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Abstract

A notion of finitely optimal plan for intertemporal optimization problems as a nec-
essary condition for optimality is introduced. Under interiority of a feasible plan and
differentiability of the return function, such a plan satisfies the stochastic analogue of de-
terministic Euler-Lagrange conditions, which become also suffi cient conditions under con-
cavity of the return function. Then, under more general assumptions, a suffi cient criterion
of optimality based on competitive plans supported by price systems and transversality
conditions is discussed. Differently from the current literature, no restrictive hypotheses
on the probability measure of the random shocks are assumed.

1 Introduction

Ever since dynamic programming techniques have been introduced to solve intertemporal opti-
mization problems under uncertainty, a parallel approach based on the calculus of variations has
been developing to characterize their solutions. In many economic problems optimality condi-
tions for feasible plans are stated in terms of the stochastic version of Euler-Lagrange conditions
(primarily in the optimal growth literature; see [6], [12], [17], [9], [2] and, more recently, [7],
[16]); in all these papers such conditions are defined specifically to prove main results for the
model to discuss. Only in [1] the problem is treated in a more general perspective, however
under the standard and rather restrictive assumptions adopted in dynamic programming; that
is, under differentiability, monotonicity and concavity of the return function and assuming that
the exogenous shocks are described by a first order Markov process with a dense stationary
transition function.
The aim of this paper is to build up a simple but powerful method to identify optimal

plans giving suffi cient conditions of optimality under very general hypotheses, particularly with
regard to the stochastic process of the exogenous shocks. Firstly we present the first order
necessary conditions for optimal plans stated in terms of stochastic Euler-Lagrange equations
under interiority of the plan and differentiability of the return function. Furthermore we show
that, if the return function is concave, these conditions are also suffi cient for a weaker criterion
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of optimality, called finite optimality. Secondly we look at the more general case in which
the return function is only superdifferentiable and state the competitivity criterion for feasible
plans: we will say that a plan is competitive if it is supported by a sequence of random variables,
each interpretable as a random shadow price. This criterion gives suffi cient conditions for
finite optimality without concavity assumptions on the return function; furthermore, adding
a transversality condition, these conditions are suffi cient also for optimality (that is not only
for finite optimality). Competitive plans in a stochastic environment are already discussed in
a recent article (see [13]), where a different approach has been pursued: under the standard
assumptions of the optimal growth model, plans supported by a random price system are
defined as necessary conditions, following a methodology similar to that developed in [8] for the
deterministic case. Here an easily handled method, based on suffi cient conditions, is presented1.
We stress that, unlike the current stream of research, we do not impose any kind of restriction

upon the stochastic process representing the exogenous shocks: it is a process characterized by
any probability measure. The key argument adopted in most of the proofs is due to Ionescu
Tulcea’s canonical procedure to build a stochastic process (see chapter V in [11]): any stochastic
process can be generated by a sequence of stochastic kernels, each of them representing the
probability measure at time t conditioned to the story of shocks occurred until time t− 1.

2 The Infinite Horizon Optimization Problem

In this section we set up the stochastic intertemporal optimization problem giving assumptions
under which it is well defined (see chapter 9 in [14] for a more detailed description). In addition
we state, without proof, the Ionescu Tulcea’s Proposition and an important Corollary that
determines the additive separability of the expected total return function. This will be used
later in the proofs of the main results.
A discrete time infinite horizon optimization problem under uncertainty is characterized by

the tuple (X,Z,Γ, F, β, {Qt}).

(i) X ⊆ Rl is the (Borel-measurable) state space for the system and the action space for the
decision maker as well; let X ⊆ Bl be the Borel σ-algebra on X.

(ii) Z ⊆ Rk is the random events space describing the exogenous shocks affecting the system;
let Z ⊆ Bk be the Borel σ-algebra on Z.

(iii) Γ : X×Z → X is a correspondence representing the one-period constraint ; that is, Γ(x, z)
is the set of feasible values for next period’s endogenous state variable if the current state
is (x, z). Let A = {(x, y, z) ∈ X ×X × Z : y ∈ Γ(x, z)} be the graph of Γ.

(iv) The one-period return function F : A→ R is the immediate reward ; that is, F (x, y, z) is
the current-period reward to the decision maker if action y ∈ Γ(x, z) is chosen when the
current state is (x, z).

(v) β ≥ 0 is the (constant) one-period discount factor.

(vi) {Qt} is a sequence of stochastic kernels which describe the evolution law of the random
shocks. For each t, Qt : Zt ×Z → [0, 1] is a function measurable with respect to the first
t − 1 variables and a probability measure with respect to the last variable; it represents
the probability measure of the random shocks at time t given the previous story of shocks

1A similar approach for the deterministic case can be found in [10].
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(z1, ..., zt−1) occurred until time t−1: that is2, Qt(z0, ..., zt−1;B) = Pr(zt ∈ B|z0, ..., zt−1),
all B ∈ Z.

