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Abstract

In this paper we investigate wealth inequality/polariaatproperties related to the support of
the limit distribution of wealth in innovative economiesachcterized by uninsurable individual
risk. We work out two simple successive generation examplas with stochastic human capital
accumulation and one with R&D, and prove that intense telcigimal progress makes the support
of the wealth distribution converge to a fractal Cantoeldet. Such limit distribution implies the
disappearance of the middle class, with a “gap” between tealtlv clusters that widens as the
growth rate becomes higher. Hence, we claim that in a highdyitotratic world in which the
payoff of the successful individuals is high enough, and Imiclvy social mobility is strong, soci-
eties tend to become unequal and polarized. We also show tleglistribution scheme financed
by proportional taxation does not help cure society’s iraditjipolarization — on the contrary, it
might increase it — whereas random taxation may well sucteéiing the gap by giving rise to
an artificial middle class, but it hardly makes such classadife enough. Finally, we investigate
how disconnection, a typical feature of Cantor-like setselated to inequality in the long run.

JEL Classification Numbers: C61, 041
Keywords: Wealth Inequality, Growth, Technological Change, Frac@antor Set, Invariant Dis-
tribution, PolarizationPulverization.

1 Introduction

How do we predict a fast growing and unequal society’s wedilttribution to look like? In a global
highly competitive and technologically turbulent econoimgividual success or failure may substan-
tially alter one’s position in the social scale. We argue Hueieties in a twin peak world would tend
to look like polarized fractals.

This is proved by constructing a simple competitive econamti successive generations and
uninsurable individual risk to show how easily the suppdrth@ir limit distribution of individual
relative wealth levels can look like a peculiar geometrigeobcalled Cantor set, provided that the
exogenous growth rate is high enough. A Cantor set is a fractéhe real line, that is, a totally
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disconnected set with self-similar structure with an emtdeharacteristic: it exhibits a “hole” in

the middle. Our definition of (extreme) inequality is basedsoich hole, which may obviously be
interpreted as the lack of a middle class, which, in turnftsroidentified with the term ‘polarization’

by the mainstream literature on inequality.

Emerging phenomena of income or wealth inequality and palaon has been lately observed
in many economies. For some empirical contributions seeefample, Alesina and Rodrik [4],
Perotti [39], Benabou [11], Benhabib and Spiegel [13], B4&] and [10], Forbes [26]. From the
theoretical point of view, the literature on income inedybolarization appears to be already rich
enough, both from the perspective of the possible consegsdhat inequality/polarization may have
on growth rates and from the perspective of analyzing whagets of growth may generate inequal-
ity/polarization. See, for example, Loury [34], BanerjgeddNewmann [7], Galor and Zeira [27],
Alesina and Rodrik [4], Persson and Tabellini [40], Benhadnd Rustichini [14], Aghion and Bolton
[1], Benabou [11], Piketty [41], Aghion, Caroli and Gardt@nalosa [3], Benabou [12].

In this paper, economies with (possibly) polarized weaisftrdbution in the long run are analyzed
by means of Iterated Function Systems (IFS) to describe tlygiamics and their limit distribution.
Even if the IFS approach seems to be capable of unveiling specss of economic dynamics, the
application of such methodology to economic models seerhs &t an early stage: up to our knowl-
edge, very few works appeared along this line, and none onh théh the aim to explain wealth
or income inequality. Some examples are Bhattacharya andnwiar [15], [16], [17], who dealt
with IFS with random monotone maps, Montrucchio and Prggig38], Mitra, Montrucchio and
Privileggi [35], and Mitra and Privileggi [36], [37], whowtied stochastic optimal growth models
converging to invariant probabilities supported on fricta

Our analysis is characterized by markets with equal opparés for all individuals; such equal
opportunities fuel a strong mobility engine that, if assted to high growth rates, may generate
inequality. Mobility is introduced through stochastic émbncome heterogeneity, which represents
the ability of the individuals to adopt better and bettehtemlogies. If better technologies entail some
adoption uncertainty at the individual level and if suclkkiis uninsurable, due to the unobservable
or unverifiable individual commitment into a learning effancome heterogeneity becomes a natural
consequence of aggregate growth, and the faster the atgrggavth the relatively stronger the
weight of the uncertain part of the individual resources.

A faster growing environment implies stronger family mailprospects, because a successful
individual from a poor family can more easily overtake thewectessful individuals of a richer family,
but it means a tendency for the middle class to disappear ks Mence a “hole” in the middle of
the support of the wealth distribution is more likely to appéhe faster the pace of technological
growth: the wealth distribution becomes polarized intoghtand a low wealth classes. However, the
random dynamical system that governs the individual asség across the ever expanding social
wealth distribution is not only polarizing the wealth distrtion, but will mirror the central hole
everywhere through the wealth distribution itself: theeiz® of a middle class at the social level
implies the absence of “middle subclasses” at all levelg, tduthe diversity of the destinies of the
different individuals who travel stochastically throudtetsociety’s wealth distribution. It follows
that the same process that generates a wealth distribuicorshected in the middle multiplies such
disconnection at infinity — in all its subintervals — genergta totally disconnected support of the
wealth distribution. Therefore we reach what we can call alVigrized” society. Such a “fractal
society” is an intriguing mix of polarization and pulverizm.

This kind of “polarization/pulverization” of the aggregatvealth distribution differs from the
traditional idea of “polarization”. though if we photogtaphe wealth distribution at each point in
time we get a highly “polarized” picture, when we track thegesses for the successive wealth levels
of any single individual we observe a strong mobility. Dyneafly, such societies are not polarized in



“durable classes”, but they show a tremendous impact of lilbndeed, it is the amplitude of such
mobility that generates polarization: the very fact that gfains of a lucky poor can make her richer
than an unlucky rich is at the same time an important mokalyect and the cause of polarization.

We will obtain “fractalized” wealth distributions from tweersions of a simple macroeconomic
model with no aggregate uncertainty and individual idiaswtic income risk. Our specifications
generate enough linearity in the random dynamical systesnramediately translate the dynamics
into well known properties of the Barnsley IFS used to getmeitae Cantor set. The choice of such
a simple (textbook-like) model allows us to examine in depih most direct relationship between
growth rate and wealth inequality in a dynamic framework.

An important consequence of our main result regards thetedfe fiscal policy aimed at eliminat-
ing polarization/pulverization through income taxatidriteose who are successful and redistribution
to the unlucky individuals. Intuitively, since such polidyrectly attacks the mechanism responsi-
ble for the “fractalization” of society, one would expectttthis would easily reach its target. We
show that this is not the case. In fact, simple redistrisusohemes can never eliminate polariza-
tion/pulverization of society. What's more, even if thegrngorkings of the private economy itself did
not imply socioeconomic disconnection, a direct taxatibwealth of all individuals may be able to
induce polarization/pulverization of society. Also theoption of a random taxation scheme, which
has in principle the potential of creating an artificial meldlass in a polarized economy, proves
essentially ineffective whenever the incentive comphtybtonstraint is sufficiently tight.

A closer look at how inequality is being affected by the iptay between pulverization and po-
larization — two apparently contradictory aspects reldtethe same phenomenon that generates a
Cantor support for the limit distribution — in the long runds/en by calculating the limit of the
Gini coefficient of the marginal distributions as time tetalfinity: we find that inequality remains
positive for the invariant wealth distribution.

The main assumption underlying the (stochastic) dynamibsih models under study is that there
are only two states of nature: ‘failure’ or ‘success’. Su@nfework allows the best outcome under
the low realization to be worse than the worst outcome urigehigh realization whenever the growth
rate is large enough, as we shall prove in our main result.chb&e of such an assumption, if on one
hand plays a key role in establishing a direct relationskigvben growth and wealth polarization, on
the other hand may appear extreme and unrealistic. At thekthe paper we shall show, by means
of a heuristic but robust argument, that the main idea dgeslon the ‘two shocks setting’ actually
generalizes to i.i.d. stochastic processes defined by atgense., quite the opposite scenario of
having a “highly discrete” process of only two states — pdewd that such density is bimodal, in the
sense that it concentrates most of the weight on the bowesdafits state space.

The paper is organized as follows. In Section 2 the two maono@mic models of technological
change are introduced. Section 3 is devoted to a self-cwdaeview of the basic mathematical meth-
ods we use to analyze the possibly fractal support of the liistribution for a random dynamical
system. In Section 4 we provide sufficient conditions forlitmét wealth distribution to have a Cantor
support, which we interpret as a polarized/pulverizedritistion; such conditions are expressed in
terms of (exogenous) growth rate and degree of intergeoredialtruism of the population. In Sec-
tion 5 the main implications of the analysis of Section 3 oa itefficacy of inequality-eliminating
policies are reported in detail. In Section 6 we focus on gal@xamination of the interplay be-
tween inequality and what we have somewhat tentativelyddipulverization”. Finally, Section 7
shows the robustness of our approach by proving that smaotarpations of our discrete stochastic
process do not affect the main result. Section 8 concludésseime comments, while the Appendix
A contains the proof of the main result of Section 6 and Appedexplains the formula for the
approximation in Section 7.



2 Technology and Growth

In this section we introduce two simple macroeconomic medath exogenously evolving technol-
ogy. In the first one, we assume a sequence of successivagensiof altruistic individuals who take
a consumption and bequest decision on their wealth acctedubait of a stochastic income acquired
at the utility cost of learning a technology that is new atrg\generation. The second model hinges
on the same framework of the first one, but allows for explmtaof new discoveries by means of
patents which expire after one generation. Both modelslamcterized by a strong mobility engine
(equal opportunities for all individuals) and uninsuraipléividual risk. Unlike the mainstream liter-
ature, no imperfections on credit markets or barriers tese@ducation are assumed. On the other
hand, uncertainty is modeled in a standard fashion, sirtalérat adopted in Aghion and Bolton [1]:
there are only two states of nature describing achievenoéetsonomic agents, either ‘success’, with
probability0 < p < 1, or ‘failure’, with probability 1 — p.

2.1 Adoption of New Technologies

Consider an infinite horizon discrete time economy with aiocomim of infinitely lived families that
will be indexed byi. With no loss of generality we shall normalize populatiomiothe unit interval,
i.e, i € [0,1]. Each family is formed by a one-period lived altruistic widuals whose preferences
are represented by the following “warm glow” (see Andre&j) [tility function

u(c,be) =c P —e

wherec > 0 denotes end-of-life consumptioh,> 0 the bequest left to the unique heir,> 0 a
learning effortt and0 < 3 < 1 the degree of intergenerational altruism. As, for exanmiplBanerjee
and Newman [7], Galor and Zeira [27], or Piketty [41], suchb@@®ouglas altruistic preferences
imply that a fraction3 of each individual's end of life wealth will be passed ovehgy child. Hence,
the indirect utility of end-of-life wealth is linear (risk neutral preferences) and equal to

UW)=(1-8)""5W —e.

The end-of-life wealthiV of each family is uncertain at the beginning of each genematit
depends on the wealth level inherited from the past, that ihe bequest left by the ancestor, and on
individual success in learning the technology that becoaagable during her lifetime.

