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Abstract 

During wine fermentation, different strains of Saccharomyces cerevisiae compete in the same 

fermenting must and dominance takes place when one strain overcomes all the others. The purpose 

of this study was to investigate this phenomenon by identifying S. cerevisiae strains endowed with 

this feature and to test them in laboratory fermentations. First, autochthonous S. cerevisiae from 

Nebbiolo fermentations were isolated, molecularly identified and characterized. Genetically diverse 

S. cerevisiae strains were subsequently subjected to physiological characterization and to micro-

scale fermentation, the weight loss kinetics was measured and HPLC analysis was performed at the 

end of the fermentation. Then, the strains that presented good fermentation characteristics were 

chosen for further analysis and to determine the dominance feature. For this purpose, couples of 

strains were co-inoculated in Nebbiolo must and the fermentations were monitored by 

microbiological and chemical analysis. Two different inoculation approaches were used: co-

fermentations in flasks with mixed cells and reactor co-fermentations, in which the cells from the 

two different strains were kept separate by means of a 0.45 µm filter membrane, which allowed the 

fermenting must to move freely between the two compartments. During the flask co- fermentations, 

a minisatellite PCR protocol was applied, in order to differentiate the two strains and determine 

which one was able to dominate. The protocol included a culture-dependent approach and an 

independent one. In the first case, DNA extraction was performed on all the colonies scraped off the 

plates after sampling. In the second case, DNA extraction was performed directly on the fermenting 

must. The strains that were able to dominate were tested against several S. cerevisiae in order to 

confirm this dominance behavior. Dominance was observed in the early stages of fermentation, as 

early as 3 days. Combinations of dominant and not-dominant strains were subjected to further tests 

in a co-fermentation reactor system, in order to perform single-strain analysis so as to obtain a 

better understanding of the dominance behavior. Surprisingly, the results obtained in the flask co-

fermentations were not confirmed. In fact, the two strains, one which was hypothesized to be 

dominant and the other not-dominant, coexisted throughout the fermentation period. The results of 
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this study suggest that the dominant behavior of S. cerevisiae is only expressed when they sense 

other yeasts in the same environment. 

 

Keywords: Wine fermentation; Saccharomyces cerevisiae; cell-to-cell contact; competition 

between strains; dominance. 

 

1. Introduction 

Natural microbial ecosystems are characterized by a high level of biodiversity. In such a 

community, microorganisms compete for space and resources. Research efforts that have focused 

on understanding the mechanisms responsible for the coexistence or dominance of these 

microorganisms have highlighted the multitude of strategies that they can employ when found in 

the same ecosystem. From the information collected in studies in this specific research area, it is 

becoming evident that microorganisms of the same species are able to interact and that they may 

develop competitive or cooperative behavior. Through a study of such phenomena, it is possible to 

understand how specific individuals, within a population consisting of representatives of the same 

microbial species, may dominate or decline (Hibbing et al., 2010). 

The fermentation of grape juice into wine is a complex microbiological process that involves 

interactions between yeasts, bacteria and filamentous fungi. Naturally, during fermentation, many 

different species and strains undergo sequential substitution. This substitution may be explained by 

the competitive exclusion of those microorganisms that are less competitive (Arroyo-Lopez et al., 

2011). The substitution of species normally takes place because of the changes that occur in the 

must matrix, which is becoming wine. Yeasts, such as Kloeckera/Hanseniaspora, Torulaspora, 

Candida and Zygosaccharomyces, are commonly present on the surface of grapes. After crushing, 

the grape must becomes a selective ecosystem because of the high concentration of sugars and 

nitrogen, salts, trace elements and oxygen amount. Poorest varieties in nitrogen, salt and trace 

elements limit the yield in biomass of the cells (Monteiro and Bisson, 1991), while a low oxygen 
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content promotes S. cerevisiae as it is more able to produce cellular fatty acids (Mauricio et al., 

1998) Finally temperature, increasing naturally because of the S. cerevisiae fermentative activity 

represents an inhibition factor for others species (Goddard, 2008). Certain species, such as 

Kloeckera and Hanseniaspora, grow more during the first hours after the crushing, due to the 

higher counts on the grape skins and can start fermenting during the first 1-3 days of the 

fermentation (Pèrez-Nevado et al., 2006). If no starter culture is used, Saccharomyces cerevisiae 

contamination normally occurs from the winery environment. The winery environment can be a 

source of yeast inoculation, and this yeast may be preserved for years.  