The objective of the decision maker is to choose a sequence of actions which will maximize
the expected discounted total reward subject to his constraints. Given the measurable spaces
(X,X ) and (Z,Z), let (S,S) = (X × Z,X

⊗
Z) the product space representing the state of

the system, where st = (xt, zt) is an element of the state space at date t. Now we need to be
more precise with what we mean by sequences of actions, the set over which the maximization
occurs, and which is the probability measure of the expected total reward. Since it is unknown
at the initial time t = 0 which action will be chosen at any future date, because it is unknown
which sequence of shocks will affect the system until that date, feasible plans must be defined
in terms of sequences of random variables. Fix the initial state s0 = (x0, z0) ∈ S and let
zt = (z1, ..., zt) ∈ Zt = Z × ...×Z (t times) a partial story of shocks from period 1 to period t.

Definition 1 A plan π is a value π0 ∈ X and a sequence {πt} of measurable functions πt :
Zt → X, t = 1, 2, .... A plan π is feasible from s0 ∈ S if

π0 ∈ Γ(s0) and
πt(z

t) ∈ Γ [πt−1(zt−1), zt] , a.e., t = 1, 2, ....

Let Π(s0) denote the set of plans that are feasible from s0.

A. 1 Π(s0) is nonempty for all s0 ∈ S.

A suffi cient condition is X to be closed and Γ : S → X to be non-empty valued, closed
and upper semi-continuous. Under this condition, Proposition 1, p.22, and Lemma 1, p. 55,
in [4], ensure the existence of a measurable selection from Γ; that is, there exists a measurable
function h : S → X such that h(s) ∈ Γ(s), all s ∈ S. Thus, for all s0 ∈ S, one can define a
plan π recursively3 by π0 = h(s0) and πt(zt) = h [πt−1(zt−1), zt], all zt ∈ Zt, t = 1, 2, ....
Next step is to define the probability measure of the stochastic process representing the

exogenous shocks. Let Zt be the Cartesian product Z× ...×Z (t times) and Z t be the product
σ-algebra Z

⊗
...
⊗
Z. Similarly let (Z∞,Z∞) denote the product space as the horizon recedes

to infinity.

Proposition 1 (Ionescu Tulcea) Given a probability space (Z,Z) and a sequence {Qt} of sto-
chastic kernels Qt : Zt × Z → [0, 1], for all z0 ∈ Z there exists a unique probability measure
P (z0, ·) on (Z∞,Z∞) whose value for every finite measurable rectangle C = A1×A2× ...×At×
Z × Z × ..., with Ai ∈ Z, 1 ≤ i ≤ t, is given by

P (z0, C) = λt(z0, C)
=
∫
A1
Q1(z0; dz1)

∫
A2
Q2(z0, z1; dz2)...

∫
At
Qt(z0, ..., zt−1; dzt),

(1)

where λt(z0, ·) is a probability measure on the finite product space (Zt,Z t).

Since, given any probability measure P for a stochastic process defined on (Z∞,Z∞), all the
probability measures on finite-dimensional subspaces are uniquely determined, by Proposition
1, to take the sequence of stochastic kernels {Qt} as a given of the problem is equivalent to
give directly the probability P . Since P is arbitrary, this means that we put no restrictions on
the stochastic process of the random shocks.

2For simplicity, we use the same symbol for the random variable and the generic value it can assume.
3If we choose the same measurable selection h in every period t, the plan is said to be stationary or Markov,

since the action to be taken for each period t depends only on the state st =
[
πt−1(z

t−1), zt
]
of the system in

that period. Nonstationary plans can be constructed by using different measurable selections ht in each period.
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Corollary 1 Given (Z,Z), {Qt}, (Zt,Z t) and λt(z0, ·) defined above, if, for fixed z0 ∈ Z and
t, the function f : Zt → R is λt(z0, ·)-integrable, then∫

Zt

f(zt)λt(z0, dz
t) =

∫
Z

Q1(z0; dz1)

∫
Z

Q2(z0, z1; dz2)...

∫
Z

Qt(z0, ..., zt−1; dzt)f(zt).

This corollary will be useful later, in most of the proofs, to brake up the total return
function defined as the sum of expected rewards at each period. For a proof of Proposition 1
and Corollary 1 see Proposition V.1.1., p. 162, in [11].
To define the expected total return function, the one-period return function must be inte-

grable, as next assumption states. Let A = {C ∈ X
⊗
X
⊗
Z : C ⊆ A}.

A. 2 F is A-measurable and, for all s0 ∈ S and all π ∈ Π(s0), F [πt−1(zt−1), πt(z
t), zt] is

λt(z0, ·)-integrable, t = 1, 2, ....

Definition 2 Given s0 ∈ S and a plan π ∈ Π(s0), the expected discounted total return is

u(s0, π) = F (x0, π0, z0) + lim inf
n→∞

n∑
t=1

βt
∫
Zt
F
[
πt−1(zt−1), πt(z

t), zt
]
λt(z0, dz

t).

