens,
Lactobacillus kefiri, Lactococcus
lactis

16S rRNA gene

Chen et al., 2008
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Table 1. continued

Taiwanese ropy
fermented milk

Taiwan

Lactococcus lactis subsp.lactis,
Leuconostoc mesenteroides
subsp. mesenteroides,
Lactobacillus fermentum

16S rRNA gene

Wang et al., 2011b

Tibetan Kefir

Tibet

Pseudomonas sp., Leuconostoc
mesenteroides, Lactobacillus
helveticus, Lactobacillus
kefiranofaciens, Lactococcus
lactis, Lactobacillus kefiri,
Lactobacillus casei, Kazachstania
unispora, Kluyveromyces
marxianus, Saccharomyces
cerevisiae

16S and 26S rRNA

genes

Zhou et al., 2009

Kefir grains and kefir
beverages

Turkey

Lactobacillus kefiranofaciens,
Lactococcus lactis

16S rRNA gene

Kesmen and
Kacmaz, 2011

Fermented meats

Fermented sausages

Argentina

Lactobacillus sakei, Lactobacillus
plantarum, Staphylococcus
saprophyticus

16S rRNA gene

Fontana et al.,
2005a

Lactobacillus plantarum,
Lactobacillus sakei,
Staphylococcus saprophyticus,
Corynebacterium variabilis,
Brochothrix thermophacta

16S rRNA gene

Fontana et al.,
2005b

Italy

Lactobacillus plantarum,
Staphylococcus carnosus,
Lactobacillus curvatus

16S rRNA gene

Cocolin et al.,
2006b

Lactobacillus plantarum,
Lactobacillus curvatus,
Lactobacillus sakei

16S rRNA gene

Cocolin et al.,
2001a

Penicillium farinosum,
Debaryomyces hansenii,
Penicillium viridicatum, Mucor
racemosus

26S rRNA gene

Cocolin et al.,
2006a

Enterococcus faecalis,
Pediococcus acidilactici,
Lactobacillus rhamnosus,
Enterococcus faecium,
Enterococcus durans,
Lactobacillus sakei

16S rRNA gene

Gazzola et al.,
2012

Lactobacillus curvatus,
Lactobacillus sakei, Brochothrix
thermosphacta, Macrococcus
caseolyticus, Staphylococcus
xylosus

16S rRNA gene

Rantsiou et al.,
2005
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Table 1. continued

Fermented sausages

Soppressata of Vallo di
Diano sausage

Italy

Lactobacillus plantarum,
Lactobacillus curvatus, Lactobacillus
sakei, Lactococcus lactis ssp. lactis,
Staphylococcus xylosus,
Debaryomyces hansenii

16S and 26S rRNA
genes

Aquilanti et al.,
2007

Lactobacillus curvatus, Lactobacillus
sakei, Lactobacillus paraplantarum,
Lactobacillus algidus, Leuconostoc
mesenteroides/pseudomesenteroides,
Staphylococcus saprophyticus

16S rRNA gene

Cocolin et al.,
2009b

Staphylococcus xylosus,
Staphylococcus succinus,
Staphylococcus equorum,
Lactobacillus sakei, Lactobacillus
curvatus, Debaryomyces hansenii

16S and 26S rRNA
genes

Villani et al., 2007

Alheira: traditional
Portuguese fermented
sausage

Portugal

Brochothrix thermosphacta,
Lactobacillus sakei, Leuconostoc
lactis, Streptococcus lutetiensis,
Lactobacillus curvatus, Lactobacillus
brevis

16S rRNA gene

Albano et., 2008

Fermented ham

Taiwan

Lactobacillus sakei, Staphylococcus
saprophyticus, Lactobacillus
mesenteroides, Carnobacterium
divergens, Brochothrix
thermosphacta

16S rRNA gene

Tu et al., 2010

Cereal-based
foods

Sourdoughs

Belgium

Lactobacillus spicheri, Lactobacillus
plantarum, Lactobacillus
sanfranciscensis

16S rRNA gene

Scheirlinck et al.,
2009

Lactobacillus frumenti, Lactobacillus
panis, Lactobacillus pontis,
Lactobacillus curvatus

16S rRNA gene

De Vuyst and
Vancanneyt, 2007

Lactobacillus sanfranciscensis,
Lactobacillus paralimentarius,
Lactobacillus plantarum,
Lactobacillus pontis, Acetobacter sp.