Although the predominance mechanism of S. cerevisiae on others genera is quite known (Fleet and 

Heard, 1993; Nissen et al., 2003; Salvadò et al., 2011), few studies on the competition between 

species of the same genera are present in literature (Arroyo-Lopez et al., 2011), and little is known 

about competition between strains of the same species, with the exception of studies on killer 

factors (Barandica et al., 1999; Jacobs and van Vuuren, 1991; Psani and Kotzekidou, 2006). 

This study has focused on: (i) the identification and characterization of potential autochthonous 

dominant S. cerevisiae from Nebbiolo musts from the Piedmont region, Northwest Italy; (ii) the 

investigation of S. cerevisiae intraspecies competition during wine fermentations in which the cells 

of the different strains were mixed or kept separated. The final aim of this study was to investigate 

the behavior of S. cerevisiae, when competing in the same fermenting must, in order to obtain new 

insights into the competition phenomenon. 

 

2. Materials and methods 

 

2.1. Yeast strains and growth media  

Ninety- nine strains of indigenous S. cerevisiae, isolated from the spontaneous fermentation of 

Nebbiolo must, and the commercial S. cerevisiae BRL97 (Lallemand, Montreal, Canada), have 
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been examined in this study. The yeasts were maintained at 4°C on WLN (Wallerstein Laboratory 

Nutrient agar) medium (Oxoid, Milan, Italy).  

 

2.2. Molecular identification and characterization of the isolates  

After DNA extraction, as described by Cocolin et al. (2000), the S. cerevisiae were identified using 

a species-specific PCR, according to Manzano et al. (2005), and then characterized through a Sau-

PCR protocol, as suggested by Cocolin et al., (2006). The profiles were digitally transformed and 

processed into clusters using the Bionumerics statistic software (Applied Maths, Sint-Martens-

Latem, Belgium). 

 

2.3. Physiological characterization 

Apart from the molecular characterization, a physiological characterization was also performed to 

test the hydrogen sulfide production and resistance to sulfur dioxide and ethanol. The Biggy agar 

medium (Oxoid) was used for the hydrogen sulfide production and its production was evaluated on 

the basis of the intensity of the brown color after growth. Sulfur dioxide and ethanol resistance were 

tested in Yeast Nitrogen Base without amino acids (Sigma, Milan, Italy) with glucose 2% (w/v). 

Sulfur dioxide resistance was tested at 50 – 100 – 150 – 200 mg/l of sulfur dioxide, which were 

obtained by adding different concentrations of potassium metabisulfite to the YNB with a pH of 4. 

Ethanol resistance was tested at concentrations of 14 – 16 – 18 – 20% (v/v). Growth was evaluated 

after 3 days of incubation at 30°C. 

 

2.4. Micro-fermentation to test the technological performances of the strains 

On the basis of the physiological and Sau-PCR characterization, 24 strains of S. cerevisiae were 

selected and tested in micro-fermentation tests. S. cerevisiae BRL97 was used as the control. In 

order to prepare the cultures for inoculation, Nebbiolo grape must (reducing sugars 270 g/L, 

assimilable yeast  nitrogen content 200 mg/L) was used. One colony was inoculated in 10 ml of 

pasteurized must (100°C for 10 min) and incubated at 25°C. After 72 hours, 30 ml of pasteurized 
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must was added to the culture and incubated at the same temperature for an additional 72 hours. 

Finally, 360 ml of pasteurized must was added to the active inoculum in a bubbler capped bottle 

filled with paraffin oil, as described by Romano et al. (2003). The fermentations were run at 25°C 

for 15 days and were monitored daily to measure the weight loss. At the end of the fermentation, 

the residual glucose and fructose, the glycerol and ethanol production and the malic acid content 

were quantified by means of HPLC (Thermo Electron Corporation, Waltham, MA, USA) equipped 

with a UV detector (UV100), set to 210 nm, and a refractive index detector (Waters 2414, Waters 

Corporation, Milford, MA, US). The analyses were performed isocratically at 0.8 mL/min and 65 

°C with a 300x7.8 mm i.d. Aminex HPX-87H cation exchange and a Cation H+ Microguard 

cartridge (Bio-Rad Laboratories, Hercules, CA, USA), using 0.0026N H2SO4 as the mobile phase 

(Giordano et al., 2009; Schneider et al., 1987). Statistical analysis was performed using the 

statistical software package IBM SPSS Statistics (version 19.0; IBM Corp., Armonk, NY, USA). 

