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Objectives: To analyse the determinants of raltegravir CSF penetration including pharmacogenetics 40 

of drug transporters located at the brain-blood-barrier or blood-CSF barrier. 41 

Methods: Plasma and CSF raltegravir concentrations were determined by a validated High 42 

Performance Liquid Chromatography coupled with Mass Spectrometry method in adults on 43 

raltegravir-based combination antiretroviral therapy undergoing a lumbar puncture. Single 44 

nucleotide polymorphisms in the genes encoding drugs transporters (ABCB1 3435, SLCO1A2, 45 

ABCC2 and SLC22A6) and for the nuclear factor HNF4α were determined by real-time PCR. 46 

Results: In 41 patients (73.2% male, 96.3% Caucasians) medianraltegravir plasma and CSF 47 

concentrations were 165 ng/mL (83-552) and 31 ng/mL (21-56), respectively. CSF-to-plasma ratios  48 

(CPR) ranged from 0.005 to 1.33 [median 0.20, IQR (0.04-0.36)].raltegravir trough CSF 49 

concentrations (n=35) correlated withraltegravir plasma levels (rho=0.39, p=0.019); CPRs were 50 

higher in patients with blood brain barrier damage (0.47 versus 0.18, p=0.02). Hepatocyte nuclear 51 

factor 4 alpha (HNF4α) 613 CG genotype carriers had lower trough CSF concentrations (20 versus 52 

37 ng/mL, p=0.03) and CPRs (0.12 versus 0.27, p=0.02). At multivariate linear regression analysis 53 

CSF to serum albumin ratio was the only independent predictor ofraltegravir penetration in the CSF. 54 

Conclusions: Raltegravir penetration into the CSF shows a large inter-patient variability although 55 

cerebrospinal fluid concentrations result above wild type IC50 in all patients (and above IC95 in 56 

28.6%). In this cohort blood brain barrier permeability is the only independent predictor 57 

ofraltegravir CSF to plasma ratio. The impact of single nucleotide polymorphisms in selected genes 58 

on raltegravir penetration warrants further studies. 59 

 60 
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Introduction 66 

Antiretrovirals (ARVs) penetration into the central nervous system (measured as drug 67 

concentrations in the cerebrospinal fluid) has been associated with control of HIV replication and to 68 

neurocognitive function. Raltegravir (RAL) in combination with other ARVs has been proven to be 69 

effective and well-tolerated and to elicit a very fast viral load decay after treatment initiation.1 Data 70 

on raltegravir CSF penetration derives from two papers and a small case-series:2-4 drug 71 

concentrations in the CSF have been described to be 3-7.8% of plasma ones even if a wide inter-72 

patient variability has been reported (with CSF-to-plasma ratios ranging from 0.01 to 0.61). In the 73 

first report2 altered blood-brain barrier (BBB) was associated with higherraltegravir cerebrospinal 74 

fluid concentrations. Furthermore raltegravir has been proven to be p-glycoprotein and OAT1 75 

substrate5 and both transporters are expressed at the blood brain barrier or at the CSF-blood barrier 76 

(BCB).6,7 Furthermore Hepatocyte nuclear factor 4 alpha (HNF4α), a zinc-finger protein, plays a 77 

role in the transcriptional control of drug transporters: among the genes regulated by HNF4α are a 78 

broad range of xenobiotic-metabolizing cytochrome P450 iso-enzymes, UDP-79 

glucuronosyltransferases, sulfotransferases and transporters including organic anion transporter 2, 80 

organic cation transporter 1, the ABC transporter ABCC2, ABCC6, ABCG5 and ABCG8.8,9 Recent 81 

data have shown that both OAT1 (and OAT3) and HNF4 are expressed at the choroid plexus and 82 

thus at the blood-CSF barrier.10 83 

The primary objective of this study was to analyse the determinants of raltegravir cerebrospinal 84 

fluid penetration including plasma concentrations, blood brain barrier damage, concomitant 85 

antiretroviral drugs and single nucleotide polymorphisms (SNPs) in the genes encoding enzymes 86 

present at the blood-brain barrier (ABCB1, SLCO1A2, ABCC2, SLC22A6 and HNF4).  87 

 88 

Material and Methods 89 



 

Adults on stable raltegravir-based combination antiretroviral therapy (more than two weeks on 90 

treatment) undergoing a lumbar puncture for clinical reasons were included. Patients signed a 91 

written informed consent and this protocol was approved by the our Institution Ethics Committee. 92 

Plasma and CSF raltegravir concentrations (2 to15 hours after drug intake) were determined by 93 

validated High Performance Liquid Chromatography coupled with photo diode array detection 94 