Individuals of generation are endowed with one unit of labor time which they will indieally
use to produce a perishable consumption good at the comnoalugdivity level A, > 0. At the
beginning of period, a new General Purpose Technology (see Helpman [28]) app&agenously
and every individual has to learn it in order to successfaliyer production. Learning technology
A; requires an effort that entails a certain utility cest> 0. Whether an individual exerts the
required effort for learning such technology is somethhmg tannot be observed by anybody but the
individual > Moreover “success” in the adoption of the technology is mwéesbut it occurs to each
individual with probability0 < p < 1 constant through time, independently of all other indialdu
In other words, all individuals of the same generation féeesame opportunity of success. Since the
(exertion of) learning effort is unobservable, borrowesetitor interaction lasts one period only and
individual’s offspring cannot be sanctioned; accordingly idiosyncratic risk can be insured.

1As will become clear later, each agent chooses to exertteftoetween two values: zero and a strictly positive fixed
amount which depends on time.

2Specifically, it is not the amount of learning effort whichist observable, but whether an individual undertakes such
effort at all.



Technology is assumed to evolve exogenoudly= vA;_, wherey > 1. Consistently, we will
assume that, = ve, 1, that is, learning a more advanced technology requires eftog.

Provided that individual € [0, 1] alive in periodt undertakes the learning effestat the beginning
of her life, her end-of-periothcomeY; will be:

(1)

Notice that in this model income derives from the “abilityi’ ihe use of current technologies and
entails no utility loss.

The evolution of technology yieldd, = A, and that of efforie, = ~'eq, with both Ay andeg
strictly positive. Individual wealth at the beginning of her life in perigds given by the bequest
inherited from period — 1:

Vi _ 0  with probabilityl — p
t 7 A, with probabilityp

bi = BWtiflv

whereW;_; represents the wealth accumulated by her ancestor at thefdimde ¢ — 1. Provided
that individual: will perform effort ¢, in order to learn technology,, her expected indirect utility
conditional to the past wealth and the performed effortvegiby

E[U (W) (Wii,e)] =(1=5)""E [W/W.] —e
1=0)""8 [p(BWL+ A) + (1 =p) W] e (2)
(1=08)"78% (BWy + pAs) — e
where the probability of succegsn adopting technologyl; does not depend on time.
We shall assume the following.

Assumption 1
0<eo<(1—70)"775%A,.

Assumption 1 implies that the expected indirect utilityabed by exerting efforé; is greater
than the certain effort for al > 0, thus rational individuals will always put the requiredagtfinto
learning the new technology. It follows that the intergettienal motion of the wealth of family
i € [0, 1] is described by

wi— ] AW with probability 1 — p -
t BWi , + A, with probabilityp.

Let b, > 0 denote the “original” bequest available at the beginningesfods = 0 to family 4, then

Wi — b, with probability1 — p
07\ b+ A, with probabilityp

SinceA; grows exogenously through time, the random dynamical sy§3¢ described by the two
mapsf; (W) = W and f, (W) = W + A, evolves along increasing sets of possible wealths. In
particular, at the end of perigdyeneration will be endowed with some wealft¥; in the interval

- t+1
[ﬁbé,ﬁbé+<—1 O )Wle @

v =B

which, sincey > 1,0 < § < 1 and4, > 0, diverges td0, +o0) ast — +oc.



However, notice that, sinceé < § < 1, both f; and f> in (3) are contractions in the variable
W, that is, wealth grows only thanks to technological par@&mét as time elapses. Hence, a better
highlighting of the features of this dynamics can be obtadibg transforming system (3) into an
equivalent law of motion adjusted by the productivity leve] which turns out to be contractive and
thus describes a process that eventually remains boundelt isome compact set, which we shall
call trapping region

Dividing (3) by A; we get the equivalent system in termsugf= W} /A;:

i (B wiy with probability 1 — p 5)
Y= (B/y)wi_, +1 with probabilityp

whose trapping region, as can be easily shown, is the idt@ny@ — (ﬁ/y))*l]. Let

a = —, (6)
~
which implies0 < a < 1, and consider the linear transformatigh= (1 — ) w! of (5). With this
change of variable we obtain the following productivityjested dynamic:

i ayi, with probability1 — p @
Y7\ ayi_, + (1—a) with probabilityp,

which, as we shall see more in detail in Section 3.3, has tlténterval [0, 1] as trapping region.

The stochastic dynamic (7) defines two possible levels adpetivity adjusted) wealth at time
t of individual i, ¢, provided that her wealth at time— 1 is y; ;. The lower level is reached with
probability1 — p while the upper level is reached with probability of success

System (7) belongs to an important family of random dynahsgatems known in the literature
as (Hyperbolic) Iterated Function Syster(i§S). Before studying thoroughly IFS (7), which is the
topic of Section 3, we turn our attention to a second, slightbre sophisticated, model, mainly to
show that dynamics of the form expressed in (7) can be eaplcated.

2.2 Schumpeterian Growth with Patents

While keeping the same framework of Section 2.1, let us nsurag that every individual of gen-
erationt at the beginning of her economic life has the same probgbili p < 1 of discovering a
better production method that allows the productivity ofusmerd > 1 of individuals to jump to
the new technological frontied; = vA;_;, provided she undertook an indivisible innovation effort
€t = Y€-1.

To render growth endogenous we will assume that produgtivwth ratey is an increasing and
bounded function of the aggregate innovative effgfo% eldi, wherel is the constant (normalized)
population sizé. Inventions are immediately patented and the patents egftiee one generation.
We will assume that each individual can run only one reseprofect during her life. Hence we are
building a simple Schumpeterian model in which the entnepues are new people (Schumpeter [42]
and [43]) who try to adapt the ever-evolving society knowledrontier to their sphere of production,
as in Aghion and Howitt [2] and Howitt [29]. The parallel wikghion and Howitt ([2], Ch. 3) and
Howitt [29] cross-sector spillover is in our assumptionttda evolves as an increasing function of

3With this simple assumption — that may be motivated by somdsof congestion effects — we eliminate Jones [31]
scale effects.

41t would not be difficult to allow for population growth. Intestingly, as will become clearer throughout the paper,
offspring’s division of bequest would reinforce inequglit this model and/or even generate it.
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social R&D adoption effort. This adds a zero growth equilibr due to R&D coordination failure: if
each individual expects nobody to exert effort she will btdyeoff not exerting it. In the rest of the
analysis we will concentrate only on the positive growthikigum.

Unlike usual Schumpeterian models we are here assumingtadiproductive capacity per firms
and/or a limited number of patent licensees. In fact we vafitane that in order to implement each
successful innovation the cooperatiordoforkers (including the innovator) is necessary. Hence, by
the law of large numbers, in the steady state there will ba@ifrnp of innovators, and a fractiop
of individuals employed in all innovative productive prgses. Since we keep the whole population
normalized tol, in order to let all innovators carry on their activity, theadtion pf of employed
individuals cannot exceeq] that is, the number of workers for each activity must be hieahby

1<6< t (8)
p

If the RHS of (8) holds with equality, the society is perfgativided in a fractiorp of entrepre-
neurs/ innovators and a fractian— p of workers. If the RHS of (8) holds with strict inequality i
there will be a fraction of people who will be treated as s#ifployed in production processes that
use the technologyl;_; available from the last period. Since patents expire after period, the
technologyA;_,, available only for the innovators at time- 1, becomes of public domain at time
Therefore we shall assume that, at each pefribdth employed workers in the innovative sectors and
self-employed workers in the old sectors perceive salatgsl to their productivity under the old
technologyA;_;. In this last scenario there will be a fraction< pf < 1 of individuals employed in
the A, technology sector and a fractian- p# of individuals employed in thél;_; technology sector.
Of these families, only a fractionis able to reap the benefits of the innovative technoldgyeach
by employingd — 1 workers) by means of patents, while the other fractierp, being them employed
in the innovative sector or self-employed in the old sed®remunerated by the productivity of the
A,_; technology

The innovations of this model can alternatively be intetguleas the discovery of an “entrepre-
neurial talent” that allows the innovator to found a firm thibws a more efficient use éfworkers
by making them use the best productive practices availabiieii firm. In this sense, the model of this
section can be viewed as an education model of the firm: indnécplar casé = 1 the individual
is only able to privately accumulate the “state of the artinaun capital. Unlike the previous exam-
ple, the technology learned by generationill be observed by everybody when it is operated, and,
afterwards, every family will become able to use it at no &ddal educational cost. With = 1 this
model depicts an economy similar to that of the previous gtanexcept for a perfect educational
spillover which allows the wealth of the children of the utky generation to instantaneously reach
the level of the lucky members of the previous cohort.

Let us turn our attention to the evolution of wealth throuigietin this model. In every periog,
“innovators” will appear angd < 1 skilled workers will be producing with the cutting-edgeheol-
ogy, paying their extra productivity to each successfubwator. The innovator — as a patent holder
or as an entrepreneur — is able to extract the complete ptigyincrement for one period, thereby
rendering the appropriable technology of every non-intmvaqual to the same valug_;. In other
words, besides directly benefitting from the new technoldgyeach single innovator in perigctan
appropriate the productivity gains of the non-innovatomskers employed in her firm. Her end-of-
period income is thus equal to

At (A= A1) (0-1) =[1+0(y—1)] A )

°If & > 1/p, the innovators would not be able to implement their discege and in a competitive equilibrium all
profits would be zero, leading to a society with a unique viregitbup without inequality.
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Hence, the wealth of family at the end of period, provided she undertook the indivisible inno-
vation efforte, at the beginning of the period, will be

Wi — W/ |+ Ai with probabilityl — p (10)

ET BWE L+ 1+ 0(y—1)] A,_;  with probability p.

The unlucky will get only the one-period lagged productivit,_; wealth, being her self-employed or
employed by some patent holder firm; in the latter case shé payshe full monopolistic rent to the
successful patent holder who employs her, though she caselmetween different patent holders.

Once again, we need to make sure that all families find it coleve: to undertake the indivisible
innovation effort, at the beginning of each periodThe individual expected utility gain conditional
on efforte; is given by

E[U(Y)) e =ppl+0(y = DA+ (1—p)pAis —e
=p[l+p0(y—1D] A1 — e,

wherep = (1 — ﬁ)l_ﬁ 37, while the individuali certain utility gain obtained by exerting zero effort
is given by
U (At—l) = pAt—l-

To achieve our goal, ‘
E[U (Y)) |e] > U (A1)

must hold, which easily translates into the next assumption

Assumption 2
0<ey<pb(l—1/7)pAp.

wherep = (1 — )77 %,

Notice that in this case nobody ends up with a zero wealthinstead even the “poorest” segment
of the population improves its standards of living at the sateady rater — 1 as the richest. In
particular, at the end of perigdeach individuat will have some wealthiV’; laying in the interval

. t+1 ) . t+1
by + (—1 " ) Ao, Bt + <—1 ) )vf 1467 - 1) 4y

This is a consequence of the temporary nature of patentaltbats the inventors to “exploit” the un-
lucky only for a limited lapse of time and, upon expiry, makiest innovation available for everybody
to be freely used.