Principal component analysis (PCA) was used to evaluate the performance and carry out the 

selection of the yeast strains. The components with eigenvalue greater than 1 were extracted, no 

rotation was used. 

 

2.5. Minisatellite profiling 

Fourteen strains showing good technological performances, determined from the micro-

fermentations, were selected and characterized through the amplification of minisatellite SED1 

(Marinangeli et al., 2004).  

 

2.6. Trial fermentations to study the dominance phenomenon 

Two fermentation set-ups were used to study S. cerevisiae intraspecies competition. First, strains 

showing different minisatellite profiles were divided into 48 couples and inoculated in flasks with 

loose screw cap with a final concentration of 105 cell/ml per strain, in 100 ml of pasteurized must, 

in order to check the dominance behavior. The fermentations were incubated at 25°C for 10 days. 

Subsequently, in order to obtain better insight into the dominance behavior, two couples of strains, 

one behaving in a dominant manner and the other in a non-dominant way, were tested in mixed 

fermentations in a co-fermentation bioreactor, and were sampled at five and ten days. Single strain 
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fermentations were also performed as controls. The bioreactor co–fermentation system was 

designed as previously described by Di Cagno et al. (2010). It was composed of two glass 

compartments with loose screw cap, separated by a filter membrane with a porosity of 0.45 µm 

(Fig. 1). A plexiglass system was designed to apply the necessary pressure to the glass system. Each 

bioreactor sector was filled with 100 ml pasteurized must and inoculated with the two strains to be 

tested (105 cell/ml). Chemical homogeneity in the alcohol, sugars and acids was tested between the 

two compartments by means of HPLC, as described above. All the experiments were conducted in 

duplicate. 

 

2.7. Verification of dominance 

The capability of one strain to dominate over another was verified during mixed fermentation 

through DNA approaches. Three different strategies were adopted: a) colony-by-colony analysis: 

mixed fermentations were sampled daily on the WLN. Dominance was checked by picking 10 

colonies from the WL plates, and these were subjected to DNA extraction, as described by Cocolin 

et al. (2000), and subjected to the SED1 PCR protocol; b) extraction of bulk colonies: 1 ml of 

Ringer’s solution (Oxoid) was added to plates containing 30 to 300 colonies and were scraped off 

the plate using a sterile spreader. DNA extraction was conducted on 300 µl of the homogenate, as 

described above. The DNA, standardized at 100 ng/µl, was subjected to the SED1 PCR protocol; c) 

direct extraction of DNA from the fermenting must: 1 ml of fermenting must was subjected to DNA 

extraction using the DNeasy plant mini kit (Qiagen, Milan, Italy), according to the manufacturer’s 

instructions. The DNA, standardized at 100 ng/µl, was subjected to the SED1 PCR protocol.  

 

3. Results and discussion 

The literature is rich in studies that describe the mechanisms through which S. cerevisiae dominates 

wine fermentation. (Fuqua et al., 1996, Goddard 2008, Hayashi et al., 1998, Kleerebezem et al., 

1997, Piskur et al., 2006, Reguera 2011, Richard et al., 1996) S. cerevisiae yeasts are very 
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competitive, due to a combination of properties, such as fast growth, efficient glucose consumption, 

good ability to produce ethanol and a higher tolerance to environmental stresses (Piskur et al., 

2006). Goddard (2008) has recently suggested that S. cerevisiae eventually dominates wine 

fermentations by modifying the environmental temperature through heat production during 

vigorous fermentations. Unfortunately, neither of these hypotheses can explain competition within 

the same genera or species. Quorum sensing has been described for bacteria (Fuqua et al., 1996, 

Kleerebezem et al., 1997) and for yeast (Reguera 2011), in particular for the coordination of the 

metabolism in S. cerevisiae at high cell densities, with acetaldehyde as the probable signal molecule 

(Richard et al., 1996), and for the stimulation of meiosis and sporulation with bicarbonate as signal 

molecule (Hayashi et al., 1998). However, such mechanism can not explain the change in behavior 

when cells are in communication for metabolites, but not in contact. 