(HPLC-PDA) and (modified for the CSF) Mass Spectrometry (HPLC-MS) methods, 95 

respectively.11,12 96 

Trough concentrations were considered the ones collected after 10 to 14 hours after drug intake; less 97 

then 30 minutes passed from CSF withdrawal to plasma sampling. 98 

SNPs in selected genes were obtained trough Real-time PCR [TaqMan Drug Metabolism 99 

Genotyping Assays (Applied Biosystem)]. The eight SNPs selected were (1) ABCB1 (encodes P-100 

glycoprotein) 3435C→T (Ile1145Ile; rs1045642); 1236C→T (Gly412Gly;  rs1128503); 2677G → 101 

A/T (A:Ala893Thr, T:Ala893Ser; rs2032582), (2) SLCO1A2 (encodes OATP1A2) 38A→G 102 

(Ile13Thr; rs10841795); 516A→C (Glu172Asp; rs11568563); (3) ABCC2 (encodes MRP-2) -103 

24G→A (in the promoter; rs717620); (4) SLC22A6 (encodes OAT1) 453G→A (in the 5' UTR, 104 

rs4149170); (5) HNF4α (encodes HNF4α) 613C→G (in the promoter, rs1884613). 105 

BBB damage was measured through Reibergram and measurement of albumin CSF to plasma ratios 106 

(CSARs): normal valued were considered below 6.5 below the age of 60 years and below 9.5 above 107 

this age threshold. 13 108 

Baseline characteristics were tested for correlation to raltegravir CSF concentration and ratio by the 109 

Spearman’s test for continuous variables and by Mann-Whitney test for categorical variables. 110 

Associations between genotypes andraltegravir CSF penetration were tested by univariate and 111 

multivariate stepwise linear regression analyses: SNPs were categorized as dichotomous variables 112 

according to the results of univariate analysis. The impact of other variables was estimated with 113 

univariate analysis, and those with P <0.20 were incorporated into multivariate analysis, in addition 114 

to the basic demographics such as age and sex. Statistical significance was defined at 2-sided P 115 



 

value <0.05 while for the effect of single SNPs a correction for multiple comparison defined a P 116 

value <0.005. The online Hardy-Weinberg equilibrium calculator was used to test the selected 117 

SNPs. (available at http://www.oege.org/software/hwe-mr-calc.shtmL). All other statistical analyses 118 

were performed with the Statistical Package for Social Sciences ver. 20.0 (IBM Corp. Released 119 

2011. Armonk, NY: IBM Corp). Data are presented as medians (interquartile ranges). 120 

 121 

Results 122 

Forty-one patients (30, 73.2% male) were enrolled; median age and BMI were respectively 44 years 123 

(39-50) and 20.9 kg/m2 (18.7-22.7). Spinal tabs were performed in patients with HIV-associated 124 

neurological disorders [19, 46.3%; mostly neurological symptoms in the course of non CNS 125 

opportunistic infections (10, 24.4%), HIV-associated neurocognitive disorders (6, 14.6%) and non 126 

JCV-related leucoencephalopathy (3, 7.3%)], follow-up of opportunistic diseases [15, 36.6%; non-127 

Hodgkin’s lymphomas (4, 9.7%), Burkitt’s lymphoma (4, 9.7%), previous neurotoxoplasmosis (3, 128 

7.3%), previous tubercular meningitis (2, 4.9%), previous cryptococcal meningitis (2, 4.9%)] or for 129 

differential diagnosis of other clinical conditions (4, 9.7% such as seizures and hepatic 130 

encephalopathy). Median CD4 cell count was 256 cells/uL (140-471), median plasma HIV RNA 131 

level 1.76 log10 copies/mL (1.28-2.61), and median CSF HIV RNA level 1.96 log10 copies/mL 132 

(1.28-2.95). The majority of patients presented concordant plasma and CSF viral loads: either both 133 

below 20 copies/mL (13, 31.7%) or above 20 copies/mL (19, 46.3%); patients with neurological 134 

complaints in the course of non CNS opportunistic infections had the highest plasma and CSF viral 135 

loads (10 patients, 1947 copies/mL and 1117 copies/mL) while the remaining 31 subjects had HIV 136 

RNA in both compartments below 1000 copies/mL. 137 

Raltegravir was used in combination with different drugs in dual-regimens [with a boosted protease 138 

inhibitor (PI), n=8], in three-drugs combination [n=15, mainly with two nucleos(t)ide reverse 139 

transcriptase inhibitors (NRTI), n=7] or in intensified four-drugs treatments [n=18, associated with 140 

2 NRTIs and a boosted PI (n=12) or a non-nucleoside reverse transcriptase inhibitor (n=6)]. 141 



 