16S rRNA gene

Scheirlinck et al.,
2008

Rice sourdough

Sourdough

Germany

Lactobacillus plantarum,
Lactobacillus fermentum,
Lactobacillus kimchii, Lactobacillus
gallinarum, Lactobacillus pontis

16S rRNA gene

Meroth et al.,
2004

Lactobacillus sanfranciscensis,
Lactobacillus crispatus, Lactobacillus
pontis, Lactobacillus johnsonii,
Lactobacillus mindensis

16S rRNA gene

Meroth et al.,
2003a

Saccharomyces cerevisiae, Candida
humilis, Dekkera bruxellensis

26S rRNA gene

Meroth et al.,
2003b

Panettone

Italy

Lactobacillus sanfranciscensis,
Lactobacillus brevis, Candida humilis

16S and 26S rRNA
genes

Garofalo et al.,
2008
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Table 1. continued

Sourdough

Italy

Saccharomyces cerevisiae,
Kazachstania unispora,
Saccharomyces
bayanus/Kazachstania sp.,
Candida humilis

26S rRNA gene

Minervini et al.,
2012

Lactobacillus sanfranciscensis,
Lactobacillus fermentum

16S rRNA gene

Randazzo et al.,
2005

Lactobacillus plantarum,
Lactobacillus sanfranciscensis,
Lactobacillus rossiae

16S rRNA gene

Settanni et al.,
2006

Ting: fermented
sorghum

South Africa

Weissella cibaria, Lactobacillus
curvatus, Lactococcus lactis

16S rRNA gene

Madoroba et al.,
2011

Maize fermentation

Mexico, Congo
and Benin

Lactobacillus plantarum,
Lactobacillus delbrueckii,
Lactobacillus fermentum

16S rRNA gene PCR-
DGGE

Ampe and
Miambi, 2000

Fermented cassava

Congo

Lactobacillus
plantarum/pentosus,
Lactobacillus
plantarum/sanfrancisco,
Lactobacillus fermentum,
Lactobacillus delbrueckii,
Clostridium
acetobutylicum/butyricum

16S rRNA gene

Miambi et al.,
2003

Mexican fermented and
maize dough pozol

Pozol

Mexico

Streptococcus bovis,
Enterococcus saccharolyticus,
Lactobacillus fermentum,
Lactobacillus plantarum,
Exiguobacterium aurantiacum

16S rRNA gene

Ben Omar and
Ampe, 2000

Lactobacillus plantarum,
Lactobacillus fermentum,
Streptococcus bovis, Weissella
paramesenteroides

16S rRNA gene

Ampe et al., 1999

Fresh and fermented vegetables

Debaryomyces spp., Eurotium

Fuzhuan brick-tea China . . 26S rRNA gene Xu et al., 2011
spp., Aspergillus niger
Pseudomonas siringae, Pantoae Randazzo et al
Fresh cut salad Italy agglomerans, Pseudomonas 16S rRNA gene 2009 v
rhodesiae, Erwinia persicinus
Lactobacillus fermentum,
Sunki Japan Lactobacillus plantarum, 16S rRNA gene Endo et al., 2008
Lactobacillus delbrueckii
Halococcus spp., Natronococcus
., Natrialb .
spp., Natriaiva spp., 165 rRNA gene Chang et al., 2008
Lodderomyces spp.,
Kimchi Korea Trichosporon spp.