Following the same technique as in Section 2.1, divide bgthagons in (10) byA; to get the
productivity-adjusted dynamic

; { aw!_+1/v with probability 1 — p (1)

Y=Y awl_ 4+ [1+6(y—1)] /v with probabilityp,

wherea = 3/~. Through the affine transformatigin = [0 (v — 1)] ' [y (1 — ) wi — 1] of (11), itis
immediately seen that we obtain the same IFS as in (7), whldastthe relevant values on the interval
[0, 1].



3 lterated Function Systems and their Attractor

In this section we provide a self-contained descriptiorhefrhathematical toolkit necessary to handle
IFS of the kind defined in (7). We shall confine our attentiohR8 constituted by maps which are
contractions, since we heavily rely on a basic result on eaqyence of IFS requiring this property.
Then, we shall generalize the idea of normalizing linearaiiyits over a compact interval (specifi-
cally, [0, 1]) already used in the previous sections, and we shall céyefuidy the geometric proper-
ties of the the fixed point — the attractor — of such normalitfesl On these geometric properties is
based the definition of wealth polarization/pulverizatibat will be used in subsequent sections.

3.1 A Well Known Result on IFS

There is a huge literature available on IFS, which has groeny ¥ast since, a few decades ago,
it proved useful in techniques for generating approximategges of fractals on computer screens.
Exhaustive treatment can be found, among others, in [3D]48], [25], [47], [44], [32] and [24]. For
a simplified exposition, focused on discussing an optimaMn model exhibiting the same dynamics
as in (7), see also [35].

Considerapairofmaps : X — X, f» : X — X, whereX is some compact subsetRf so that
f1 < f» and some constaft< «; < 1 exists such thatf; (x) — f; (y)| < o; |z —y|forallz,y € X
andj = 1,2. Given any fixed probability < p < 1, the triple{f1, f>, p} defines the (contractive)
IFS

| fi(xe—1) with probabilityl — p (12)
=\ folzey) with probabilityp.

on the compact seX. System (12) induces an operafoon R, calledBarnsley operatgrdefined by
T(B)=fi(B)U fy(B), B C X, (13)

wheref; (B) denotes the image @& throughf;, j = 1,2. Successive iterations @ftransformB into
a sequence of sef$ = T [T~ (B)] through time. We are interested in properties of the lingiset,
if it exists, to which the sequende, might eventually converge. A set C X is called annvariant
setor attractorfor (12) if it is compact and satisfies

T(A) = A.

It is a set such that, once entered by the IFS, successiag¢idtes of /" keep the system inside it.

Since (12) describes a stochastic dynamical system, aniotipertant aspect of the IFS is the
evolution through time of marginal probability distribomis. Given any initial distributiom, over
X, it is interesting to study how this probability evolvesléoling the IFS. LetB be thes-algebra
of Borel measurable subsets &f and P the space of probability measures @4, B). Define the
Markov operatorV/ : P — P as

Mv(B)={1-p)v[fi'(B)] +pv[f;'(B)], forallBeB (14)

wherev € P and f; ' (B) denotes the preimage sgt € X : f; (z) € B}, j = 1,2. OperatorM
is often calledFoias operator As we did for operatofl’, we want to study successive iterations of
M starting from some initial probability,, v; (B) = M [M''v, (B)], which yields the evolution of
marginal probabilities of the system as time elapses. Agdity distributionz* € P is said to be
invariant with respect td/ if

vt = Mv*. (15)



An invariant probability distribution is usually intergesl in economics as the stochastic steady state
to which the economy eventually might converge startingnfiome initial distributions, (see for
example [45] and [38]).

Here is the main result available for the fixed point of our.IR8call that thesupportof a prob-
ability distributionv is the smallest closed s6tC X such that’ (S) = 1, and that a sequencg of
probabilitiesconverges weaklo v* if tliglo [ fdvy = [ fdv* for every bounded continuous function

f:R—=R.
Theorem 1 Consider the IFS described Ky, fo, p}.

i) There is a unique attractor for the IFS; that is, a unique camtsetA C X, such thatf; (A) U

fa(A) = A.
ii) There is a unique probability distribution* on (X, B) satisfying the functional equation (15),
that is,
V' (B)=Q1—p) v [fi(B)] +pv [fs(B)] forall B € B. (16)

iii) A is the support of* and, for any probability v, on (X, B), the sequence; = My, for
t=20,1,2,..., converges weakly tg".

The original proof relies on a contraction mapping argunagrat dates back to Hutchinson [30].
See also Falconer [25] and Lasota and Mackey [32] for furdisussion.

3.2 Scaling Maps

Consider the IFS (12) and assume that the mgpg$, are increasing. Let andb be their fixed
points respectively, that ig; (a) = a and f, (b) = b, as in figure 1. Since the mags, f, are both
contractions, it is readily seen that, as time elapsesggaluthat are admissible eventually must lay
inside the intervala, b], that is,[a, b] is the trapping region of (12). In other words, the portioriaf
mapsfi, f» which is relevant in the long run is included in the squérm figure 1 (where the plots
of f; and f, are in bold). Hence, with no loss of generality, we mayNet [a, b].

For any increasing contractive maps f», such relevant region can be “normalized” over the
interval 0, 1] (that is, the squar& can be transformed into the squa¥en figure 1) by the following
two transformations:

1. by arigid translationtowards the origin, so that the fixed poinbecomes the origin itself, and

2. byscalingthe whole systerby a factork = b — a.

The outcome of such transformation is a new IFS

| o1 (yi—1) with probabilityl — p (17)
Y7 g2 (ye1) with probabilityp
where the mapsg; are given by
g;j <y> :kil [f] (ky—l—a)—a], j: 1727 (18)

®To be precise, weak convergence holds for any initial proiya such thatf |z — a| dv < oo for some constant.
See Section 2.1.2 in [35] for more details.
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with & = b — a, as can be easily checked. Figure 1 illustrates this traaslacaling procedure
that transforms the original relevant regi@hinto the new “normalized” relevant regiaN, which
is the unit square. Such normalization can be generalizedajos f; < f, that are not necessarily
monoton€, see Cozzi and Privileggi [19] for details.

fi
a
1 N G2
0 1 a b

FIGURE 1: normalization of two contractive mags, f> over the unit square.

Transformations that are translations and scaling arecaiimilarities (see [25], pp. 7 and 8).
A similarity has the property of transforming sets into geometricaltyilar ones, in the sense that
it preserves relative distances between points of theraigiet; formally, it is a transformatiof! :
R"— R" such thatlS (x) — S (y)| = k|z —y| for all z,y € R™ and some constamatio or scale
k > 0. Therefore, by construction, the IFS (17) obtained throgd), has graph similar to the graph
of the original IFS (12); this can be easily checked by notivag the graphs inside the squailéand
N in figure 1 are themselves similar. With a slight abuse of teofogy, we shall say thahe IFS
(12) and (17)re similar.

An important consequence of the normalization proceduserdged above is that the invariant
sets of both (12) and (17) have the same geometric propessabtey are generated by similar sys-
tems. Thus, similar IFS have similar attractors, and stuglffie geometric features of the attractor of
the normalized IFS (17) is equivalent to studying the geoynat(12).

3.3 Normalized Linear IFS

If the mapsf; are linear and with same slope< a < 1, that is, of the form

T, = { axi_1 + 21 With probabilityl — p 19)

ax;_1 + z5  With probabilityp,

"To be precise, at least in the study of inequality phenomaisa,the contractivity property could be relaxed some-
where in the “relevant region” (the squaFdn figure 1). The only minimum requirement is that the graphitf;, f> do
not intersect inside this area and that the maps are coieimaautside such area, so that the system is being attraxcted
the intervalla, b] as time elapses.
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wherez, zo are any constants such that < z,, thena = 2,/ (1 —a), b = 2/ (1 — «) and (18)
becomes the affine transformation

2 — 2

gj (y) :Ozy+(1—0é) ) j - ]-727 (20)
Zo — 21
which transforms IFS (19) into the similar one
I e with probabilityl — p (21)
Yo = ay;—1 + (1 — «) with probabilityp

defined onX = [0, 1]. Figure 2 illustrates why interval, 1] is the trapping region of the contractive
system (21)0 is the fixed point of the map, (y) = ay and1 is the fixed point of the map, (y) =
ay + (1 — «); since, at each period, the system “jumps” from one map tother with probabilities

1 — p andp respectively, it must eventually remain “trapped” betweemd1.

g2

Yi+1

(251

0 1

7 Yt

FIGURE 2: X = [0, 1] is the trapping region of system (21), whetigy) = ay + (1 — «) andga(y) = ay.

Notice that (20) provides an alternative — and more genax@Ho obtain the normalized IFS (7)
from the two (apparently) different systems (5) and (11) éct®ns 2.1 and 2.2 respectively, where
we used a direct change of variable instead.

Remark 1 For what follows, it is important to stress that the affinentséorm (20) does not affect
the slopex of the mapsf; of the original linear IFS (19). Hence, since (19) and (21¢ aimilar,
parametera completely characterize linear IFS, independently of &ddiconstants; andz;. The
(similarity) transformation (20) neutralizes the effeétz and z;. We can therefore conclude that
also the geometric properties of both attractors dependjuely on parametes, i.e., the common
slopea of both pairsg; and f;, and not on the additive constantsand z.

Thus, we are entitled to concentrate our analysis excllysae IFS (21) — or, equivalently, on
the IFS (7) — over the unit intervak’ = [0, 1]. To see how parameter (and not additive constants)
affects the whole geometry of IFS (21), observe that thelggajg;, andg, are two increasing parallel
lines crossing the lower left and the upper right vertex efuhit squarg0, 1]2 respectively: the larger
a (close tol) the steeper and the closer they are, the low#re flatter and the more apart they are.
Check (in this order) figures 3, 2 and 4 to grasp how these gralpéinge as values afdecrease.
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3.4 Geometric Properties of the Attractor

It is important to emphasize some features of the attradtof the IFS (21) — the support of its
invariant distribution — which depend only on contractiantbra and are independent of probability
p. This will provide a key ingredient for our definition of wéalpolarization/pulverization.

A quick glance at figure 2 makes clear that the support of o8ni#il be the whole intervalo, 1]
wheneven /2 < a < 1. This is becaus@ ([0, 1]) = ¢; ([0,1]) U g2 ([0, 1]) = [0, 1] if the images of;
andg, overlap, thatis, ifl /2 < a < 1, as figure 3 shows. In this case we shall say that all marginal
distributionsy;, and thus also the invariant distributioh, have “full support”.

Yt+1

Yt

FIGURE 3: ¢1([0,1]) U g2([0,1]) = [0,1] when1/2 < a < 1.