Notice that choosing the ”liminf”criterion allows us to include cases where the series of the
expected discounted one-period returns may oscillate.

Definition 3 The value function of the optimization problem is

v(s0) = sup
π∈Π(s0)

u(s0, π).

In other words, the value function represents the maximum feasible total return to the
decision maker. Finally we introduce two criterion of optimality for feasible plans which will
be used in subsequent sections. Define the partial sums of the expected one-period returns as
follows:

u0(s0, π) = F (x0, π0, z0) and

un(s0, π) = u0(s0, π) +
n∑
t=1

βt
∫
Zt
F [πt−1(zt−1), πt(z

t), zt]λ
t(z0, dz

t), n = 1, 2, ....

Definition 4 A feasible plan π∗ ∈ Π(s0) is finitely optimal if, for any n ≥ 1 and for any feasible
plan π ∈ Π(s0) such that π∗n = πn a.e., un(s0, π

∗) ≥ un(s0, π) holds.

Definition 5 A feasible plan π∗ ∈ Π(s0) is optimal if v(s0) = u(s0, π
∗) and −∞ < v(s0) < +∞.

3 Characterization of Finitely Optimal Plans

Some necessary conditions for a finitely optimal plan are presented in this section. First we
show that the definition of finite optimality is itself a necessary condition for optimality. A
second step is to characterize finitely optimal plans by an inequality that must be satisfied at
any date t. Then we introduce an interiority notion for the plan and assume the differentiability
of the one-period return function in order to define necessary conditions analogue to the well
known Euler-Lagrange equations usually stated in the deterministic context. Finally we prove
that if F is concave these conditions become also suffi cient for a finitely optimal plan.
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As we already pointed out in the introduction, Euler-Lagrange equations are frequently
adopted in stochastic dynamic programming to give necessary conditions for optimality in
both finite or infinite horizon problems. They are usually obtained as the first order condition
applied to the Bellman functional equation, a procedure allowed by the envelope theorem that
guarantees the differentiability of the value function under concavity and differentiability of the
one-period return function. In this case the stochastic process of the exogenous shocks must be
assumed to be a first order stationary Markov process in order to let the Bellman equation be
defined. In our analysis no functional equations are introduced and the value function is not
involved in computations; necessary conditions come out directly from the sequential problem
as stated in definition 3, i.e. from the expected discounted total return function (which, in the
differentiable case, doesn’t need concavity assumptions). Since this approach appears to be new
for the stochastic case, all the results of this section are given with proofs, which essentially
are an application of Corollary 1 to Ionescu Tulcea Theorem. In this context, problems where
uncertainty is described by a first order stationary Markov process can be viewed as a particular
case in which the sequence of stochastic kernels {Qt} consists of the constant transition function
Q : Z ×Z → [0, 1].
Since, for every t, the random variables πt are defined on Zt, from now on we will drop the

argument for simplicity of notation; that is we will write πt instead of πt(zt).

Proposition 2 If π∗ ∈ Π(s0) is optimal, then is finitely optimal.

Proof. Since (s0, π
∗) is optimal, v(s0) = u(s0, π

∗) ≥ u(s0, π) holds for all π ∈ Π(s0). Now,
to prove finite optimality, suppose the contrary: assume that a plan π ∈ Π(s0) such that, for a
certain n ≥ 1, π∗t = πt a.e. if t ≥ n and un(s0, π) > un(s0, π

∗), exists. Hence,

un(s0, π) + lim inf
k→∞

k∑
t=n+1

βt
∫
Zt
F (πt−1, πt, zt)λ

t(z0, dz
t)

> un(s0, π
∗) + lim inf

k→∞

k∑
t=n+1

βt
∫
Zt
F (πt−1, πt, zt)λ

t(z0, dz
t),

that is, u(s0, π) > u(s0, π
∗), which is a contradiction.

Finite optimality is necessary for optimality but, in general, is not suffi cient; in order to
reverse the implication, as we will see, we need to add a transversality condition. Now we state
a more general necessary condition.

Proposition 3 If a plan π∗ ∈ Π(s0) is optimal (or at least finitely optimal), then it satisfies
a.e.

F (π∗t−1, y, zt) + β
∫
Z
F (y, π∗t+1, zt+1)Qt+1(z0, ..., zt; dzt+1)

≤ F (π∗t−1, π
∗
t , zt) + β

∫
Z
F (π∗t , π

∗
t+1, zt+1)Qt+1(z0, ..., zt; dzt+1)

s. t. y ∈ Γ(π∗t−1, zt) and π
∗
t+1 ∈ Γ(y, zt+1), t = 0, 1, ...,

(2)

where, for t = 0, we agree to put π∗t−1 ≡ x0.