Weissella confusa, Leuconostoc
citreum, Lactobacillus sakei,
Lactobacillus curvatus

16S rRNA gene

Lee et al., 2005
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Table 1. continued

Dongchimi

South Korea

Lactobacillus algidus,
Lactobacillus plantarum

16S rRNA gene

Park et al., 2008

Olives

Spain

Gordonia sp., Pseudomonas sp.,
Sphingomonas sp., Halosarcina
pallida, Lactobacillus sp.,
Saccharomyces cerevisiae,
Lactobacillus
pentosus/plantarum,
Lactobacillus
vaccinostercus/suebicus,
Candida cf. apicola

16S and 26S rRNA
genes

Abriouel et al.,
2010

Wine, vinegar and other beverages

Caxiri, alcoholic
beverage

Brazil

Paenibacillus sp., Bacillus
subtilis, Lactobacillus
fermentum, Saccharomyces
cerevisiae, Pichia
membranifaciens, Rhodotorula
mucilaginosa

16S and 26S rRNA
genes

Santos et al., 2012

Palm wine

Cameroon

Saccharomyces cerevisiae,
Saccharomycodes ludwigii,
Zygosaccharomyces bailii,
Hanseniaspora uvarum, Candida
parapsilopsis, Candida
fermentati, Pichia fermentans

26S rRNA gene

Stringini et al.,
2009

Hong Qu glutinous rice

wine

China

Janthinobacterium lividum,
Bacillus subtilis, Bacillus
amyloliquefaciens,
Saccharomycopsis fibuligera,
Rhizopus oryzae, Aspergillus
flavus

16S rRNA and 18S
genes

Lv et al., 2012

Sauternes wines

France

Saccharomyces cerevisiae,
Candida stellata, Hanseniaspora
uvarum, Botrytis cinerea

26S rRNA gene

Divol and Lonvaud-
Funel

Botrytis-affected wine

fermentations

Botrytis-affected grapes
and wine fermentations

Greece

Metschnikowia pulcherrima,
Zygosaccharomyces bailii,
Issatchenkia spp., Botrytis
cinerea

26S rRNA gene

Nisiotou et al.,
2007

Klebsiella oxytoca, Citrobacter
freundii, Enterobacter spp.,
Erwinia sp., Pantoea dispersa,
Tatumella ptyseos on grapes.
Lactobacillus plantarum and
Enterobacter ludwigii during
fermentations

16S rRNA gene

Nisiotou et al.
2011

Balsamic vinegar

Erbaluce wine

Picolit wine

Italy

Acetobacer pasteurianus/aceti

16S rRNA gene

De Vero et al.,
2006

Acetobacer pasteurianus,
Gluconacetobacter europaeus

16S rRNA gene

Gullo et al., 2009

Candida zemplinina, Metschnikowia
fructicola, Hanseniaspora uvarum,
Saccharomyces cerevisiae

26S rRNA gene

Rantsiou et al.,
2013

Saccharomyces cerevisiae,
Aureobasidium pullulans, Candida
zemplinina

26S rRNA gene

Urso et al., 2008
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Table 1. continued

Vinegard

Japan

Aspergillus oryzae,
Saccharomyces sp., Lactobacillus
acetotolerance, Acetobacer
pasteurianus

16S and 26S rRNA
genes

Haruta et al., 2006

Takju: Korean rice wines

Korea

Lactobacillus paracasei,
Lactobacillus plantarum,
Leuconostoc
pseudomesenteroides,
Lactobacillus harbinensis,
Lactobacillus parabuchneri

16S rRNA gene

Kim et al., 2010

Mezcal, alcoholic
beverage

Mexico

Pediococcus parvulus,
Lactobacillus brevis,
Lactobacillus composti,
Lactobacillus parabuchneri,
Lactobacillus plantarum