CSF cells were absent in the majority of patients (38, 92,7%): one presented 7 cell/mL while two 142 

patients in the follow up of cryptococcal meningitis showed 40 and 60 cells/mL). Median CSF-143 

serum albumin ratio (CSAR) was 5.6 (3.7-7.2) defining altered BBBs in 12 patients (29.2%). 144 

Patients with previous opportunistic infections had the highest prevalence of impaired BBB [10/15, 145 

66.7% with median CSAR of 7 (6.2-8].  146 

CSF and plasma raltegravir concentrations were 31 ng/mL (21-56) (Fig. 1) and 165 ng/mL (83-552) 147 

accounting for 20.6% (3.8-36.3) of plasma drug concentrations. 148 

In patients with trough determinations (n=35), CSF and plasma concentrations and CSF-to-plasma 149 

ratios (CPRs) were 32 ng/mL (21-57), 147 ng/mL (65-307) and 0.22 (0.12-0.47) respectively. 150 

Coefficients of variation for the three variables were 108%, 188% and 100%. Using recently 151 

published reference values14  no patient’s concentration was below IC50 (3.6 ng/mL), 25 (71.4%) 152 

were between IC50 and IC95 (44 ng/mL) and 10 (28.6%) were above IC95. 153 

CSF raltegravir concentrations correlated with plasma concentrations (rho=0.395, p=0.019). 154 

Gender, age, BMI, time after drug intake and concomitant protease inhibitors in the regimen did not 155 

significantly influence raltegravir CSF levels and ratios (Spearmen’s correlations test). Although a 156 

direct correlation betweenraltegravir CPR and CSAR was not statistically significant (rho=0.306, 157 

p=0.10) patients with BBB damage showed higherraltegravir CSF-to-plasma ratios [0.47 (0.23-158 

1.13) versus 0.18 (0.06-0.29), p=0.02, Mann-Whitney] (Fig.2b) but not CSF concentrations [42 159 

ng/mL (21-73) versus 30 ng/mL (20-43), p=0.23] (Fig.2a). 160 

Data of single nucleotide polymorphisms prevalence and effect on trough CSF concentrations and 161 

CSF to plasma ratios are resumed in Table 1. 162 

All polymorphisms were in Hardy-Weinberg equilibrium but the ABCB1 3435C→T and the 163 

ABCB1 2677G→A/T.  164 

At multivariate linear regression analysis (including alsoraltegravir plasma concentrations and 165 

HNF4α CG genotype with backward elimination) CSAR was the only independent predictor 166 

ofraltegravir CSF concentrations (adjusted R2=0.61, Beta=0.79, P<0.001, 95% CI 5.50-10.19). At 167 



 

multivariate linear regression analysis CSAR was the only independent predictor ofraltegravir CSF-168 

to-plasma ratios (adjusted R2=0.30, Beta=0.57, P=0.001, 95% CI 0.02-0.06) with a non-significant 169 

effect of HNF4α CG genotype (Beta=-0.26, p=0.09, 95% CI -0.04+0.03). 170 

 171 

 172 

Discussion 173 

These data confirm the penetration of raltegravir in the cerebrospinal fluid although reporting 174 

increased CSF to plasma ratios (22% versus the previously reported 3-8%). In the other studies the 175 

percentage of patients with significant blood brain barrier impairment was not reported but a small 176 

effect was noted in one of those: furthermore one patient with three samples showed a reduction 177 

inraltegravir CPRs with the concomitant decrease in CSARs. This aspect suggests that CSF 178 

pharmacokinetic studies should be performed in patients with different BBB and BCB permeability 179 

since other drugs have shown a similar pattern15 but reporting the extent of BBB damage. The 180 

clinical impact of such increased penetration is unclear since it may reflect higher total drug levels 181 

bound to albumin or to other proteins present in the CSF.16,17 Furthermore a efficacy cut offs in the 182 

CSF have not been validated: CSF and brain parenchyma levels can differ substantially although 183 

drugs with higher neuropenetration/neuroefficacy have been associated with the decreased 184 

likelihood of CSF viral replication.18,19 The report of all patients with CSF levels above the 185 

published IC50 suggests that the measured concentrations are potentially effective although we have 186 

no data on the drug free fraction. 187 

A linear correlation was noted between CSF and plasma concentrations as in the other papers. 188 

Nevertheless at multivariate analysis the CSF to serum albumin ratio is the only independent factor 189 

that partially explains the variability in CSF levels (60%) and in CSF penetration (30%). Being 190 

blood brain barrier impairment quite common in the course of HIV infection20 this could have 191 

potential long-term effects: recently age and CSAR have been described as risk factors for the 192 

development of HIV-associated Neurocognitive Disorders.21 193 



 

Although SNPs in genes encoding enzymes involved in raltegravir transport (P-glycoprotein and 194 