Therefore, for each t, π∗t maximizes the function

F (π∗t−1, ·, zt) + β

∫
Z

F (·, π∗t+1, zt+1)Qt+1(z0, ..., zt; dzt+1)
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over the set Γ(π∗t−1, zt) ∩ ProjxΓ−1(π∗t+1, zt+1). The interpretation of (2) is similar of those of
the deterministic case in the variational approach context: given an optimal (or at least finitely
optimal) plan, any deviation from the optimal path at a certain date determines a lower value
for the expected total return function.
Proof. Fix s0 ∈ S, t ≥ 1 and consider a finitely optimal plan π∗ ∈ Π(s0). Choose a

feasible plan π ∈ Π(s0) with all elements equals a.e. to that of π∗ apart from the t-th; that
is π = (π∗0, π

∗
1, ..., π

∗
t−1, y, π

∗
t+1, ...). Since π is feasible, y ∈ Γ(π∗t−1, zt) and π

∗
t+1 ∈ Γ(y, zt+1).

For all n ≥ t + 1, by the finite optimality condition, un(s0, π) ≤ un(s0, π
∗) holds, which, using

Corollary 1, can be written as follows,

F (x0, π
∗
0, z0) +

t−1∑
k=1

βk
∫
Zk
F (π∗k−1, π

∗
k, zk)λ

k(z0, dz
k)

+ βt
∫
Zt

[
F (π∗t−1, y, zt) + β

∫
Z
F (y, π∗t+1, zt+1)Qt+1(z0, ..., zt; dzt+1)

]
λt(z0, dz

t)

+
n∑

k=t+2

βk
∫
Zk
F (π∗k−1, π

∗
k, zk)λ

k(z0, dz
k)

≤ F (x0, π
∗
0, z0) +

t−1∑
k=1

βk
∫
Zk
F (π∗k−1, π

∗
k, zk)λ

k(z0, dz
k)

+ βt
∫
Zt

[
F (π∗t−1, π

∗
t , zt) + β

∫
Z
F (π∗t , π

∗
t+1, zt+1)Qt+1(z0, ..., zt; dzt+1)

]
λt(z0, dz

t)

+
n∑

k=t+2

βk
∫
Zk
F (π∗k−1, π

∗
k, zk)λ

k(z0, dz
k).

Simplifying equal terms in both members, we get (2).

Conditions (2) are very simple to check when the one-period return function is differentiable
and differentiating under the integral is legitimate. Before restating (2) in the differentiable
case, we obviously need a notion of interiority for the plan.

Definition 6 A feasible plan π ∈ Π(s0) is called interior plan if π0 ∈ intΓ(x0, z0) and πt(zt) ∈
intΓ [πt−1(zt−1), zt] a.e., t = 1, 2, ....

A. 3 IntX 6= ∅ and For each z ∈ Z, F (·, ·, z) : Az → R, that is the z-section of F , is
differentiable on intAz with each of the l partial derivatives Fx absolutely integrable.

This assumption permits the exchange of the differentiation and integration operators4 (see
Lemma 2.2, p. 226 in [5]); that is, for any probability measure λ on (Z,Z),

Dx

[∫
F (x, y, z)λ(dz)

]
=

∫
Fx(x, y, z)λ(dz).

Proposition 4 Under Assumption 3, if a plan π∗ ∈ Π(s0) is interior and optimal, or finitely
optimal, or such that satisfies (2), then satisfies a.e.

Fy(x0, π
∗
0, z0) + β

∫
Z
Fx(π

∗
0, π

∗
1, z1)Q1(z0; dz1) = 0 and

Fy(π
∗
t−1, π

∗
t , zt) + β

∫
Z
Fx(π

∗
t , π

∗
t+1, zt+1)Qt+1(z0, ..., zt; dzt+1) = 0,

t = 1, 2, ....
(3)

4Notice that any other condition that allows to differentiate under the integral sign can be taken into
consideration as well.
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Conditions (3) are the stochastic version of the Euler-Lagrange equations in the deterministic
case.
If the stochastic process of exogenous shocks is assumed to be a first order stationary Markov

process characterized by a constant transition functionQ : Z×Z → [0, 1], the equations become
the well known

Fy(x0, π
∗
0, z0) + β

∫
Z
Fx(π

∗
0, π

∗
1, z1)Q(z0; dz1) = 0 and

Fy(π
∗
t−1, π

∗
t , zt) + β

∫
Z
Fx(π

∗
t , π

∗
t+1, zt+1)Q(zt; dzt+1) = 0, a.e., t = 1, 2, ....

Proof. Since optimality implies finite optimality, which in turn implies conditions (2), it
is suffi cient to show that conditions (2), plus interiority, imply (3). It follows from conditions
(2) that, for each t ≥ 0, the function F (π∗t−1, ·, zt) + β

∫
Z
F (·, π∗t+1, zt+1)Qt+1(z0, ..., zt; dzt+1)

reaches its maximum on π∗t , which is an interior point of Γ(π∗t−1, zt) ∩ ProjxΓ−1(π∗t+1, zt+1). By
Assumption 3 that function is differentiable, hence (3) is the first order condition.