More interesting is the case when image$/0, 1]) andg, ([0, 1]) do not overlap: this happens for
0 < a < 1/2,sinceg; ([0,1])Ugs ([0,1]) =[0,a]U[1l — a, 1], where[0, o] and[1 — «, 1] are disjoint.
Fora < 1/2, there is a “gap” between the two image sets, with amplitude

h(a)=1-2a>0. (22)

Note thath («) is decreasing iny, and the gap “spreads” through the unit interval by suceessi
applications of the mapg;, reproducing itself, scaled down by a factigiw, in the middle of each
subinterval born after each stepFigure 4 reproduces the first three iterations of (21) isigufrom
0,1], generating a union &f (= 2?) intervals of lengthn?.

By pushing these iterations to the limit, we eventually fimdadtractor with features of the usual
Cantor ternary set; in fact, fer = 1/3, the support is precisely the Cantor ternary set. Cankerdets
of the kind constructed by computitign, .., 7* ([0, 1]) for 0 < o < 1/2 exhibit several geometrical
properties that are typical &factals

The most bewildering — and intriguing — feature of fractalthie need of a more sophisticated tool
than the topological dimension — which allows only for iregegalues — to measure the “consistency”
of their structure. Several dimensions has been consttdictehis purpose, like, among others, the
Hausdorff dimension, the Box-counting dimension and theil@rity dimension (for a discussion
on dimensions see, for example, [25]). All fractals have peuliarity that their dimension is a
“fraction”, from which the name “fractal”; for instance, @@r-like sets which are the attractors of
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(21) for0 < a < 1/2 have Hausdorff dimension In 2/ In «v (positive but less tham), which, in this
case, is the same as the Box-counting and the Similaritybinas.

19 19

n Y2

Yo
(a) (b)

,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,

Y2
()

FIGURE 4: first three iterations of our IFS fer < 1/2 starting from|0, 1]. The third iteration gives a union of
eight intarvals of lengtla, as can be seen on the vertical axis in (c).

Whenever < 1/2, the attractor of (21) has dimension less thawhich implies that it is totally
disconnected, that is, between any two points there areshd@points laying outside the attractor).
Conversely, even if dimensions less thiadenote sets with very “disperse” points, it can be shown
by means of a standard Cantor diagonal argument that Chikeéosets contain uncountably many
points, which are all pulverized across the interval it§elthe mathematical literature they are often
referred as “Cantor dust”). Nonetheless, none of thesagaie isolated,e., all Cantor-like sets have
the paradoxical property that they are battally disconnecte@dndperfect A terse and accessible
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discussion of the Cantor ternary set and its properties egound in Chapter 11 in [46]. Also [20]
is a good reference for an introductory approach.

3.5 The Invariant Distribution

Properties of the attractot discussed before shed some light also on the limiting bistion sup-
ported on it. A subset dR with dimension less thah have Lebesgue measure z&r8inceA is the
support of the invariant distribution, v* (A) = 1, from which we deduce that" turns out to be
singular with respect to Lebesgue measure wheneverl /2. However, singular invariant distribu-
tions are not confined to the case< 1/2, as it is widely discussed in [35], where singularity versus
absolute continuity properties of are systematically investigated.

To have a flavor of what such an invariant distribution migiud like, one may draw some itera-
tions of Foias operatdr\/ defined as in (14) starting from the uniform distribution oife 1]. This,
in the casd) < o < 1/2, is equivalent to the following construction. Split a uniass so that the
right interval of 7' ([0, 1]) has mas® and the left interval has mags— p. Then, divide the mass on
each interval of’ ([0, 1]) between the two subintervals 6f ([0, 1]) in the ratiop/ (1 — p). Continue
in this way, so that the mass on each interval'6f[0, 1]) is divided in the ratigp/ (1 — p) between
its two subintervals il ([0, 1]) (see also Example 17.1 in [25]). Figure 5 depicts some itarat
of M using this construction starting from the uniform disttiba fora = 1/3 andp = 1/3.

Figure 6 shows two examples of eight iterations)dfin the overlapping case,e. for a >
1/2, when the invariant distribution* has full support. Note that for close tol [high “degree
of overlapping” of the images; ([0, 1]) and g, ([0, 1])] and p sufficiently close tol /2, figure 6(a)
suggests that* will be “smooth” (absolutely continuous); while, whenevegets closer td /2 and
p gets closer to the extrentisor 1, as in figure 6(b), the approximation resembles the traisenied
in figure 5(f), where the limiting distribution is known to kengular.

We end this section by noting that Theorem 1 applied to ouZ2$ provides also some standard
information on the limiting distributiom*. Denote byy* € [0, 1] the random variable associated to
the invariant distribution*, that is, lety* be therandom fixed poirif of system (21). Then, functional
equation (16) can be rewritten as

* * 1_
y*(y*eB):(l—p)y*(y—EB)+pV*(y—— aEB),
a a a

which allows for a direct computation of expectation andarace ofy*:

E(y")=p (23)
Var (y*) = 1 J_r Zp (1-p). (24)

Note that these computations are justified thanks to weakergance, since expectation and variance
are the integrals of the identity functigiy) = y and the functiory (y) = [y — E, (y)]? respectively,
which are both bounded and continuous|@n].

4 Growth and Inequality

The stochastic dynamic model expressed by (7), or more giiyney (21), turns out to be especially
useful for a slightly different interpretation, which isetimain focus of this paper. One-period proba-

8A rigorous proof of this fact, which uses the notionHdusdorff measurecan be found in [22].
9The Maple code that generates plots like in figure 5 is avigilftbm the authors upon request.
10see Arnold [6] for a detailed treatment of random dynamigatems and random fixed points.
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FIGURE 5: first six iterations of operatay/ starting from the uniform probability far = 1/3 andp = 1/3.

bility p of individual: of successfully adopting technology at the end of period — or discovering
some innovative production method in the Shumpeterianoeid the model — can be seen, by the
law of large numbers, as the “average proportion of the wpopailation” that in the long run is able
to catch the opportunity of benefitting from the (constaatiglving) new technology. In this scenario,
the IFS (21) describes the evolution through time of the thediktribution across a population of a
continuum of individuals normalized th which, by Theorem 1, in the long run converges to some

invariant wealth distribution* supported on a subset B 1].
From this aggregate perspective, expectation (23) cardokagthe average productivity-adjusted
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@ a=4/5andp=1/3 (b) « =3/5andp =1/8

FIGURE 6: two examples of the first eight iterations of Foias operatostarting from the uniform probability
in the overlapping case, that is, far> 1/2.

wealth in the steady state, and variance (24) as the dispedfiindividual wealths. From (23)
it is immediately seen that the higher the individual praligbp of exploiting technologyA; (or
successfully innovating), the “richer” the economy on ager;, while (24) shows that low values of
parameter = 3/~ (i.e., low altruism rate5 or high exogenous growth rai¢ and values of parameter
p close tol/2, entail a dispersed invariant wealth distributigh Index (24) provides a very rough
measure of wealth inequality; incidentally, note that,day fixed value of probability of succegs
the lower parametet, the more dispersed the (steady state) wealth distribution

In view of Section 3, we are in the position of saying much nurehe steady state of such kind
of economy. Specifically, we focus on the existence of a neiddihss, which is often considered
important for growth itself, for democracy, for sociopualél stability, and for the law and order, as
quantified, among others, in the empirical analyses of Akeand Rodrik [4], Perotti [39] and Barro
[9]. A strong middle class in our economy is represented biynaariant distribution/* that gathers
a proportionally larger fraction of the population aroun@ than close to the extrenteand1 of the
interval[0, 1]. Our main result, Proposition 1, provides clear-cut caadd for the converse, tHack
of a middle classthus characterizing economies which are polarized ingefnvealth distribution.

The self-contained description of such steady state ingerirattractor of the IFS (21) carried
out in Section 3.4 makes clear the relationship betweeresadfiparametet and the very existence
of a middle class: economies featuring values: 1/2 for the exogenous parameter= 3/~ have
the striking property that a middle class disappears ayraftér one period starting from any wealth
distribution, on [0,1]. Such disappearance is graphically represented by th€ ‘tgtpreen the
two disjoint image sets; ([0, 1]) andg, ([0, 1]) in figure 4(a): already the first marginal distribution
11 concentrates wealth on two disjoint classes regardlesseofvealth distribution,, on [0, 1] in
t = 0. Furthermore, this gap is doomed to stay there forever,ishalso the limiting (steady state)
wealth distributionv* turns out to be characterized by the same lack of a middle.clbste that,
as we observed in Section 3.4, this happens independenthegirobability of succesg, and the
size of the gap increases as parametdecreases, which is consistent with the measure of digpersi
provided by (24). Since the lack of a middle class can be sean axtreme case wfealth inequality
accordingly to the literature on inequality we shall refeittwith the termwealth polarization'!

Wwe shall see in Section 6 that the term polarization becomasigmatic whenever a more technical definition of
polarization is needed for distributions supported on Gasets. Throughout most part of this paper, we shall emgpley t
term polarization to identify whatever wealth distributioharacterized by a missing middle class, as formalizetan t
next Definition 1.
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Moreover, we have seen in Section 3.4, that whenever thedssefg;, ([0, 1]) andg. ([0, 1]) are
disjoint, after the first iteration of the IFS the hole appegin the support of the marginal wealth
distributiony is being infinitely replicated on smaller scale in all sugpaf the successive marginal
distributionsy;, t > 2, leading in the limit to a support for the invariant distrilmn »* which is a
Cantor-like set. This phenomenon creates a form of inmascocial disconnection that we somewhat
tentatively will labelwealth pulverization

The discussion above leads to the following definition of Ktepolarization/pulverization based
on the (no) overlapping property of the image sets of the mpapadg, of the IFS (21).

Definition 1 Consider any economy of the type described in Section 2 efperductivity adjusted)
wealth distribution through time is described by the B, g2, p} defined as in (21) oX = [0, 1].
We shall say that such economypiarized/pulverized whenever

91 (1) <g2(0). (25)
A direct application of Definition 1 leads to our main result.

Proposition 1 Under Assumption 1 for the model introduced in Section 2@, @ndition (8) plus
Assumption 2 for the model described in Section 2:2 523 the supportA of the limit distribution

v* of both economies is a Cantor-like set, and thus they arergeld/pulverized in the long rut.
Moreover, the largery (and the smallefs), the larger the gap between the fractions of the population
— the the “poor” and “rich” — near the extremes of the intervil, 1], independently of the values of
parameterg andd.

Proof. Sincea = (3/v, v > 268 <= «a < 1/2, which itself is equivalent to (25). The latter
statement follows from (22), which measures the size of #yelgetween the “poor” and the “rich”
fractions of the population as a decreasing function ef 5/v.m

Proposition 1 shows that a high economic growth rate, by méwwg the successful individuals and
penalizing in relative terms those who are not ready to ddtelopportunities associated with the new
technologies, make the middle class disappear and polswidety in two different wealth classes.
Polarization becomes dramatic the larger the jump in prindtic v and the smaller the individual
degree of altruisng (or, equivalently, the more selfish the individuals).