OAT1 and potentially OATP1A2 and MRP-2) at the BBB or BCB could potentially modulate drug 195 

passage into the CSF, this study showed no such significant relationship. Furthermore it should be 196 

noted that the precise effect of the different transporters present at the CNS barriers on CSF or 197 

parenchyma drugs exposure is currently unclear. Anyhow, the effect of SNPs in the HNF4α gene is 198 

an interesting finding although multiple comparison may probably explain this results since after 199 

Bonferroni correction it did not retain statistical significancy. This intra nuclear factor has been 200 

described to regulate (along with PXR and CAR) several pathways and specifically the ones leading 201 

to the expression of OAT1, OAT2 and OCT1.9 OAT1 is present at choroid plexus and has the 202 

potential to regulate the passage of drugs at the blood CSF barrier10 and being raltegravir substrate 203 

of this transporter a possible mechanism could be foreseen. Nevertheless with a limited samples 204 

size and with ABCB1 polymorphisms not in Hardy-Weinberg equilibrium (possibly representing 205 

population selection bias) we are not able to show clear effect of the studied SNPs. Furthermore the 206 

co-administered drugs may potentially modulate drug transport at the BBB: while we found no 207 

effect of protease inhibitors on raltegravir CSF penetration we had insufficient patients groups to 208 

analyse other drugs influence (NNRTIs, NRTIs). 209 

In conclusion, this study shows that raltegravir concentrations in the cerebrospinal fluid are above 210 

the IC50 in all studied patients with a very high inter-patient variability. Blood brain barrier 211 

permeability is associated with raltegravir CSF concentrations and CSF-to-plasma ratios; larger 212 

sample sizes are needed to fully investigate the effect on raltegravir neuropenetration of single 213 

nucleotide polymorphisms in transporters-encoding genes. 214 
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Figure 1. Raltegravir cerebrospinal fluid concentrations (Log10 ng/mL) according to time after drug 315 
intake (hours). Dotted lines represent IC50 and IC95 (in ng/mL). 316 
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Figure 2. Raltegravir CSF concentrations (ng/mL, Figure 2a) and CSF-to-plasma ratios (Figure 2b) 344 
in patients with altered and intact blood brain barrier. Central lines and boxes represents medians 345 
and interquartile ranges; open circles and asterisks respectively represent outliers and extreme 346 
outliers. 347 
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 379 
 

genotype 
 

n CSF RAL conc p value CSF-P RAL ratio p value 
ABCB1       

3435C→T rs1045642      
C/C  15 47 (19-70)  0.22 (0.12-0.50)  
C/T  8 26 (21-41) 0.40 0.23 (0.20-0.31) 0.97 
T/T  12 31 (19-43)  0.24 (0.06-0.80)  

1236C→T rs1128503      
C/C  14 32 (18-59)  0.21 (0.11-0.55)  
C/T  13 37 (22-56) 0.51 0.23 (0.14-0.32) 0.69 
T/T  8 25 (16-40)  0.28 (0.07-1.05)  

2677G→A/T rs2032582      
G/G  15 31 (19-59)  0.20 (0.07-0.50)  
G/A  1 102  0.17  
G/T  11 28 (21-42) 0.50 0.22 (0.22-0.31) 0.98 
T/T  14 31(20-46)  0.17 (0.02-0.58)  
A/A  0 -  -  

SLCO1A2       
38A→G rs10841795      

A/A  25 32 (21-57)  0.27 (0.14-0.92)  
A/G  9 36 (20-56) 0.43 0.17 (0.07-0.35) 0.29 
G/G  1 14  0.05  

516A→C rs11568563      
A/A  34 31 (20-57)  0.22 (0.12-0.39)  
A/C  1 42 0.71 1.10 0.17 
C/C  0 -  -  

ABCC2       
-24G→A rs717620      

G/G  19 33 (23-47)  0.20 (0.13-0.47)  
G/A  15 30 (19-59) 0.40 0.27 (0.12-0.48) 0.42 
A/A  1 14  0.05  

SLC22A6       
555G→A rs4149170      

G/G  28 32.5 (21-59)  0.22 (0.11-0.44)  
G/A  6 30 (13-43) 0.50 0.20 (0.10-0.63) 0.92 
A/A  1 21  0.19  

HNF4α       
4613X→Y rs1884613      

C/C  25 37 (26-58)  0.27 (0.17-0.49)  
C/G  10 20 (15-29) 0.03 0.12 (0.04-0.24) 0.02 
G/G  0 -  -  

 380 
Table 1. Genotype frequencies of different single nucleotide polymorphisms and their effect on 381 
Raltegravir cerebrospinal fluid concentrations (ng/mL) and CSF-to-plasma ratios. Abbreviations: 382 
n=number, conc=concentration 383 
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