To complete this section we show that adding convexity of the set Az and concavity of
F (·, ·, z) : Az → R for each z ∈ Z, Euler-Lagrange conditions become also suffi cient for finite
optimality.

Theorem 1 Assume that, for all z ∈ Z, Az is convex and F (·, ·, z) : Az → R is concave; in
addition F satisfies Assumption 3. Then, for each s0 ∈ S, a feasible plan π∗ ∈ Π(s0) is finitely
optimal if and only if is interior and satisfies conditions (3).

Proof. We have to prove only suffi ciency. Fix s0 ∈ S and n ≥ 1. Choose two plans, π and
π∗ in Π(s0) such that π∗ is interior and satisfies (3) and π is such that πn = π∗n a.e.. Call H
the difference between the n-step return function un(s0, ·) evaluated at π∗ and at π, that is
H = [F (x0, π

∗
0, z0)− F (x0, π0, z0)] +

n∑
t=1

βt
∫
Zt

[
F (π∗t−1, π

∗
t , zt)− F (πt−1, πt, zt)

]
λt(z0, dz

t). Since

n is arbitrary, it is suffi cient to show that H is non-negative. It is well known that concavity
is preserved under integration (see, e.g., Lemma 9.5, p.261 in [14]); hence, by concavity and
differentiability of F ,

H ≥ Fx(x0, π
∗
0, z0)(x0 − x0) + Fy(x0, π

∗
0, z0)(π∗0 − π0)

+
n∑
t=1

βt
∫
Zt

[
Fx(π

∗
t−1, π

∗
t , zt)(π

∗
t−1 − πt−1) + Fy(π

∗
t−1, π

∗
t , zt)(π

∗
t − πt)

]
λt(z0, dz

t)

=
[
Fy(x0, π

∗
0, z0) + β

∫
Z
Fx(π

∗
0, π

∗
1, z1)Q1(z0; dz1)

]
(π∗0 − π0)

+
n−1∑
t=1

βt
∫
Zt

[
Fy(π

∗
t−1, π

∗
t , zt)

+β
∫
Z
Fx(π

∗
t , π

∗
t+1, zt+1)Qt+1(z0, ..., zt; dzt+1)

]
(π∗t − πt)λt(z0, dz

t)
+βn

∫
Zn
Fy(π

∗
n−1, π

∗
n, zn)(π∗n − πn)λn(z0, dz

n),

where the last four lines are obtained rearranging terms in the summation of the first two
lines and applying Corollary 1. By (3) and the fact that πn = π∗n a.e., the terms in the last
summation are all zero, then H ≥ 0.

4 Stochastic Competitive Plans

In this section we drop differentiability and concavity assumptions on the one-period return
function F and present a simple method in order to identify an optimal plan. We will only
implicitly assume that F is bounded from above and is superdifferentiable on the subset of its
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domain where the values of the random variables π∗t of an optimal plan π
∗ lay. To make our

approach more general, we consider a new optimization problem, equivalent to the one studied
in the previous sections, characterized by a one-period return function infinitely penalized
outside its domain A. Define U : Rl ×Rl ×Rk → R∪{−∞} by

U(x, y, z) =

{
F (x, y, z, ) if (x, y, z) ∈ A
−∞ otherwise.

In other words we transform a problem with constraints (described by the correspondence Γ)
into an unconstrained problem. The advantage of this procedure is that optimal plans with
values on the boundary can also be considered throughout our method when U is superdiffer-
entiable on the boundary of the set A.
Recall that a function f : X → R∪{−∞} is superdifferentiable at x0 ∈ X ⊆ Rl if there is

a vector a ∈ Rl such that f(x) ≤ f(x0) + a(x− x0), all x ∈ X; a is called supergradient at x0

and the (possibly empty) set of supergradients of f at x0, called superdifferential, is denoted
by ∂f(x0).
For each t ≥ 1, define the operatorMt on the space of measurable functions f : Zt → Rl by

(Mtf)(zt−1) =

∫
Z

f(zt−1, zt)Qt(z0, ..., zt−1; dzt).

It represents the expected value of the t-section of f conditioned to the story of shocks zt−1 =
(z1, ..., zt−1).

Definition 7 A feasible plan π∗ ∈ Π(s0) is supported by a price p0 ∈ Rl and a sequence of
prices {pt}, where each pt : Zt → Rl is a measurable function, if satisfies a.e.

−βp0 ∈ ∂2U(x0, π
∗
0, z0) and

(pt(z
t),−β(Mt+1pt+1)(zt)) ∈ ∂U

[
π∗t−1(zt−1), π∗t (z

t), zt
]
, t = 1, 2, ...,

(4)

where we denote by ∂2U(·, ·, ·) the superdifferential of U with respect to the second variable and
by ∂U(·, ·, ·) the superdifferential of U with respect to the first and the second variable.