Remark 2 Itis important to highlight that a polarized wealth disttibon does not mean that wealth
classes are trapping the individuals: all individuals hake same opportunity to become rich or poor
in this economy and it is precisely the amplitude of $beial mobility— and not the frequency, that
is the probabilityp of catching the technological opportunity, or finding someadvative production
method — that generates wealth polarization.

5 Redistribution and Social Cohesion

It turns out that normalizing maps of IFS as in (19) on therivag[0, 1] has important policy impli-
cations. Specifically, redistribution schemes based omptsam transfers from the rich to the poor

2For a discussion of the no overlap property (25) applieddotsistic optimal growth models of the Brock and Mirman
[18] type, see [36] and [37].

BConditiony > 24 is both necessary and sufficient for the attractao be a Cantor set. However it is clearly only
sufficient for polarization, since, generally speakingjrasariant distribution may well have full support and at gsme
time exhibiting some degree of polarizatioe-g, by concentrating all the weight close to the extremfof].

18



aimed at doing away with social polarization/pulverizatare not capable of achieving such goal,
while direct wealth taxation may even make polarizationseoiThis happens because the “hole” that
generates polarization depends only on parametépseferences) ang (growth rate), as it has been
widely argued in the previous sections, and cannot be affielsy mere transfers of income, as the
latter simply translate into different values for consgant z, in system (19).

This result appears counter-intuitive at a first glance. Wl slevote the next sections to analyze
in detail whether and how alternative forms of governmetdrirention may affect wealth polariza-
tion. First, two types of lump-sum transfers which fail tcneghate wealth polarization, one for the
model described in Section 2.1 and one for the Shumpetedaesion of Section 2.2, are discussed.
Thereafter, such a result is being even strengthen by slgawat direct wealth taxation may actually
worsen polarization. In Section 5.2, however, we shallraiféscal solution based on random taxation
of the rich that may wipe out polarization, at least in thesgeof “filling the gap” in the support of
a polarized invariant distribution. For simplicity, we Wilot assume that polarization/pulverization
implies productivity losses.

5.1 Lump-Sum Transfers

In the model of Section 2.1, let us assume that the gains fimoess are taxed at the end of each
period a proportio) < 7 < 1 and that proceeds are redistributed lump-sum to the urdsékif all
individuals exert effore; in order to learn technologyl;,, the steady state proportion of rich families
in the economy will still bep. Hence, the government in the long run will be able to coltest
revenues equals tar A;, which — assuming a balanced government budget every perogials the
aggregate lump sum transfer received at the end of pethgdhe whole poor.

Since taxation further reduces the expected benefit defivadhaving the opportunity of adopt-
ing technologyA;, in order to let all individuals keep putting effart even under taxation and thus
obtain a dynamic similar to that in (3), an upper bound on e r is needed. Let us discuss in
detail how Assumption 1 needs to be modified to avoid freengdehavior due to the possibility
of receiving, out of nothing, a transfer that generates adngitility than the expected utility gain
produced by putting effor;.

Let 0 < [ < 1 denote the fraction of the population who decides to putrefipin learning
technologyA;. Then, at the steady state, the total amount of tax revesygs 4l;, and each non-
successful individual— which are both the unlucky ones who exerted effpeind the lazy ones who
did not exert any effort, that amount to a proportior pl of families — receives a transfer given by

) pl
T = A, 2
! 1—plT ! (26)

In view of (2), the individual expected utility gain conditional to effost is given by
E[UY)le]=ppQ-7)A+1-p)T{] —e

[
=P [pL= ) At (1= p) 2| e

wherep = (1 — 5)1_5 37, while the individuali certain utility gain obtained by exerting zero effort
is given by

- l
U (Ttl) = p7 ﬁplTAt.

Note that, assuming lumps sum redistribution to all indirits — not only to the unluckies — would not alter the
gualitative results of our analysis.
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In order to let all the families put the effart = 4'¢, required to learn technology,, we need
E[U(Y/)e] > U(T})

to hold for all0 < < 1, which leads to

-
<1 — 1 —pl) ppAy > eg.

Since the minimum of the left hand side is reachedlifet 1, then, for each givem, satisfying
Assumption 1, the following restriction on parameteguarantees that all families will always put
effort e; in learning technology; also under government taxation.

Assumption 3 Assumption 1 holds and

0<7<(1—p) (1-p§20), (27)

wherep = (1 — )77 %,

Hence, in view of (3), the dynamics of individui& wealth becomes:

Wi = { BWi_, +p(1—p) ' 74, with probabilityl — p (28)

BWE L+ (1—1) A with probabilityp,

wherep (1 — p)_1 T A, represents the transfer received by a single unlucky faimely7} in (26) with
[ = 1. By dividing both equations in (28) by; we get productivity-adjusted linear dynamics:

wi— d B/ wi+p(L—p)~"7 with probabilityl —p 29)
LB wi +(1—-7) with probability p.

Under Assumption 3, the RHS in (27) implies< 1 — p, which, in turn, impliesp (1 —p)_1 T <
(1—7). lfweleta = /v, 21 =p(1 —p) ' 7andz, = (1 — 1), (29) becomes as in (19), which is
similar to (21), and thus the next result is established Reraark 1).

Proposition 2 If v > 273, polarization/pulverization never disappears for all ome tax ratesr
satisfying Assumption 3.

Figure 7 shows that only the common slope of the two maps itotsg the IFS affects polariza-
tion/pulverization while lump-sum transfers — which arefmog else than additive constants — have
no effect in reducing inequality.

There is, however, an important difference with respechéodynamics obtained in Section 2.1.
Observing the evolution through time of the supports of tlaegimal distributions;, of systems (28)
or (29), itis clear that the standard of living of the poor endealth redistribution will be bounded
away from zero in the long run, that is, nobody will end up vdthero wealth in the steady state. As
a matter of fact, the feasible wealths of system (28) at titag in some subset of the interval

‘ 1 — t+1 B ‘ 1 — t+1
b + <—7(ﬁ_/;) )7”119(1 — )" 7 Ao, B0 + <—7(6_/Z;) )Wl (1—=7) A

with left extremum strictly positive and increasing ovendi. Therefore, although government redis-
tribution does not affect polarization/pulverizationsiill proves effective in sustaining the wealth of
the poor. Clearly also the “rich side” of the population isngeaffected by having a reduced — by

)
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FIGURE 7: redistribution from the rich to the poor has the only dffgicshrinking the size of the gap, it does
not make it disappear.

factor(1 — 7) — maximum possible wealth compared to that of the originaditde region (4). Thus,
the overall effect of a redistributive policy by the govemmhis to narrow the whole absolute wealth
around its mean, without changing polarization/pulvararafeatures in relative terms.

5.2 Government Purchase of Innovations

If the effort e; required to promote innovation is sufficiently small, in tBeumpeterian model of
Section 2.2 the government could reward the innovator bgtmasging the innovation and at the same
time make the innovation itself immediately publicly aadile to everybody.

Provided that population is normalized tpthe society as a whole will put effogt in the R&D
for new technological projects and at the steady state thidlee a fractionp of successful innovators
who possess technologd;. Suppose that the government, in order to make technalfpgyublicly
available in period, buys the technological know-how from thdraction of innovators at the lowest
incentive compatible pric®,i.e., atp~'e;, and allows the fraction — p of unluckies to freely use it
in their own firms. Assume further that the government chawaethe unluckies the whole cost
of research through a lump-sum tax to be fully transferrethéduckies. Then, the law of motion of
wealth becomes:

Wi = { BWi , + A, — (1 —p) e, with probabilityl — p (30)

BWE L+ A+ ple with probabilityp,

where(1 — p)_1 e, denotes the per capita cost of research charged to the irduankdp e, denotes
the per capita compensation for the productivity gain I&s We will assume:, small enough to

SNote that any price slightly higher thart'e; makes each individual strictly better off undertaking th&Reffort.
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guarantee that the unluckies are better off under this ébpcechase of the new technology than under
laissez faire

Observe that, at least for the case: 1/2, which seems sufficiently realistic, system (30) can be
reduced to system (7) — or (21) — through formula (20). Tleegfonce again, Proposition 1 applies
stating that polarization/pulverization is completelytaetenined by conditiony > 25 and a result
similar to Proposition 2 holds: government financing pevanovations does not affect polarization/
pulverization.

The delicate part, as usual, is enforceability of such acgolnobody would vote a government
who leaves everybody worse off under this program. The iddad expected indirect utility gain is

R

= ppA; — ey,

and thus, the effort condition turns out to be the sam@iasAssumption 1:
eo < ppAp. (31)

Note that, by assuming < 1/2, necessarilyp < 1 — p, and thus (31) implies, < (1 — p) Ay,
which guarantees that the infimum of the support of the matgirobabilities of process (30), which

at timet is N
i - (ﬁ/V)t t €0
Bbo—i_( ’}/_ﬁ >7+1<A0_1_p)7

is strictly positive for allt. This means that, like in the previous section, the poorsginent of the
population improves its standards of living at the samedsteatey — 1 as the richest.

5.3 Direct Wealth Taxation

Let us now consider wealth taxation (not redistributed lesum) for the model described in Section
2.1. If final wealth is taxed at a rate< 7, < 1, the dynamical system (5) becomes:

i (A=7,) (B)7)wi_, with probability1 — p 32
We = (1—7,) (B/y)wi_;+ (1 —7,) with probabilityp (32)

which, through the same argument used before, immediatglies the following result, as can be
easily established by letting = (1 — 7,) (3/7), 21 = 0andz; = 1 — 7, so that (32) is as in (19)
and thus similar to (21).

Proposition 3 Suppose Assumption 1 holds @net 7, < 1—(p,0A0)_1 eo. Then, ify > (1 —7,) 20,
polarization/pulverization emerges.

In this case, government intervention proves effective {fee worse) in modifying polariza-
tion/pulverization as it is capable of affecting the comnstope of the maps of (5) — and so also
of (7) or (21) — rather than the additive constants. Theegfarhigh enough wealth tax rate can gen-
erate a polarized wealth distribution evenyik 2, that is, even if growth and altruism are such that
that the private sector let alone does not generate pdiamzan other words, somewhat paradoxi-
cally, in this model the middle class may disappear and tbe@ny becomes polarized/pulverized
as a result of an active redistributive policy. Here, toaselthe pure effect of taxation, we have not
assumed any transfer from the government; recall, howéwen Section 5.1, that any lump sum
transfer would not have any effect on wealth polarization.

1%This seems to be reasonable since utility is linear and vehtatkien from the unluckies goes to the luckies, leaving
the expected utility gain unchanged.
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5.4 Random Taxation

We here show that a redistribution scheme based on rand@tidaxnay reduce and, in some cases,
even eliminate polarizatiotl. The idea is to increase the uncertainty in the model so tieatwio-
maps IFS (28) is being replaced by a three-maps IFS in whzinthge set of the second map might
fill the hole left by the other two images set in case of pokran.