 

3.1. Physiological and genetic characterization 

A collection of 99 isolates obtained from spontaneous fermentation of Nebbiolo musts were 

subjected to molecular identification and characterization. All the isolates were positively amplified 

using a specific set of primers for S. cerevisiae, as described by Manzano et al. (2005). 

Electrophoretic profiles of Sau-PCR were analyzed with Bionumerics software and a total of 15 

clusters were obtained (data not shown). A physiological characterization of the isolates showed 

that 98% of them resisted ethanol and sulfur dioxide stress, but some were able to grow faster than 

others (data not shown). Most of the collection produced high or medium levels of hydrogen 

sulfide, and only two strains displayed a very low production. On the basis of the molecular and 

physiological characterizations, 24 different strains were selected and tested for their fermentative 

performances, in micro-fermentation tests, together with the control strain BRL97.  

 

3.2. Microfermentation tests 
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The fermentations were followed by measuring the weight loss, which is directly correlated to sugar 

consumption. The strains showed similar fermentative trends, with a peak of CO2 production of 

between 0.2 and 0.35 g/h at 50 hours of fermentation (data not shown). The chemical composition 

of the musts at the end of the fermentation trials are shown in Table 1. All the fermentations, except 

for 7 strains, ended up with a residual sugar content of less than 10.0 g/L, with good ethanol 

contents (above 14.0 % vol.), and adequate produced glycerol contents (between 7.0 and 9.0 g/L). 

All the fermentations showed a lower acetic acid content than 0.5 g/L, except for strain #2, which 

produced a slightly higher content (0.515 g/L). BRL97, which was used as a reference, showed a 

better performance than most of the tested strains, with a limited acetic acid production (0.386 g/L) 

and a good fermentation yield (0.450 g ethanol/g sugar). On the basis of the chemical composition 

results, a principal component analysis was conducted to evaluate the performances of the strains. 

The first two components were extracted with PC1 (56.1 % of explained variance) and were mainly 

correlated to the sugar and ethanol contents, while PC2 (17.3 % of variance) was correlated to the 

fermentation yield and slightly correlated to the acetic acid production, which does not seem to be 

directly related to the sugar consumption or ethanol production. The two-dimensional plots of the 

variables (a) and the fermentation trials (b) are shown in Figure 2 for the two first principal 

components: the fermentations which showed the best results are positively correlated to PC1, 

especially in the middle and lower part of the plot (while PC2 is negatively correlated to the ethanol 

yield). Fourteen strains showing good fermentation performances were selected for the subsequent 

mixed fermentations tests. These strains were mainly located in the middle and on the right part of 

the plot. Outliers and those strains that left high-residual sugars after fermentation were excluded. 

These strains were then subjected to characterization of the SED1 region, encoding for the most 

abundant cell wall glycoprotein of the S. cerevisiae stationary phase-cells (Mannazzu et al., 2002). 

 

3.3. Dominance results 
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For the S. cerevisiae strains employed in this study, a dimorphism was observed in the molecular 

weight of the SED1-PCR amplification product. Some strains showed a band with 1 Kbp molecular 

weight, while the remaining ones had a PCR product of about 1.2 Kbp (Fig. 3). This difference in 

the molecular weight of the SED1 amplification product could discriminate the strains in the mixed 

culture, and thereby permitted the dominant behavior to be checked quickly,. On the basis of this 

evidence, 48 couples of S. cerevisiae were inoculated in mixed fermentations in order to determine 

which strains were able to dominate. The overall results of the mixed fermentations, in terms of 

dominance, are presented in Table 2. After the minisatellite analysis of the DNA extracted from the 

pooled colonies on the plates and directly from the must, a dominance of one strain was revealed in 

35.5% of the cases, while co-dominance (permanence of both bands) was observed in the remaining 

trials. One band was more intense than the other in 12.5% of the combinations suggesting partial 

dominance. The SED1 profiles of the representative fermentation trials are presented in Figure 4. In 

every case of dominance one strain became dominant at the very beginning of the fermentation, 

within the first 2-3 days. The minisatellite profiles did not change from this point onwards, thus 

underlining that the dominant strain remained stable until the end of the fermentation (Fig. 5). 