16S rRNA gene

Narvdez-Zapata et
al., 2010

Fruit juice

South Africa

Alicyclobacillus acidoterrestris,
Alicyclobacillus pomorum

16S rRNA gene

Duvenage et al.,
2007

Makgeolli

South Korea

Lactobacillus crustorum,
Lactobacillus brevis,
Lactobacillus plantarum

16S rRNA gene

Kim et al., 2012

Tempranillo wines

Spain

Oenococcus oeni, Gluconobacter
oxydans, Asaia siamensis

16S rRNA gene

Ruiz et al., 2010

Kava beverages

Botrytis-affected wine
fermentations

Sweet wine
fermentation

Unites States

Weissella soli, Lactobacillus spp.,
Lactococcus lactis

16S rRNA gene

Dong et al., 2011

Hanseniaspora uvarum,
Hanseniaspora osmophila,
Candida zemplinina, Lachancea
thermotolerans, Saccharomyces
cerevisiae

26S rRNA gene

Mills et al., 2002

Metschnikowia sp., Botrytis
cinerea, Pichia anomala,
Saccharomyces cerevisiae

26S rRNA gene

Cocolin et al.,
2001b

Fish products

Chum salmon sauce

Aji-narezushi and
iwashi-nukazuke

Japan

Zygosaccharomyces rouxii,
Candida versatilis, Aspegillus
oryzae

26S rRNA gene

Yoshikawa et al.,
2010

Lactobacillus acidipiscis,
Lactobacillus versmoldensis,
Lactobacillus

plantarum, Tetragenococcus
muriaticus, Tetragenococcus
halophilus

16S rRNA gene

An et al,, 2010

Sea food

Korea

Sulfolobus sp., Thermocladium
sp., Lactobacillus sp., Weissella
sp., Salinivibrio sp.

16S rRNA gene

Roh et al., 2010

Philippine fermented
food products

Philippine

Lactobacillus fermentum,
Lactobacillus plantarum,
Lactobacillus panis, Lactobacillus
pontis, Acetobacter pomorum,
Acetobacter ghanensis

16S rRNA gene

Dalmacio et al.,
2011
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Table 1. continued

Cocoa and african foods

Tayohounta: natural
fermentation of baobab
seed kernels

Benin

Bacillus licheniformis, Bacillus
pumilus, Bacillus subtilis, Bacillus
thermoamylovorans,
Lactobacillus fermentum

16S rRNA gene

Chadare et al.,
2011

Cocoa beans

Brazil, Ecuador,
Ivory Coast,
Malaysia

Hanseniaspora sp., Pichia
kudriavzevii, Saccharomyces
cerevisiae, Hyphopichia burtonii,
Meyerozyma caribbica

26S rRNA gene

Papalexandratou
and De Vuyst,
2011

Cocoa fermentation

Ghana

Hanseniaspora guilliermondii,
Candida krusei, Candida
zemplinina, Pichia
membranifaciens

26S rRNA gene

Nielsen et al., 2005

Hanseniaspora guilliermondii,
Candida diversa, Candida
zemplinina, Pichia
membranifaciens, Issatchenkia
orientalis, Lactobacillus
fermentum, Bacillus
licheniformis, Acetobacter
pasteurianus, Leuconostoc
pseudoficulneum

16S and 26S rRNA
genes

Nielsen et al., 2007

Lactobacillus fermentum,
Lactobacillus
pseudomesenteroides,
Lactobacillus plantarum,
Weissella hanaensis

16S rRNA gene

Camu et al., 2007

Lactobacillus fermentum,
Leucnostoc
pseudomesenteroides,
Leuconostoc seudoficulneum,
Acetobacter pasteurianus,
Saccharomycopsis crateagensis,
Hanseniaspora guilliermondii,
Candida zemplinina

16S and 26S rRNA
genes

Nielsen et al., 2008

Processing of cocoa
beans into cocoa
powder

Netherlands

Bacillus licheniformis, Bacillus
subtilis

16S rRNA gene

Lima et al., 2012

Cassava for gari
production

Nigeria

Issatchenkia scutulata, Candida
rugopelliculosa, Candida
maritime, Zygosaccharomyces
rouxii, Galactomyces geotricum

18S rRNA gene

Oguntoyinbo 2011
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Table 1. continued

Cereal foods: kunu-zaki
and ogi

Weissella confusa, Lactobacillus
fermentum, Lactobacillus
amylolyticus, Lactobacillus
delbrueckii subsp. bulgaricus,
Bacillus sp., Lactococcus lactis
subsp. lactis