In the framework developed in Section 2.1, let us assumethieagains from success are taxed
at some raté < 7 < 1 with probability1 — ¢, with 0 < ¢ < 1. At each period, the successful
individuals face a tax lottery such that they have to pay with probability1 — ¢ and0 with proba-
bility ¢. Probabilityq is constant through time and is independent of the prolbilisucces®. The
government controls parametegrandr. The total amount of proceeds are redistributed lump-sum to
the unluckies.

If all individuals exert effort, in order to learn technologyl,, the steady state proportion of rich
families in the economy will still be. A fraction ¢ of this proportion will be tax exempt, while the
other fractionl — ¢ will be taxed at rate-. Hence, the government in the long run will be able to
collect tax revenues equals to

p (1 - Q) TAtv
which — assuming a balanced government budget every pereguals the aggregate lump sum
transfer received at the end of perioldy the whole poor.
The dynamics of individual wealth becomes:

PI=9) 4, with probabilityl — p

AW, + =
Wi+ (1—71)A;  with probabilityp (1 — q)
BWE L+ Ay with probabilitypg,

Wi =

where, in the first linep (1 — p)_l (1 — q) TA, represents the transfer received by a single unlucky
family. Leta = 3/~ and consider the productivity-adjusted dynamics:

4 . 1—
‘ fi(wi_y) = owi_; + b — pq)T with probability1 — p
W= fo(wiy) =owi ,+(1—7)  withprobabilityp (1 — q) (33)
f3 (wifl) =aw! ;+1 with probability pg.

System (33) contains three (affine) contractive maps itledtby parameters, p, ¢ andr, where the

last two are decision variables for the government. We wantvestigate for what values of these

parameters 1) incentive compatibility hold,., all individuals exert effort,, 2) the three maps are

ordered so thaf; < f, < f3, and 3) whether values of the parameters exist so that thgeiset off;

fills the (possible) gap left by the image setsfpfand f;. The last point would mean the possibility

of eliminating possible polarization through governmeistribution under this random scheme.
With no loss of generality for the rest of this section we agsume

1 <a<—.

3~ 2
The right inequality implies that the two maps in (21) exhfmlarization (their images do not over-
lap), while the left inequality allows for the introductiaf a third affine map with the same slope
between the two given maps, so that the hole left by the tweepiging image sets may be “filled”.
From figure 4(a), it is easily understood that maps with slope 1/3 have images sets which cannot

"We owe the idea of studying the effects of a random tax on fzatton/pulverization to Salvador Ortigueira.
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fill the whole interval[0, 1]. Clearly, for maps withh < 1/3, arguments similar to the one carried
out in this section can be implemented for random taxatitveses that use different tax rates. For
example, ifa < 1/n, n — 1 tax rates, each with positive probability, are necessary.

In order to let all individuals keep putting effart even under taxation, an upper bound on the tax
rater similar to that in Assumption 3 is needed. By replacing theate tax rate with the expected
rate tax(1 — ¢) 7 we are easily led to the following inequality:

T<1Lp<1— 60), (34)

wherep = (1 — 5)1_6 (3%. Moreover, in order to havé < f>

I—p

T <
1 —pq

must hold; whilef, < f3 follows from0 < 7 < 1. Hence, the following assumption is what we need.

Assumption 4 Assumption 1 holds and

1— 1—
O<T<min{—p(1— 60), p}’
1—q ppAg 1 —pq

wherep = (1 — )" 7 7.

To analyze the possibility of eliminating polarizationt les normalize the three maps IFS (33)
to the intervall0, 1] along the same argument as in Section 3.3. We shall applyular(20) with
a=08/y,z1=p(1—p)" (1 -q)7Tandz = 1to get the lower and higher maps as in (21), while the
constant intercept of the map in the middle will be obtaingdelting z; = (1 — 7) in (20). Hence,
we get the normalized system

g1 (wi_l) = aw!_, with probabilityl — p
w; =< ga(wi_y) =aw_,+(1—n)(1—«) withprobabilityp (1 — ¢) (35)
g3 (wi_,) = aw}_; + (1 — ) with probabilitypq,
where
_ (1-pr
T =g

Note that, under Assumptioné,< n < 1.
The overlapping condition for the three image sets is agtborward computation that leads to

1-2a<(l-—a)n<a,
which, in terms ofr, boils down to

(1-20)(1—p) e a(l—p)
(I-p(l-a)+(1-20)p(l-¢q¢) =~ ~ (1-p(1-a)tap(l—q)

Note that condition (36) is nonempty far3 < « < 1/2, and coincides with a single value for
whena = 1/3, that is when inequalities in (36) become equalities andetieeonly one mags, in
(35) whose image set can fill the hole left by the other two.

The left hand side of condition (36) is the most important ur analysis: it requires to be
sufficiently large in order to eliminate polarization. Hoxee, in view of Assumption 4, we observe

(36)
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thatT must be not too large to let the incentive compatibility (Bé)always satisfied. If this constraint
is too tight, duee.qg, to a high value of the ratiey/ (ppAo), the left hand side in (36) might not hold,
thus leaving the government with no room for applying retihstive policies against polarizatidfi.
Specifically, polarization is neglectedrfis chosen to be equal to the left hand side of (36) and

A~ T (d-a)+ (1 —20)p(1—q)

Note that we did not discuss any restrictions for the chofqgacametey; by the government so
far. Since by Assumption &,/ (ppAo) < 1, there always exist values for paramejet 1, possibly
close tol, such that (37) is satisfied. In other words, there is alwagsr for the government to
eliminate polarization through a random taxation and Iwsupt redistribution scheme in the sense
of making the support of the steady state distribution ofeays(35) to be the whole intervé, 1].
However, values of close tol imply that almost the wholg fraction of the steady state successful
population,i.e., pg out of p, is paying no taxes, while only a negligible fractipril — ¢) of the
successful population is paying taxes. But this amountsthx& the “middle class” artificially
created through the random taxation. Therefore, as the neienclass carries nearly no weight,
polarization remains substantially unaltered in termsa#dlth distribution”, even if such distribution
has full support. That is, once again, a tight incentive catibjlity constraint in Assumption 4 leaves
little room for government intervention and substantiaftguces hopes of eliminating polarization
even through random taxation.

6 Inequality Versus Pulverization

So far we have used the term polarization to genericallyrdssan extreme degree of inequality due
to the disappearance of a middle class in a distribution @ue@ on a Cantor set (as in Definition
1). A more “technical” concept of polarization assumesjdesthe inequality produced by different
wealth levels between groups, also a certain degree of otmatien, or “clustering”, of wealth within
each group: if the distribution of wealth is highly gatherithin groups but very diverse between
groups in a population, then wealth is considered “polafizeetween the groups (see, e.g., [23],
[48] and, for a recent survey, [49]). In other words, the gatien of tensions possibly evolving to
rebellion, revolt, or social unrest is more likely if wealthdistributed among groups which have a
strong self-identity feeling.

However, we have seen in the previous sections that thergfrikequality phenomenon possibly
occurring after one period, the lack of a middle class, indpeeplicated on a smaller scale among
wealth sub-clusters after each iteration of any IFS simdaf21), provided that > 25 [see,e.q,
figure 5]. In Section 4 we somewhat tentatively called “pukation” such dispersion of wealth over
a Cantor set. Clearly, pulverization runs against poléiopasince it may be seen as the result of a
progressive erosion of the wealth concentration aroundwtbemain clusters appeared after the first
period. In the limit, whenever the invariant distributiohveealth is supported over a Cantor set, all
wealth groups are distinct (a Cantor set is disconnectatianh of them bear zero weight (a Cantor
set has a continuum of points over which a unit mass is beirgpgpas we shall see in short).

All these considerations should be enough to discourageatiegnpt for providing meaningful
polarization measures for distributions supported on @aséts by means of any standard index

8Note that the other component of assumption A.4 is alwaysfit since

(1 -20)(1-p) _1l-»
(I-p)(l-a)+(1-20)p(1—-¢q) 1-pg

is always true.
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available in the literature. Nonetheless, in this sectiamaim at shading some light on whether
pulverization may or may not affect, if not — technically agigg — polarization, at least inequality
in the long run. Such goal is achieved by adapting the mostilpopnequality measure, the Gini

coefficient, to our invariant wealth distribution when isigpported on a Cantor set.

Formally, given a finite distribution of weights, . . ., 7, on wealthdd/, ..., W,,, with =;, W, >
0, the Gini coefficient is given by
1 n n
GZ@ZZ%WHWi—Wj% (38)
i=1 j=1

where . denotes the mean wealth across the whole sample. Cleanyg38eant to measure in-
equality by using statistical data available for societdh finite populations. The pursue of some
generalization of (38) to include infinite distributiongpported over fractal sets is well beyond the
scope of this paper. Our goal is more modest: we just aim atkamg whether pulverization affects
inequality in the long run. For this purpose, the computatbthe limit of G in (38) asn — o¢,
to see whether it remains positive or boils down to zero, khba sufficient. Such question is non
trivial, as two opposite effects occur by applying formus8) directly to our IFS in the case of real
(i.e., not adjusted by productivity) wealth dynamics: on one hainel weightsr; decrease after each
step, since, under our assumptions, the same unit populatieing progressively spread over more
and more wealth clusters, and the same does the reciproited ofean]/u; on the other hand, after
each period new wealth groups; are born and the distances between wealth clusters in¢itbase
raising both the number of addends in the sum and the véiies W;|.

Consider the dynamical system (3) discussed in Section 2.1

{ BW,_4 with probability1 — p
W/t pr—

BW;_1 + A, with probabilityp, (39)

where IV, denotes some wealth amount at time) < 3 < 1 is the degree of intergenerational
altruism, A, = 7' A, is the exogenous technology withy > 0, v > 1, and0 < p < 1 represents the
probability of success in the adoption of the technologye Thoice of studying system (39) instead
of system (7) — which is normalized on the inter{@ll] — is made to conform with the mainstream
literature on inequality, where real wealth values avdddlom statistical data are used, instead of
productivity adjusted values.

Theorem 1 cannot be applied directly to the IFS (39), whichdrgounded support for— oo,
however we can refer to the invariant distribution of thejuogate system (7) as the equivalent of the
unique invariant distribution of (39) defined on the positieal line!® The system converges to this
distribution starting from any initial distribution of wkhs. Thus, for convenience, we may assume
that the distribution at timé = 0 concentrates a mass— p on some bequest > 0 inherited from
the past and a magson (b, + Ao); thatis,vg (W) = (1 — p) 0, (W) + pdpyra, (W), where, for any
b € R, §, denotes the Dirac function:

1 fW=b
0 (W) = { 0 otherwise.

We may also write the initial condition for (39) as

Wy — { bo with probability1 — p (40)

by + Ao with probabilityp.