The competition between S. cerevisiae and the outcompeted non-Saccharomyces yeast during 

natural and simulated fermentations has been studied extensively (Holm Hansen et al., 2001; 

Mendoza et al., 2007; Nissen and Arneborg, 2003). The early dominance observed in this study is 

in agreement with the results of Nissen at al. (2003), who demonstrated that the early death on non-

Saccharomyces strains starts at 2 days of fermentation, even in the case of competition between 

different species, namely S. cerevisiae against Lachancea (Kluyveromyces) thermotolerans and 

Torulaspora delbrueckii. It is possible to speculate that nutrient limitation due to must composition, 

temperature and the presence of growth inhibitory compounds could affect the imposition of most 

adaptable species. This hypothesis can be applied also when considering competition between 

strains of the same species. In Nissen et al. (2003), it was speculated that the growth arrest of non-

Saccharomyces cells was due to a cell-to-cell contact mechanism that depended on the presence of 
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viable cells of S. cerevisiae. Apparently, the ability of S. cerevisiae to arrest the growth of wine 

yeasts in mixed cultures was not restricted to a single strain, but was instead a common feature of 

this species. However, the results of the present study have shown that strains behave differently.  

According to this hypothesis, the arrest of the growth of non-Saccharomyces cannot only be 

correlated to the Crabtree effect (Thomson et al., 2005), to a lower tolerance of ethanol (Fleet and 

Heard, 1993) or to the concept of a fitness advantage (Salvadò et al., 2011). Ecological studies have 

indicated that killer activity, through the production of a toxic compound by one strain that excludes 

the others from its habitat, could be a competitive or “self-protection” mechanism (Starmer et al., 

1987; Zagorc et al., 2001). Killer activity has been observed in numerous genera of wine yeasts, 

such as Saccharomyces, Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kluyveromyces, 

Pichia, Williopsis and Zygosaccharomyces (Zagorc et al., 2001). Several papers have been 

published about killer toxins (Flagelova et al., 2003; Yap et al., 2000). No killer activity, 

investigated according to Zagorc et al. (2001) has been detected in the present study (data not 

shown).  

Another case of competition due to a cell-to-cell contact was observed by Arroyo-Lopez et al. 

(2011), who investigated the interaction between two different species of Saccharomyces, namely S. 

cerevisiae and S. kudriavzevii. In co-culture with S. kudriavzevii, S. cerevisiae was the most 

competitive yeast, whereas, at low temperatures, S. kudriavzevii grew faster than S. cerevisiae in the 

early stages of fermentation. However, S. kudriavzevii always arrested its growth earlier than S. 

cerevisiae, at any temperature assayed. 

Little information is currently available regarding what happens when two strains of S. cerevisiae 

are in competition. Cheraiti et al. (2005) described differences in redox potential between single-

strain fermentations and mixed-strain fermentations of S. cerevisiae. Howell et al. (2005) studied 

differences in aroma profile of wine produced with mixed cultures of S. cerevisiae.  

On the basis of the results presented in Table 2, four strains were selected for further studies in 

bioreactor co-fermentations. Combinations of strains 1 (dominant) and 14 (not dominant) as well as 
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12 (dominant) and 11 (partially dominant: in combination with some S. cerevisiae, strain 11 

dominated but in other cases it did not) were inoculated in the bioreactor. Although in mixed 

fermentations, the strains showed a decrease in the number of cells for non-competing strains (i.e. 

14 and 11) as they were not detectable by SED1-PCR, this behavior was not observed in the 

bioreactor co-fermentations. We assumed that the non dominant strain was at the count below 105 

cfu/ml. This limit is deduced considering the dilution of the plate from which DNA extraction was 

performed (data not shown). The dominance phenomenon disappeared totally for both of the tested 

couples, as established from the counts on the WLN plates (Tab. 3). Values show that both the 

strains reach the same cell density in the case of the bioreactor. It can be speculated that, in the 

conditions found in the bioreactor, where the strains do not sense each other, dominance does not 

take place. Metabolite exchange between the two compartments was verified by means of HPLC in 

order to exclude their non-homogeneous distribution and the results pertaining to the alcohol, 

fructose, glucose, glycerol, acetic acid, citric acid, tartaric acid and malic acid suggested that both 

sectors were equivalent. Data of sugars and alcohol concentration are not significantly different. 