This is the stochastic version of what in the deterministic literature (see in particular [3]
and [15]) is called competitive plans. The major difference with respect to the deterministic
definition (see Definition 12.3, p. 127 in [10]) is that in stochastic models prices are random
variables: they are unknown at the initial date t = 0 and each of them is revealed (it becomes a
vector of Rl) as soon as the story of shocks zt = (z1, ..., zt) is observed. It is a concept analogue
to that of feasible plans of Definition 1. This explains why in (4), at each period t, the price at
t + 1 appears in terms of expected value of the random variable pt+1 conditioned to the story
zt. Notice that pt(zt), (Mt+1pt+1)(zt) and U

[
π∗t−1(zt−1), π∗t (z

t), zt
]
are all functions evaluated

at time t, using information available at that period.
If the random shocks are represented by a first order stationary Markov process, as it

is assumed in most of the economic models, operator Mt+1 in (4) becomes the well known
Markov operator M associated with the stationary transition function Q, i.e. (Mf)(z) =∫
Z
f(z′)Q(z; dz′). Hence (Mpt+1)(zt) =

∫
Z
pt+1(zt, zt+1)Q(zt; dzt).

In applying the definition of superdifferentiability we can rewrite (4) as follows (again we
omit the argument zt of the random variables πt, pt and Mt+1pt+1):

U(x0, π
∗
0, z0) + βp0π

∗
0 ≥ U(x0, π0, z0) + βp0π0 and

U(π∗t−1, π
∗
t , zt)− ptπ∗t−1 + β(Mt+1pt+1)π∗t

≥ U(πt−1, πt, zt)− ptπt−1 + β(Mt+1pt+1)πt a.e., all π ∈ Π(s0),
t = 1, 2, ....

(5)
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It is easy to see that (5) are a generalization of (3): if π∗ is interior and U satisfies Assumption
3, we have Ux

[
π∗t (z

t), π∗t+1(zt+1), zt+1

]
= pt+1(zt+1) and

Uy
[
π∗t−1(zt−1), π∗t (z

t), zt
]

= −β(Mt+1pt+1)(zt)
= −β

∫
Z
pt+1(zt, zt+1)Qt+1(z0, ..., zt; dzt+1)

= −β
∫
Z
Ux
[
π∗t (z

t), π∗t+1(zt+1), zt+1

]
Qt+1(z0, ..., zt; dzt+1),

from which follows

Uy
[
π∗t−1(zt−1), π∗t (z

t), zt
]

+ β

∫
Z

Ux
[
π∗t (z

t), π∗t+1(zt+1), zt+1

]
Qt+1(z0, ..., zt; dzt+1) = 0.

Thus under differentiability the price system is uniquely determined.
Now we are ready to prove the main result.

Theorem 2 If a feasible plan π∗ ∈ Π(s0) is supported by a sequence of random prices {pt} (i.e.
is a competitive plan), then is finitely optimal. If, in addition, one of the following transversality
conditions is satisfied, then π∗ is optimal:

1. X is bounded and lim
t→∞

βt
∫
Zt
pt(z

t)λt(z0, dz
t) = 0 a.e.;

2. X ⊂ Rl
+, p0 ∈ Rl

+, pt(z
t) ∈ Rl

+ a.e., t = 1, 2, ... and lim
t→∞

βt
∫
Zt
pt(z

t)π∗t−1(zt−1) λt(z0, dz
t) =

0 a.e.;

3. lim sup
t→∞

βt
∫
Zt
pt(z

t)
[
π∗t−1(zt−1)− πt−1(zt−1)

]
λt(z0, dz

t) ≥ 0 a.e., all π ∈ Π(s0).

Proof. We start with finite optimality. Fix n ≥ 1 and choose any feasible plan π ∈ Π(s0)
such that πn = π∗n a.e.. By (5), for t = 0, 1, ..., n,

U
[
π∗t−1(zt−1), π∗t (z

t), zt
]
− pt(zt)π∗t−1(zt−1) + β(Mt+1pt+1)(zt)π∗t (z

t)
≥ U [πt−1(zt−1), πt(z

t), zt]− pt(zt)πt−1(zt−1) + β(Mt+1pt+1)(zt)πt(z
t),

holds a.e., where the case with t = 0 is also included since x0 is in common to both π and π∗

and, by the first line in (5), U(x0, π
∗
0, z0)−px0+βp0π

∗
0 ≥ U(x0, π0, z0)−px0+βp0π0 holds for any

p∈ Rl. Then, writing explicitly Mt+1pt+1, integrating with respect to λt(z0, ·) and multiplying
by βt, we obtain

βt
∫
Zt

{
U
[
π∗t−1(zt−1), π∗t (z

t), zt
]
− pt(zt)π∗t−1(zt−1)

+βπ∗t (z
t)
∫
Z
pt+1(zt+1)Qt+1(z0, ..., zt; dzt+1)