Alternatively, since) < 8 < 1, one may invoke Theorem 7.2 in Lasota [33] to prove existemceuniqueness of the
invariant distribution for IFS (39).
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Having an initial distribution concentrating masses ovéni¢e set of points implies that also the
distribution of wealths at each date- 0 concentrates masses over finite sets of points. This allows
a direct application of formula (38) to the distribution oéalths at each date By construction, it

is easily seen that, for atl > 0, the are2*! values of wealtdV}, ..., W2 each with weightr?,
i=1,...,2"1 Therefore, the Gini coefficient at tintés given by
1 gt+1 gt+1
Gy = 2—Mt Z Zﬁzﬁg }Wtz - Wi, (41)
i=1 j=1
where
2t+1
pe =y mW; (42)
i=1

denotes the mean of the marginal distributigffior all ¢ > 0, and, in view of (40), we may lét/} =
bo, W02 = (b(] + Ao), 7Té =1-—0p andﬂ'g =Dp.
Since, by independence, for alb> 0, weightsr! have the form

m=p(—pTM, 0<h<t+1,  0<p<l,

clearly lim; . w,ﬁwf = 0; in other words, massegs and 1 — p, initially concentrated orb, and
(bo + Ag), are progressively spread over a set of points that evéytt@hverge to a continuum of
points and thus vanish in the limit.

Next result shows that pulverization does not annihilaéejurality.

Proposition 4 The limiting wealth distribution of the model discussedecti®n 2.1 has positive Gini
coefficient for all feasible values of parametét®, v, by and A, such thaty > 23; specifically,

fm G, — =8 (1=D)
ooy = [(L=p)" +p? B

The proof is reported in the Appendix after some preliminargmas.

Proposition 4 states that, under the assumptions of Priodi, a unit weight progressively
spread over (finite) sets of points that exponentially caypwéo a Cantor like set preserves inequality
also in the limit whenever inequality is measured by thetliafithe Gini coefficient for the finite
marginal distributions. Note that such result holds for astant (unit) population; clearly, we can
conjecture that some even stronger result should hold uhdeassumption of population growth, in
which case a similar analysis might be carried out by meassiwfe appropriate polarization index.
We leave such investigation for future research.

>0

7 More General Processes

Itis clear from section 3 that the extreme version of poktian/pulverization envisaged by Definition
1 heavily relies on the assumption of having only two statesture; as a matter of fact, itis crucial in
letting the best outcome under the low realization to be etitan the worst outcome under the high
realization when the growth rate is large enough. The |gtit@nomenon quickly disappears as one
allows for more realizations: the more the number of prolisila realizations, the greater the chances
that the range of the corresponding maps in the IFS will agerln other words, more ‘degrees of
success’ translates into a IFS with a larger number of mapghwin turn, would fill the holes left
on the support of the marginal distributions by the iteraiof only two mapsg, andgs, in figure 4,
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thus yielding a full supportX = [0, 1], for the invariant distribution. In such circumstancesther
“pulverized limits” or “disconnection” can appear, evethé overlap is only across neighboring pairs
of maps (one for each realization) and not across the wodsbast outcome.

Thus, all the main points of the model seem to rely on assumgtihat are extremely special.
Hence, we need to check economic relevance of our argunreatsiore realistic scenario. To test
robustness of our approach consider pleeturbedsystem obtained by adding some ‘noisdb the
usual IFS (21):

Yer1 = 9=, (Ye) = ayy + &, (43)

where{e, },° is a i.i.d. stochastic process such thahas a constarttensitysupported on the com-
pact interval0, 1 — «]. The autoregressive process (43) extends our model to aletatydifferent
setting: from only two states — ‘failure’ or ‘success’ — weft#d to a continuum of states governing
the affine maps of the IFS, all placed between the originalspapy., which maintain their position
on the boundaries of the intervl 1 — o], i.e., g1 (v) = ay + e whene = 0 andgs (y) = ay + ¢ for
e = 1 — a. In order to keep the basic traits of the economic models tesies that highly rewards
success — discussed in the previous sections, we need tm@sdiumodaldensity for the random
variablee,; specifically, a density that concentrates most of the mamsad the two extrema = 0
ande = 1 — o —i.e, on the two ‘boundary’ mapg, andgs.

As an example, we may consider the density defined by

(1 o p> e—a/o +pe[a—(1—a)}/a

Fe) =

(44)

wherep anda are the same as in the previous sections and parametartrols its dispersion around
the two boundaries = 0 ande = 1 — a: f (¢) becomes more concentrated around them for smaller
values of parameter. Figure 8 shows that, far = 1/3 andp = 1/3, if ¢ = 0.01, f (¢) is more
concentrated on the boundaries thandect 0.1.

61 60-
4 401
f f
2 201
0 0.2 0.4 0.6 0 0.2 0.4 0.6
19 g
@ a=1/3,p=1/3andoc =0.1 (b) « =1/3,p=1/3ando = 0.01

FIGURE 8: two examples of (¢) defined as in (44) for different values of

We are now in the position to provide at least some heurigtjaraent supporting our conjecture
that — a softer than that of Definition 1, but still meaningfubtion of — polarization/pulverization is
not only implied by the (extreme) assumption of having omp trealizations, but rather the conse-
guence of a strongly bimodal stylization of luck in a variefyframeworks, regardless of the process
being discrete or continuous.
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The Foias operator analogous to (14) when the marginal piiities of the IFSy,.; = g (v)
are absolutely continuous and when the mapthemselves are governed by a dengity) can be
written as follows (see Appendix B):

My (y) = /O - X [9= )] v [92" ()] a%ge Y(y) f (e) de, (45)

wherev is a density or{0, 1] andg- ! (y) € [0, 1] denotes the preimage ofe [0, 1] throughg. for
eache € [0,1 — o] andy 4 () is the indicator function for the set —its role in (45) istolet () =0
outside the intervalo, 1]. It is easily seen that/, maps densities oft), 1] into densities o0, 1];
specifically, M, v (y) is the density associated to each pajngk [0, 1] after one iteration of the IFS
starting from a density on [0, 1].

By invoking Theorem 1.1 in Diaconis and Freedman [21] (sse &8ection 6.1, p. 64, of the
same paper), it can be shown that the sequence of margirsitiden, = M, (Mé‘lyt,l) = My,
converges weakly to a unique invariant density- such that* = M, v* — starting from any density
1o on [0, 1], provided that ally. are Lipschitz with Lipschitz constants. satisfying the following
“average contraction” condition:

/1a InK.f (e)de <0. (46)
0

In other words, Theorem 1.1 in [21] generalizes Theorem a@nted in Section 3.1 to IFS constituted
by infinitely many maps (see also the references reported)the

SinceK. = a < 1foralle € [0,1 — «], property (46) certainly holds for the IRB,; = ay; + ¢
defined in (43), which thus has a unique invariant densityBy using the change of variable formula
(see Appendix B), (45) becomes

min{y/a,1}
Myv (y) = / v(z) f(y — ax)dr, 47)

max{1—(1-y)/a,0}

which can be approximated by numerical methods.

10+ 64+
0 1 0 1
(@) M§ asin (47) fora = 1/3,p=1/3,0 = 0.01 (b) M% asin (14) fora = 1/3,p=1/3

FIGURE 9: first six iterations of Foias operator starting from théamm density; a) IFS with a continuum of
maps with densityf (¢) defined in (44), b) IFS with only two mapg, g» of the type (21).

Figure 9(a) approximates the first six iterations of Foiaarafori/, as defined in (47) fotv = 1/3
and f (¢) as in (44) withp = 1/3 ando = 0.01 starting from the uniform density. This is achieved
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by numerical integratiofi over a partition of500 subintervals of0, 1]. Recall that Foias operator
converges at a geometric rate, therefore figure 9(a) prevadeliable picture of what the invariant
densityr* might look like. Even if it is a density, it clearly exhibitsgattern very similar to the
distribution in figure 9(b), which is the same as figure 5(fhene the first six iteration of the Foias
operator in the case of the IFS with only two mapg -with probability1 — p andg, with probability

p — is plotted. Not only a lack of the middle class, but also #@ication of the same phenomenon
at smaller scale in each cluster of wealth after each itevadppear. Clearly, in figure 9(a) peaks
are shorter (below0) than those in figure 9(b) (up t64); also, self similarity on smaller scale
tends to blur in figure 9(a), due to the smoothing of the dgnsidround the two ‘boundary’ maps
corresponding to the formexr, and g, after each iteration. At any rate, however, the distrilngio
portrayed in figures 9(a) and 9(b) respectively exhibit vdoge qualitative traits, at least in terms of
— a broader meaning of — polarization/pulverization.

Figure 10 shows the same first six iterations\gf starting from the uniform density as in figure
9(a) but with a density (¢) more dispersed around the boundaries 0 ands = 1 — «, characterized
by o = 0.1 [see figure 8(a)]. It is remarkable that also when ‘successiore evenly distributed, less
weight on intermediate degrees of success still transiatesome degree of wealth polarization due
to a smaller middle class — corresponding to the large halawe middle of the graph — compared to
the poor and the rich. Our conjecture is that a more genetadmof wealth inequality, determined
by a smaller size for the middle class with respect to the padrthe rich, is a direct consequence of
assuming a bimodal distribution of success. This will bettipec of future research.

FIGURE 10: first six iterations of\/; as in (47) starting from the uniform density in case of a IFg\ai
continuum of maps with densitf (¢) as in (44) fora =1/3,p=1/3,0 =0.1.

8 Concluding Remarks

In this paper we have pointed out how wealth polarizatiolvgrization is not to be contrasted with
equal opportunities characterizing economies with a higgrele of social mobility, but instead it
can be exactly the effect of a large amplitude of mobilitelits What really matters for polariza-
tion/pulverization is the reward from being successfuljolhs increasing in the size of the techno-
logical jump. Private investment in the human capital neagsto adopt an exogenous innovation
stream can be one cause; private investment in researcl ainmaproving everybody’s productivity
can be another cause. Despite the differences betweentih@smgines of growth, both induce the
disappearance of the middle class due to the fractal piepest the support of the invariant wealth
distribution, provided that the growth rate of the econoslgigher than a common threshold.

20The Maple code that generates plots like in figure 9(a) anddig@Q is available from the authors upon request.
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We have shown that in this framework polarization and putation cannot be eliminated by fis-
cal measures such as wealth redistribution through taxafithe successful people with tax revenues
lump-sum redistributed to the unsuccessful ones, whildtivéaxation can even create polarization.
Some more sophisticated device is required. A random taxattheme may be able to reintroduce an
artificial middle class, but unlikely gives it enough strémgespecially if the incentive compatibility
constraint is tight.

Hence, there seems to be a general lesson one can learn &alingtt relationship between high
growth rates and inequality emerged by applying the IFS @gr to wealth dynamics in a society
characterized by equal opportunities and fast social nghihe goal of containing inequality may be
better achieved through policies aimed at tackling the glnoate itself — e.g., by means of monetary
policies devised to “cool down” the economy — rather thaonésg on redistributive devices.

In view of recent works on optimal growth theory (segg, [36] and [37]), further investigation
on wealth inequality may be pursued by means of models ctegiized by an infinitely lived repre-
sentative agent, as well as models whose wealth dynamidsecdascribed by non-linear IFS — note
that the second part of our Definition 1 is readily applicablsuch cases.