Highest difference between the two compartments was detected for sugars (3%) (data not shown), 

however this value is lower than the instrumental reproducibility. The results obtained from the 

bioreactor fermentation again compared well with those obtained by Nissen et al. (2003), who used 

a dialysis tube to separate different yeast species. In that case, non-Saccharomyces yeasts were 

inoculated outside the dialysis tube, while S. cerevisiae was grown inside the dialysis tube. When 

compartmentalized, the non-Saccharomyces yeasts did not decrease. The evidences presented here 

could be explained by the mechanism proposed by Nissen et al. (2003), who postulated that growth 

arrest is due to cell-to-cell contact or microenvironment contact. In these cases, cells compete for 

space when in high densities and in cell-to-cell contact. 

In conclusion, in 35.5% of the combinations presented in this study, one of the two strains of S. 

cerevisiae died off or decreased in cellular density so much that it was undetectable in the mixed 

fermentations. On the contrary, competition did not take place when the same strains were 
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separated and did not compete for space, even when they shared the same fermenting must. These 

results can be considered a contribution to the better understanding of the competition mechanism 

that occurs between strains of S. cerevisiae and suggest the necessity of extending the investigation 

to strain-to-strain interactions. 
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Table 1. Average residual reducing sugars, malic acid, ethanol, glycerol and acetic acid composition from 

the laboratory fermentation trials (n = 2) of the selected 24 S. cerevisiae isolated from Nebbiolo 

fermentations. BRL97 (Lallemand) was used as a control.	  

 

  

Strain Reducing 
sugars 

Glucose/fructose 
ratio 

Ethanol Glycerol Acetic acid Malic acid Yield 

 g/L  % vol. g/L g/L g/L g ethanol/g sugar 
1 5,89 ± 1,33 0,368 ± 0,087 14,85 ± 0,25 7,88 ± 0,08 0,495 ± 0,046 1,62 ± 0,12 0,442 ± 0,010 

2 42,36 ± 6,52 0,189 ± 0,035 12,69 ± 0,09 6,65 ± 0,07 0,515 ± 0,028 1,62 ± 0,12 0,439 ± 0,016 

3 11,35 ± 2,74 0,237 ± 0,029 14,81 ± 0,09 7,32 ± 0,10 0,455 ± 0,011 1,74 ± 0,04 0,451 ± 0,008 

4 21,60 ± 2,86 0,104 ± 0,003 13,85 ± 0,05 6,82 ± 0,15 0,490 ± 0,002 1,77 ± 0,06 0,439 ± 0,006 

5 10,28 ± 0,35 0,190 ± 0,003 14,80 ± 0,56 6,77 ± 0,06 0,454 ± 0,003 1,64 ± 0,06 0,448 ± 0,017 

6 7,87 ± 5,06 0,363 ± 0,282 14,83 ± 0,17 7,65 ± 0,45 0,475 ± 0,045 1,61 ± 0,03 0,445 ± 0,004 

7 5,54 ± 3,16 0,605 ± 0,464 15,02 ± 0,06 8,57 ± 0,60 0,464 ± 0,048 1,72 ± 0,07 0,447 ± 0,004 

8 13,10 ± 1,58 0,187 ± 0,010 14,54 ± 0,19 7,60 ± 0,45 0,435 ± 0,033 2,06 ± 0,08 0,445 ± 0,003 

9 6,07 ± 2,37 0,407 ± 0,227 14,80 ± 0,03 7,91 ± 0,62 0,468 ± 0,035 1,65 ± 0,07 0,441 ± 0,003 

10 8,13 ± 4,57 0,421 ± 0,300 14,78 ± 0,01 7,65 ± 0,45 0,414 ± 0,002 2,04 ± 0,04 0,444 ± 0,007 