16S rRNA gene

Oguntoyinbo et al.,
2011

Ugandan Ghee

Uganda

Lactobacillus helveticus,
Lactobacillus plantarum,
Bifidobacterium sp.,
Enterococcus faecium,
Lactobacillus brevis,
Lactobacillus acetotolerans,
Lactococcus raffinolactis,
Acetobacter aceti, Acetobacter
lovaniensis, Acetobacter
pasteurianus, Brettanomyces
custersianus, Candida silvae,
Issatchenkia orientalis,
Saccharomyces cerevisiae

16S and 26S rRNA
genes

Ongol and Asano
2009

Cassava for gari
production

West Africa

Lactobacillus plantarum,
Lactobacillus fermentum,
Lactobacillus pentosus,
Lactobacillus acidophilus,
Lactobacillus casei

16S rRNA gene

Oguntoyinbo and
Dodd, 2010

Soy-based products

Chinese liquor

Daqus

Douchi

China

Lactobacillus acetotolerans

16S rRNA gene

Wang et al., 2008

Saccharomycopsis fibuligera,
Pichia anomala, Aspergillus
oryzae, Absidia blakesleeana

18S rRNA gene

Wang et al., 2011a

Bacillus subtilis, Aspergillus
oryzae

16S and 18S rRNA
genes

Chen et al., 2011a

Lactococcus lactis,
Staphylococcus lentus

16S rRNA gene

Chen et al., 2011b

Bacillus subtilis, Bacillus
amyloliquefaciens,
Saccharomyces cerevisiae, Pichia
farinosa

16S and 26S rRNA
genes

Chen et al., 2012

Soy sauce

Japan

Weissella cibaria, Staphylococcus
gallinarum, Staphylococcus
kloosii, Aspergillus oryzae,
Zygosaccharomyces rouxii,
Candida etchellsii, Candida
versatilis

16S and 26S rRNA
genes

Tanaka et al., 2012

Chungkookjang

Doenjang

Korea

Pantoea agglomerans, Bacillus
subtilis, Pantoea ananatis,
Bacillus licheniformis

16S rRNA gene

Hong et al., 2012

Leuconostoc mesenteroides,
Tetragenococcus halophilus,
Enterococcus faecium, Mucor
plumbeus, Debaryomyces
hansenii

16S and 18S rRNA
genes

Kim et al., 2009
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Table 1. continued

Japanese and Chinese
fermented soybean
pastes

Korea

Tetragenococcus halophilus,
Staphylococcus gallinarum,
Aspergillus oryzae,
Zygosaccharomyces rouxii

16S and 18S rRNA
genes

Kim et al., 2010

Enterococcus durans, Bacillus

16S and 18S rRNA

Meju subtilis, Absidia corymbifera, enes Lee et al., 2010
Aspergillus sp., Candida rugosa &
Bacillus ehimensis, Bacillus
. terium, Bacill ilus,
Kochujang South Korea megaterium, Baciiius pumitus 16S rRNA gene Park et al., 2009