Also IFS with state-dependent probabilities might be wadhsidering, as they can introduce a
“damping effect” on social mobility — for example throughigtier probability for both the poor and
the rich to remain in the same wealth cluster and a lower fitiyato switch from one class to the
other — which may seem closer to reality. For example, the poght find educational costs unbear-
able or access to credit market precluded, thus indireetlycing their probability of success, while
for the rich an easier access to education and credit markpteves their probability of being rich
also in the future. These observations suggest that modeigalth inequality from the traditional
stream of research, like the ones in [27] or in [1] (see alsowhole literature cited in the intro-
duction), which assume imperfect capital markets, maylyefisour framework with the necessary
modifications.

Appendix

A Gini Coefficient and Cantor-like sets

This appendix is devoted to the proof of Proposition 4 in ®ac6é. Since both wealth®’} and
weightsz; have a recursive formulation generated by dynamic (39,ébnvenient to write formula
(41) in a form more suitable for direct handling.

Lemma 1 For eacht > 0, label the set of wealths so that they are orderétd! < W? < --- <
W2 Then formula (41) can be rewritten as follows:

2t+1 1 2t+1

Z > mal (W= Ww), (48)

Jj=1 i=1+y
wherey; is given by (42).
Proof. If the initial conditionforsystem (39) IS given by (40), imetsum(41) there al(ét+1 1)2!

non-zero addends of the fortWt
ming up all ordered non-zero dlfferenclés Wi, W|th Wi > W/, we get

2t+1 1 2t+1

Z Z 7Tt7Tt W])

2
H j=1 i=1+j
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which is (48)m

It is convenient to label the sum on the RHS of (48)/ky so we can use the shorthand

D
Gt — —t
Kot
The next three lemmas provide a recursive formulation fah llee mearn.; and the sumD, which
allow to compute=, directly in terms of parameters and initial conditions.

Lemma 2 The mean:; has the following recursive formulation:

fer1 = By + pAisr, (49)

thus,

t+1
R, (50)

Proof. The construction of th&¢" marginal distribution, through system (39) implies that each
point TV} with associated weight! at timet is being split into two wealth valued’;/-, = 31/} and
Wtfl = AW} + Ay with weightsmj®, = (1 — p)«i andr}Y, = pr! respectively at time + 1, for
i = 1,...,2"" Therefore, alR!*? terms in the sum defining,,; as in (42) can be grouped into
2t pairs, each of them generated by a single term in the sum dgfinj thus all such pairs can be
written as functions ofV} and~! as follows:

e = By +

2t+2 2t+1 2t+1 2t+1 2t+1
Hi1 = Z 7Tt+1WtZ+1 Z Z 7Tt+1WtZi1 + 7Tt+1WtZJIr]1 Z Wtzilwtzil + Z 7Tt+1WtZJIr]1
ip=1i1y=1 i=1 w=1
2t+1 2t+1 2t+1
= Z (1 —p) mBW] + ZP% BW] + A) = Z [(1 = p) m,BW] + pri (BW] + Apy1)]
i=1 i=1
2t+1 2t+1

=Y mBW +pAia Y m = B+ pAi,
=1 i=1

where in the second and third equalities we have indexed,bigrms of the typer;, Wk, =

(1 — p) m; W} (corresponding to the lower branch of a texfitV’} in ¢) and byi; terms of the type
T WY, = pri (BW) + Aiyq) (corresponding to the upper branch of a terfi#/} in t), while in the
last equalltyzf: 7i = 1 holds, as population is normalizedtoHence, (49) is established, and, as
1o = by + pAg, (50) follows accordinglym

Before giving a recursive formula fdp,, we need the following lemma which states that, under
the assumption that a middle class disappears after ogiateiof (39) as prescribed by Proposition
1, the poorest individual at timewhich is successful at time+ 1 becomes richer than the richest
individual at timet which is not successful at time+ 1. Recall that, under the (ordered) labeling as
in Lemma 1,W}! andI/I/',?t+1 denote the smallest and the largest wealth at tinespectively.

Lemma 3 LetW,'", = SW,! + A,,, denote the wealth of the individual which is the poorestragti
t+1 t+1 . .. .
but becomes successful at time 1 and Wi&l = W2 denote the wealth of the individual which

t42
is the richest at time but becomes unsuccessful at titme 1. Then, ify > 28, W,'%, > Wffl for all
t>0.
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Proof. It is easily seen thall;! = 5, andW2™" = 8tby + (v — 8) " [1 — (3/9)""'] v+ 4.
Hence,

thng _ ﬁtJrlbO + ’)/tJrlA

t+1 t+1
1 _ t+2
> 9y + G- etgy = g ot + =g | i

where the inequality follows fromy > 25.m
An immediate consequence of Lemma 3 is the following Corglla

Corollary 1 Under the assumption > 23, if W} > W/, thenW/?, = W/ + A, andW;t, = W}
are such thatV/’, > Wx,.
Lemma 4 Under the assumptiof > 25 the sum

2t+1 1 2t+1

Z Z 7rt7rt — Wi ) (51)

j=1 i=1+4j

in (48) has the following recursive formulation:

Dyi1 = [(1 = p)* +*] BD +p (1 — p) Ay, (52)
thus, "
1— (s +

Dy = %f“p (1—p) Ao, (53)

wheres = [(1 —p)® + p?] 5.

Proof. We follow an argument parallel to that in the proof of Lemmad2r j = 1,. 20
andi = 1+ j,...,2""!, each addendr] (W; — W7) in (51) at timet contains two wealth values,
Wy anthJ , such thatV; > th , with associated weights andwt respectively. The construction of
the t*" marginal dlstrlbutlon/t through system (39) implies that both such terms are beiligirsio
two wealth values at time—+ 1, for a total of four terms, that we can label as follows:

Wtjfl = 5W{ with welght7rHl (1-p) f,
Wtj,frjl = W/ + A with Welghtﬂt“ pﬁt’
WZh = BW} with Welght7rt+1 = (1—p)m,

WY, = Wi+ Ay with weightm,Y, = pri.

Hence, each addentr] (W; — W) in D, at time¢ corresponds to the followin{®? — 1)2 = 6
positive addends i, ; at timet + 1:
Wtﬂtﬁ (W’ Wtj)

ir i
7Tt+17Tt+1 (Wt+1 Wik -P

(1—p)*

(1-p)p ( )AtJrl A

(1— p)pﬂ-tﬂ-t[ (VVtZ VVt])+At+1}
( )

(

)
7Tt+17Tt+1 Wtjﬁl Wt]fl)
7Tt+17Tt+1 W;%—Wtjh)
)
)
)

|

i (54)
7Tt+17Tt+1 (Wtjfrjl - thh

(

(

1—p pﬂ'tﬂ't [ (Wj — W{) + Ay
p ) A

7Tt+17Tt+1 W;ﬂ - Wtz-iL—l
Jﬁ (Wz W])

294 .7U
7Tt+177t+1 Wil — Wih
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each of them defined as functionsigf, W/, = andr/. Note that all such terms are positive provided
that~ > 23, which, by Corollary 1, guarantees that also the fourth tegmthe LHS of the equation)
IS positive.

Therefore, all(2tt2 — 1) 2! terms in the sum defining;,, as in (51) can be gathered into

(201 — 1) 2! groups of six addends, with each group generated by a siegtein the sum defining
D, as follows:

2t+2 1 2t+2

_ Z
Dy = E E 7Tt+17Tt+1 Wt+1 Wt+1)

Jj=1 =147
2t+1 1 2t+1 2t+1 1 2t+1
_ i JL Jju JL
= E E 7Tt+17rt+1 Wt+1 Wt+1 E E 7Tt+17rt+1 Wt+1 Wt+1)
Jjo=1 ip=1+jL Jjr=1 ju=l+jL
gt+l_1  gt+l ot+l_1 gt+1
iy JjL Jju ir,
+ E E 7Tt+17Tt+1 VVt+1 _VVt+1) + E E 7Tt+177t+1 Wt+1 —VVt+1)
Jjr=1 iy=1+j1 =1 ju=l+4ig
2t+1 1 2t+1 2t+1 1 2t+1
iy Z'L iy Jju
+ E § 7Tt+17Tt+1 Wt+1 - Wt+1 E E 7Tt+177t+1 Wt+1 - Wt+1)
i,=1 iy=1+ig, Jju=1 iy=1+ju

2t+1 1 2t+1

= [(1- Z Z 7Tt7Tt WJ)

Jj=1 =14y
2t+1 2t+171 2t+l
2 i ]
+p(1—p) A Z(ﬂf) + 2 Z Z Wtﬂi]
k=1 j=1 i=14j

= [(1—p)* + %] BD, +p (1 — p) App1,

where in the second to the sixth lines we have substituteastes in (54) and simplified terms, while
the last line holds since’s add up ta and

2

2t+ 2t+1 1 2t+1 2t+1
k _ k _
g 7Tt 212 E g 7Tt7Tt = g m | =1
k=1

k=1 j=1 i=14j
Hence, (52) is established, and, sid&e= p (1 — p) Ay, (53) follows accordinglym
Proof of Proposition 4. By Lemmas 1 — 4,
1—(s/y)"
1=/ Y Hp (1= p) Ag

thm G = tlim & - tlim s _18 t+1 - (7 I ﬁ) (12 — p)z )
" ﬁtbﬁ%vtﬂm el

wheres = [(1 — p)2 + p2] G, and the proof is completem

B The Foias Operator for Densities

We first construct formula (45) for the Foias operator whenBSs is of the kind (43). (v) = ay+e,

that is, it has a continuum of maps each chosen by means ofsitylé¢ric) on the interval interval
0,1 —ql.
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If X andY” denote two random variables with densitieand M, on [0, 1] respectively, then:
-«
Pr(Y € B) = / Pr[X € g2 (B)] f () de.
0

For B = [0, y] this is equivalent to

/oy Mgy (u) du = /01_0‘ Xy (92" ()] /gél(y) v(u) f(¢) dude,

9= (0)

which, sinceMyv (y) = (8/9y) [ Mav (u) du, leads to

1—a 9= (v)
M) =5 [ xonlo @] [ v @ dude

()
-« L 0 ggl(y)
~ [ xenlit o] |5 [ vwdu| £
0 Y Jgz"0)

which is (45).

Noting that(9/9y) g-' (y) = 1/a for all e € [0,1 — «] and by using the change of variable
r=g-' (y) = (y — ¢) /o, which is a strictly decreasing transformation of variahlé5) can easily
be transformed into (47):

Muv (y) = l/O h Xy 92" W) v 92" ()] f (e) de

o

1 [y
— [ @) fy-ax)ads
@ J1-(1-y)/a

y/a

- / xou () v (2) f (y — ax) de

—(1-y)/e

min{y/a,1}
:/ v(z) f(y— az)dr,

max{1—(1-y)/a,0}

where in the last equality we translated the bounds giverheyrtdicatory 1 (-) into the limits of
integration.
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