11 8,32 ± 4,22 0,406 ± 0,280 14,52 ± 0,56 7,64 ± 0,58 0,404 ± 0,019 2,13 ± 0,17 0,436 ± 0,010 

12 4,59 ± 2,05 0,520 ± 0,284 14,79 ± 0,30 7,19 ± 0,07 0,459 ± 0,009 1,45 ± 0,08 0,439 ± 0,012 

13 3,70 ± 0,50 0,748 ± 0,152 14,79 ± 0,11 8,08 ± 0,20 0,462 ± 0,014 1,66 ± 0,00 0,437 ± 0,004 

14 9,47 ± 0,18 0,253 ± 0,001 14,22 ± 0,19 7,33 ± 0,09 0,425 ± 0,011 1,99 ± 0,02 0,429 ± 0,006 

15 4,66 ± 0,84 0,538 ± 0,142 14,69 ± 0,03 7,80 ± 0,16 0,436 ± 0,011 1,70 ± 0,02 0,436 ± 0,002 

16 6,30 ± 0,55 0,450 ± 0,029 15,19 ± 0,44 8,24 ± 0,34 0,463 ± 0,001 2,10 ± 0,07 0,453 ± 0,014 

17 4,81 ± 0,16 0,717 ± 0,037 14,88 ± 0,37 8,32 ± 0,22 0,431 ± 0,051 2,20 ± 0,04 0,441 ± 0,011 

18 6,61 ± 3,22 0,558 ± 0,371 14,83 ± 0,36 8,07 ± 0,14 0,428 ± 0,042 2,17 ± 0,03 0,443 ± 0,016 

19 3,65 ± 0,25 0,938 ± 0,111 15,06 ± 0,06 8,79 ± 0,22 0,343 ± 0,017 1,92 ± 0,02 0,445 ± 0,002 

20 5,78 ± 3,09 0,529 ± 0,360 14,92 ± 0,18 7,15 ± 0,02 0,364 ± 0,021 1,77 ± 0,06 0,444 ± 0,000 

21 17,94 ± 5,56 0,145 ± 0,016 14,06 ± 0,17 6,78 ± 0,35 0,460 ± 0,020 1,89 ± 0,05 0,439 ± 0,004 

22 4,21 ± 0,87 0,625 ± 0,211 15,27 ± 0,00 8,12 ± 0,15 0,477 ± 0,030 1,65 ± 0,02 0,452 ± 0,002 

23 6,22 ± 1,33 0,396 ± 0,129 15,12 ± 0,28 7,39 ± 0,15 0,356 ± 0,002 1,80 ± 0,05 0,451 ± 0,006 

24 30,33 ± 2,52 0,129 ± 0,013 13,42 ± 0,50 6,51 ± 0,52 0,349 ± 0,000 1,75 ± 0,09 0,440 ± 0,012 

BRL97 6,04 ± 0,46 0,401 ± 0,039 15,09 ± 0,57 7,06 ± 0,34 0,386 ± 0,001 1,70 ± 0,05 0,450 ± 0,016 
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Table 2. Schematic representation of the results obtained from the competition experiments performed on 

mixed fermentations. S. cerevisiae strains with different minisatellite SED1  profiles (in black, strains with 

the 1.2 kb PCR product, in white the ones with the 1 kb PCR product) were inoculated in  Nebbiolo must. 

The data presented in this table were obtained from direct DNA extraction from must and from colonies 

pooled from plates. Dominance during the fermentation process is shown using the black and white code. In 

the case of co-dominance, a gray color is used. Strains 1 and 12 dominated in most of the cases, while strains 

14, 17 and 18 never dominated. *asterisks indicate cases of partial dominance. 

 

 1 3 6 7 9 12 13 22 

10 1/10 10 6/10 10 10 12 13/10 22/10 

11 1 3 11* 11* 9/11 12 13/11 11* 

14 1 3 6/14 7/14 9/14 12 13/14 22 

16 1/16 3/16 6/16 7/16 16* 12/16 13/16 22/16 

17 1 3* 6 7/17 9/17 12 13/17 22 

18 1 3* 6/18 7/18 9/18 12 13/18 22/18 
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Table 3.  Counts on WLN (log colony forming units/ml ± SD) from the couples chosen for the bioreactor 

test. Counts values are associated to SD value. Dominant strains are numbers 1 and 12. Non dominant strains 

are numbers 11 and 14. Mixed fermentations were performed in Nebbiolo  must in all the tests. Values for 

pure culture fermentations and mixed cultures fermentations in the reactor are shown. In the last column, 

cumulative counts for both the strains present in mixed culture fermentations (flask) are shown. 