}
λt(z0, dz

t)
≥ βt

∫
Zt
{U [πt−1(zt−1), πt(z

t), zt]− pt(zt)πt−1(zt−1)
+βπt(z

t)
∫
Z
pt+1(zt+1)Qt+1(z0, ..., zt; dzt+1)

}
λt(z0, dz

t)

which, by Corollary 1, is equal to

βt
∫
Zt
U
[
π∗t−1(zt−1), π∗t (z

t), zt
]
λt(z0, dz

t)− βt
∫
Zt
pt(z

t)π∗t−1(zt−1)λt(z0, dz
t)

+ βt+1
∫
Zt+1

pt+1(zt+1)π∗t (z
t)λt+1(z0, dz

t+1)
≥ βt

∫
Zt
U [πt−1(zt−1), πt(z

t), zt]λ
t(z0, dz

t)− βt
∫
Zt
pt(z

t)πt−1(zt−1)λt(z0, dz
t)

+ βt+1
∫
Zt+1

pt+1(zt+1)πt(z
t)λt+1(z0, dz

t+1).
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Finally, the sum of both members from t = 0 to t = n gives
n∑
t=0

βt
∫
Zt
U
[
π∗t−1(zt−1), π∗t (z

t), zt
]
λt(z0, dz

t)

+ βn+1
∫
Zn+1

pn+1(zn+1)π∗n(zn)λn+1(z0, dz
n+1)

≥
n∑
t=0

βt
∫
Zt
U [πt−1(zt−1), πt(z

t), zt]λ
t(z0, dz

t)

+ βn+1
∫
Zn+1

pn+1(zn+1)πn(zn)λn+1(z0, dz
n+1),

(6)

which, since πn = π∗n a.e., implies finite optimality of π
∗.

The final step is to prove optimality. Inequality (6) can be rewritten as follows:

un(s0, π
∗) + βn+1

∫
Zn+1

pn+1(zn+1)π∗n(zn)λn+1(z0, dz
n+1)

≥ un(s0, π) + βn+1
∫
Zn+1

pn+1(zn+1)πn(zn)λn+1(z0, dz
n+1).

Suppose that condition 1 is verified; hence, writing (6) as

un(s0, π
∗) ≥ un(s0, π) + βn+1

∫
Zn+1

pn+1(zn+1) [πn(zn)− π∗n(zn)]λn+1(z0, dz
n+1)

and taking the limit for n→∞, since X is bounded, u(s0, π
∗) ≥ u(s0, π) holds. If condition 2

is satisfied, then pn+1(zn+1)πn(zn) ≥ 0 a.e. for n = 1, 2, ..., from which follows that un(s0, π
∗) +

βn+1
∫
Zn+1

pn+1(zn+1)π∗n(zn)λn+1(z0, dz
n+1) ≥ un(s0, π) holds for n = 1, 2, ..., and thus, again

by condition 2, taking the limit for n → ∞, u(s0, π
∗) ≥ u(s0, π) holds once more. The case of

condition 3 is treated similarly.

5 An Example

Consider the one sector growth model with production possibilities affected by a stochastic
exogenous shock. The objective of the decision maker in each period is to select consumption
and investment policies to maximize expected discounted utility of consumption subject to an
output generated by a stochastic production function.
The state space is X = R+, where xt ∈ X is the level of capital to be used in the production

process at the beginning of period t; the output produced can be either consumed or invested.
We assume that the investment choice yt ∈ X at time t is equal to the amount of capital xt+1

available at the beginning of the next period. The random events space is the closed interval
Z = [a, b] ⊂ R, where 0 < a < b, and we assume that any shock z ∈ Z enters multiplicatively
a Cobb-Douglas production function f(x) = xα, 0 < α < 1, which already takes into account
depreciation; i.e., if yt−1 = xt ∈ X represents the investment choice at t− 1, ztxαt is the output
available at the same period. Hence, the correspondence of the one-period constraint is the
closed interval Γ(x, z) = [0, zxα]. The utility of the representative decision maker is U(c) = ln c.
Since, thanks to monotonicity of both production and utility functions, yt = ztx

α
t −ct, t = 0, 1, ...

(that is no capital is wasted), the one-period return function is F (x, y, z) = ln(zxα − y).
Formally, the agent must seek a sequence {xt} to maximize E[

∑∞
t=0 β

t ln(ztx
α
t − xt+1)], where

0 < β < 1. Notice that, under these assumptions, we can represent the space of the system as
the compact set S = [0, b]× [a, b], since for any x > b, production is not sustainable.
The process of the random shocks is characterized by a sequence {Qt} of stochastic kernels;

that is, the probability measure on it is as general as possible. Thus, for fixed s0 ∈ S, we can
restate the problem with the symbols introduced in the previous sections:

sup
π∈Π(s0)

{
ln(z0x

α
0 − π0) + lim inf

n→∞

n∑
t=1

βt
∫
Zt

ln
[
zt
(
πt−1(zt−1)