Bacillus subtilis, Bacillus
licheniformis

Food spoilage

Artisan-type cooked
ham

Carnobacterium divergens,
Brochothrix thermosphacta,
Leuconostoc carnosum

16S rRNA gene PCR-
DGGE

Vasilopoulos et al.,
2007

Lactobacillus sakei, Lactobacillus

Belgium fuchuensis, Lactobacillus
Packaged sliced cooked 4 . 16S rRNA gene PCR- | Audenaert et al.,
curvatus, Carnobacterium
meat . DGGE 2009
divergens, Leuconostoc
carnosum
Clostridium tyrobutyricum,
16S rRNA PCR-
Raw milk Canada Clostridium sporogenes, f gene Julien et al., 2008
- . . DGGE
Clostridium disporicum
Staphylococcus sp.,
. Pseudomonas sp., 16S rRNA gene PCR-
Broiler Meat Carnobacterium sp., Weissella DGGE Zhang atal,, 2012
sp.
Pseudomonas sp., Lactobacillus
sp., Brochothrix thermosphacta,
16S rRNA PCR-
Chilled pork Staphylococcus sp., Arthrobacter f gene Li et al., 2006
DGGE
sp., Enterococcus sp., Moraxella
sp.
Pseudomonas sp., Pseudomonas
fluorescens, Brochothrix 16S rRNA gene PCR- | .
Packaged k J tal, 2011
ackaged por thermosphacta, Achromobacter | DGGE lang et at.,
China xylosoxidans
Weissella virid 16S rRNA PCR-
eissella viridescens, ‘ r gene Han et al., 2011
Leuconostoc mesenteroides DGGE
Packed cooked ham
Weissella viridescens, Weissella | 16S rRNA gene PCR-
. Han et al., 2010
minore DGGE
Acinetobacter sp.,
P d chick C bacteri . 16S rRNA PCR-
repared chicken arnobacterium sp., . r gene Liang et al., 2012
products Pseudomonas sp., Brochothrix DGGE
sp., Weissella sp.
C bacteri /di ,
Vacuum-packaged pork arno ac. erium s;.)/ lvergens. 16S rRNA gene PCR- | .
. . Lactobacillus sakei, Lactococcus Jiang et al., 2010
during chilled storage . DGGE
sp./piscium
Brochothrix thermosphacta,
16S rRNA PCR- .
Beef chops Italy Pseudomonas spp., f gene Ercolini et al., 2011

Carnobacterium divergens

DGGE
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Table 1. continued

Beef stored in nisin
activated packaging

Cheese in late blowing
spoilage

Fresh sausages

Freshly cut beefsteaks

Packaged Beef

Spoiled wines

Wheat bread

Italy

Pseudomonas spp.,
Carnobacterium spp.,
Carnobacterium divergens,
Staphylococcus xylosus

16S rRNA gene PCR-
DGGE

Ercolini et al., 2010

Clostridium butyricum,
Clostridium tyrobutyricum,
Clostridium sporogenes

16S rRNA gene PCR-
DGGE

Cocolin et al.,
2004a

Brochothrix thermosphacta,
Lactobacillus sakei,
Debaryomyces hansenii

16S and 26S rRNA
gene PCR-DGGE

Cocolin et al.,
2004b

Rahnella aquatilis, Pseudomonas
spp., Carnobacterium divergens,
Lactobacillus sakei

16S rRNA gene PCR-
DGGE

Ercolini et al., 2006

Lactobacillus sakei, Brochothrix
thermosphacta, Leuconostoc

spp.

16S rRNA gene PCR-
DGGE

Fontana et al.,
2006

Brettanomyces bruxellensis,
Saccharomyces cerevisiae,
Brettanomyces anomalus

26S rRNA gene PCR-
DGGE

Cocolin et al.,
2004c

Bacillus subtilis, Bacillus
licheniformis, Bacillus clausii,
Bacillus firmus

16S rRNA gene PCR-
DGGE

Pepe et al., 2002

Packaged beef

New Zealand

Carnobacterium spp.,
Clostridium spp.

16S rRNA gene PCR-
DGGE

Brightwell et al.,
2009

Photobacterium phosphoreum,

16S rRNA gene PCR-

Hovda et al.,

Atlantic cod Psel{domonas spp., Shewane./la DGGE 2007a
baltica, Shewanella putrefaciens
Norway
. Pseudomonqs SPP-, 16S rRNA gene PCR- | Hovda et al.,
Farmed atlantic cod Photobacterium spp.,
. DGGE 2007b
Shewanella putrefaciens
Weissella viridescens,
L t teroides, 16S rRNA PCR- .
Morcilla de Burgos Spain euconostoc mesenteroldes f gene Diez et al., 2008

Weissella confusa, Gamma
proteobacterium

DGGE

Pasteurized milk

United States

Pseudomonas sp., Streptococcus
sp., Buttiauxella sp.,

16S rRNA gene PCR-
DGGE

He et al., 2009
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