 

  5 days 

S. cerevisiae 

strains Pure cultures  

Mixed cultures in 

the reactor 

Mixed cultures in 

flasks 

11+12 
11  8.21 ± 0.12 8.17 ± 0.23 

8,16 ± 0,00 
12 8.28 ± 0.13 8.04 ± 0.47 

1+14  
1 8.14 ±  0.25 7.92 ± 0.32 

8,07 ±0,02 
14 8.05 ± 0.00 8.01 ± 0.17 

   

  10 days 

S. cerevisiae 

strains Pure cultures 

Mixed cultures in 

the reactor 

Mixed cultures in 

flasks 

11+12 
11 8.25 ± 0,04 8.38 ± 0.00 

8.16 ± 0.05 
12 8.27 ± 0,11 8.07 ± 0.00 

1+14  
1 8.14 ±0,04 8.03 ± 0.01 

8.07 ± 0.01 
14 8.10 ± 0,09 7.84 ± 0.24 
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Figure legends 

Figure 1. Co-culture bioreactor composed by two compartments. The filter membrane allows the 

exchange of metabolites keeping separated cells belonging to two different strains, inoculated 

separately at the same cell density in the two compartments. 

Figure 2. Projection of each chemical variable of the fermentation (a) and of the yeast strains (b) in 

the plane defined by the two first principal components. 

Figure 3. Dimorphism of the SED1 region of the 14 selected strains of S. cerevisiae. Lane 1, 

molecular weight marker 1kb (Sigma); lanes 2, 3, 4, 5, 6, 9, 10 and 15, strains of S. cerevisiae 

giving a 1 kb SED1 minisatellite amplification, lanes 7, 8, 11, 12, 13 and 15, strains of S. cerevisiae 

giving a 1.2 kb SED1 minisatellite amplification; lane 16, negative control. 

Figure  4. Results of the SED1 amplification during mixed fermentation performed in Nebbiolo 

must as described in the text (2.4). Lane 1, molecular weight marker 1 kb (Sigma); lane 2, positive 

control; lane 3 and 4, couple 1/16 showing co-dominance; lanes 5 and 6, couple 3/16 showing co-

dominance; lanes 7 and 8 couple 9/16 showing partial dominance; lanes 9 and 10 couple 1/17 

showing dominance of strain 1; lanes 11 and 12 couple 7/16 showing co-dominance; lanes 3, 5, 7, 9 

and 11, minisatellite profiles of S. cerevisiae DNA directly extracted from must after 5 days of 

fermentation; lanes 4, 6, 8, 10 and 12 minisatellite profiles of S. cerevisiae DNA extracted  from the 

total colonies scraped off the plate after 5 days of  fermentation sampling. In one case (lane 7 and 8)  

it is possible to recognize a phenomenon of partial dominance. For DNA extracted directly from 

must, one band is more visible than the other, probably due to a higher concentration of one strain, 

difference that is not possible to observe after the growth (pooled colonies from plate). 

Figure 5. SED1  profiles for individual colonies randomly isolated during the flask mixed 

fermentation of S. cerevisiae strain 14, which gives a 1 kb PCR product, and S. cerevisiae strain 1, 

which gives a 1.2 kb molecular weight band. Figure includes several isolates from different 

sampling points and represents an example of dominance at three days of fermentation. Lanes 1 and 

21, molecular marker 1kb (Sigma); lane 2, S. cerevisiae strain 14; lane 3, S. cerevisiae strain 1; 
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lanes 4-6, isolates from day 0 of fermentation; lane 7, negative control; lanes 8-12, isolates at day 1 

of fermentation; lanes 13-17, isolates at day 2 of fermentation; lanes 18-20, 22,23, isolates at day 3 

of fermentation; lanes 24-28, isolates at day 4 of fermentation. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figura 4 
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Figura 5 

 

 

	  