)α − πt(zt)]λt(z0, dz
t)

}
,
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where λt(z0, ·) is defined in (1).
By using the method developed in Section 4, we shall show that the feasible plan generated

by the function g(x, z) = αβzxα, i.e. the stationary (or Markov) plan π in which the random
variables πt : Zt → X are defined by πt(zt) = αβzt[πt−1(zt−1)]α, t = 1, 2, ..., is optimal. By
using well known dynamic programming arguments, it is easy to show that the plan constructed
in this way is optimal under standard hypotheses on the random shocks (like assuming it being
an i.i.d. process or, at most, a first order Markov process); it seems interesting the fact that
this plan remains optimal under much weaker assumptions on the uncertainty as well.
Clearly π is feasible for any s0 ∈ S. Hence we must prove that π is competitive and satisfy

one of the transversality conditions of Theorem 2. The function F (x, y, z) = ln(zxα − y) is
continuously differentiable on intAz, thus satisfies Assumption 3. Therefore we need to show
that π is interior and conditions (3) hold, or, in other words, that a sequence {pt} of supporting
prices exists and is uniquely determined by (3).
Suppose that x0 > 0. Since zt > 0, t = 0, 1, ..., then, by induction, αβztxαt > 0, all t;

furthermore αβzxα < zxα, all (x, z) ∈ S, hence π is interior. To check (3), we must show that

1

zt[πt−1(zt−1)]α − πt(zt)
= β

∫
Z

αzt+1[πt(z
t)]α−1

zt+1[πt(zt)]α − πt+1(zt+1)
Qt+1(z0, ..., zt; dzt+1)

holds a.e., t = 0, 1, .... Using function g, we can substitute πt−1(zt−1) and πt+1(zt+1) with their
equivalent expressions in terms of πt(zt); then simplifying, by the arbitrarity of t and zt and
since

∫
Qt+1(z0, ..., zt; dzt+1) = 1 for all (z0, ..., zt), we get the identity.

Finally we turn to the transversality condition. At each time t, the supporting price is

pt(z
t) =

αzt[πt−1(zt−1)]α−1

zt[πt−1(zt−1)]α − πt(zt)
,

where, substituting πt(zt) with αβzt[πt−1(zt−1)]α, we have pt(zt) = α/(1−αβ)πt−1(zt−1). Since,
for all t and zt, πt(zt) > 0, the price pt(zt) is always strictly positive; in addition X = R+. To
see that condition 2 of Theorem 2 is verified, notice that

lim
t→∞

βt
∫
Zt
pt(z

t)πt−1(zt−1)λt(z0, dz
t) = lim

t→∞
αβt

1−αβ
∫
Zt
λt(z0, dz

t)

= α
1−αβ lim

t→∞
βt

= 0,

hence π is optimal.
With a similar argument, it is easy to show that for an analogue problem with finite horizon

T and a final condition equal to zero, that is

sup
π∈Π(s0)

{
ln(z0x

α
0 − π0) +

T∑
t=1

βt
∫
Zt

ln
[
zt (πt−1(zt−1))

α − πt(zt)
]
λt(z0, dz

t)

+βT
∫
ZT

ln zT
[
πT (zT )

]α
λT (z0, dz

T )
}
,

a plan constructed by the functions

πt(z
t) = αβ

1− (αβ)T−t

1− (αβ)T−t+1
zt[πt−1(zt−1)]α

is optimal.
The interpretation of such an apparently surprising result relies entirely upon the fact

that logarithm is a well behaved function. The plan generated by the function g(x, z) =

11



αβzx, in fact, is optimal also for the analogous deterministic model characterized by a non-
stationary one-period return function, as can be easily checked; i.e. for a model of the type
sup

∑∞
t=0 β

t ln(ztx
α
t − xt+1), where {zt} is a deterministic sequence of numbers which let the

one-period return function Ut(c) = ln(ztx
α
t − xt+1) depend on time t. This means that in sto-

chastic models logarithm utilities nullify the effects of uncertainty (of any kind), a circumstance
that in general, obviously, doesn’t occur.

6 Concluding Remarks

Although the majority of economic optimization models are not so fortunate as in the last
section, where utility is the logarithm function, we believe that stochastic competitive plans,
i.e. feasible plans supported by sequences of random prices, can be useful in determining
optimal plans in many economic applications under uncertainty, particularly when the one-
period return function is differentiable, assumption that allows to check competitivity by Euler-
Lagrange equations (3). Equilibrium theory seems to be the field where competitive plans can
play a crucial role: at any time t, an equilibrium is defined by a system of random prices pt
(which depend on an exogenous shock zt) and a system of demand and supply functions that
maximize utility and clear the markets. It’s easy to see that such an equilibrium corresponds to a
competitive plan. Other important aspects deserve further investigation, like Pareto optimality
of the equilibrium which involve the analysis of transversality conditions similar to that listed
in Theorem 2.
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