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AMG preconditioning for nonlinear degenerate parabolic
equations on nonuniform grids with application to monument

degradation

M. Donatelli, M. Semplice∗, S. Serra-Capizzano

Physics and Mathematics Department – University of Insubria
Via Valleggio, 11 – Como (Italy)

Abstract

Motivated by the modelling of marble degradation by chemical pollutants, we consider the ap-
proximation by implicit finite differences schemes of nonlinear degenerate parabolic equations
in which sharp boundary layers naturally occur. The latter suggests to consider various types
of nonuniform griddings, when defining suitable approximation schemes. The resulting large
nonlinear systems are treated by Newton methods, while the locally Toeplitz linear systems aris-
ing from the Jacobian have to be solved efficiently. To this end, we propose the use of AMG
preconditioners and we study the related convergence issues, together with the associated spec-
tral features. We present some numerical experiments supporting our theoretical results on the
spectrum of the coefficient matrix of the linear systems, alongside others regarding the numerical
simulations in the case of the specific model.

Keywords: Nonlinear and degenerate parabolic equations, Finite differences, Newton-Krylov,
Multigrid preconditioning, Flow in porous media, Marble sulfation
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1. Introduction

The aim of this paper is to extend previous results by the authors on nonlinear implicit approx-
imations of degenerate parabolic equations presented in [5]. In this paper we focus on nonuni-
form cartesian grids and on applications to the mathematical model for monument degradation
described in [1] and previously approximated on uniform grids by one of the authors in [13].

We first consider a single equation of the form

∂u
∂t
= ∇ · (D(u)∇u) , (1.1)

in both one and two-dimensional domains. We suppose thatD(u) is a non-negative function and
note that the equation is degenerate wheneverD(u) vanishes. For the convergence analysis of our
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numerical methods, we will require thatD(u) is at least differentiable andD′(u) is Lipschitz con-
tinuous, while the existence of solutions is guaranteed under the milder assumption of continuity
(see [19]). For the eigenvalues clustering results we require thatD(u) is also a nondecreasing
function.

We consider a time discretization based on the so-calledθ-method:

U(tn, x) − θ∆tLD(U(tn, x)) = U(tn−1, x) + (1− θ)∆tLD(U(tn−1, x)), (1.2)

where∆t = tn− tn−1, and−LD(·) denotes the elliptic operatoru 7→ −∇ · (D(u)∇u). More precisely
we will employ the Crank-Nicholson method (θ = 1

2) and the Implicit Euler method (θ = 1).
However, the analysis for a generalθ ∈ (0, 1] is beneficial in view of the employment of the
L0-stable high order methods of [4].

The computation of the numerical solutionU(tn, x) with (1.2) involves, at each timestep, the
solution of a nonlinear equation whose form is determined bythe operatorLD and thus by the
nonlinear functionD(u). This, in turn, requires the use of a fixed point scheme and the choice
of the Newton-like methods implies the solution, at every step of the nonlinear solver, of a large
linear system whose coefficient matrix islocally (multilevel) Toeplitzin the sense of [17]. This
matrix will be studied by itssymbol, which describes (asymptotically) its spectrum (see [17])
and provides a useful guide for designing efficient preconditioners for linear Krylov solvers.

In [5], the caseθ = 1 was considered, alongside finite differences discretization on uniform
grids. The nonlinear step was dealt with the Newton method, which was proved to be convergent
if the time discretization step is proportional to the spacediscretization step. The Jacobian linear
system was solved by a Krylov method preconditioned with geometric multigrid, that was proved
to be optimal (in the sense that the preconditioned matrix has a strong eigenvalues cluster). Here,
we extend the previous analysis to theθ-method (1.2) and to nonuniform spatial grids under
the assumption that the grid points can be seen as the image ofa uniform grid via an invertible
function.

In order to fix ideas, consider a one-dimensional domainΩ = [a, b]. Mesh points are chosen
asxk = a+ (b− a)g(k/N) whereN andg : [0, 1]→ [0, 1] control (independently) the number of
mesh points and, respectively, their distribution in the domain. For problems with a still boundary
or internal layer in a position known a-priori, one may get optimal meshes (in the sense of error
reduction) by choosing a suitable positivemonitoring function Mandequidistributingit in the
domain by selecting a mesh functiong that satisfies (at least approximately) the relation

∫ g(ξ)

0
M(s)ds= ξ

∫ 1

0
M(s)ds.

A typical example is that of a differential problem whose exact solution, due to a singular per-
turbation with parameterε → 0, presents an exponential boundary layer close to left end of the
domain whereu(x) ∼ e−x/ε: one can then consider a monitoring function of the form

M(s) = max
{
1, 1

ε
e−s/ε

}

and obtain a Bakhvalov-type mesh on which the convergence properties of the numerical ap-
proximation are uniform in the perturbation parameter. Fora general introduction, examples and
other types of meshes, see e.g. [11] and references therein.

However, the PDE system introduced in [1] for marble sulfation has solutions that feature a
sharp internal layer that forms at the interface between themarble and the polluted air (boundary
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of the computational domain) and that moves towards the inside of the monument as degradation
progresses. This layer separates the outer gypsum crust from the inner pristine marble.

Hence optimal choices for a mesh to be kept fixed in time are notavailable for this problem,
but we are still interested in non-uniform meshes for the twofollowing reasons. First, from a
theoretical point of view, in this paper we do not focus on theappropriateness of the choice of the
mesh in the sense of error reduction, but rather on the analysis of the nonlinear and linear systems
arising from a given choice of mesh and on developing a robustpreconditioning strategy in the
case of nonuniform meshes. To this end, the choice of the meshfunctiong in some numerical
tests will not be guided by error reduction, but by the need totest the theoretical results on a wide
range of cases. Secondly, from a modelling point of view, restoration works must take place on
a monument before the internal layer has moved too deeply into the domain and thus practical
computations can be performed on a fixed nonuniform grid thatis finer close to the boundary
where the internal layer will form.

Finally, we point out that, obviously, the discretization and resolution technique studied here
can be plugged into a more general method that employs finite element discretizations and/or
adaptive mesh refinement. Regarding the discretization with finite elements, there exists a kind
of information depending only on the continuous operator and which is inherited virtually un-
changed in both finite differences and finite elements, provided that the grids are quasi-uniform
in finite differences and the angles are not degenerating in finite elements. Such information
consists in the locally Toeplitz structure used and in the related spectral features: conditioning,
subspaces related to small eigenvalues, global spectral behaviour, etc. (see [17] and [2]).

The paper is organized as follows. In Section 2 we describe the space discretization of (1.1)
by nonuniform finite difference grids. For the time discretization we use theθ-method (1.2)
which leads to a system of coupled nonlinear equations that need to be solved at each discrete
timestep: this is achieved using the Newton method, as detailed in Section 3. In Section 4 we
propose an algebraic multigrid preconditioner for the Jacobian matrix appearing in the Newton
method and provide an analysis of the spectrum of the preconditioned matrix that proves the
effectiveness of our proposal. In Section 5 we discretize a model for the chemical aggression
on marble stones that consists in a system of two partial differential equations and extend the
previous results to this setting. Finally, in Section 6, we perform some numerical tests.

2. Finite difference space discretization of the operatorLD(·)

2.1. One space dimension

Letg : [0, 1]→ [a, b] a nondecreasing differentiable function such thatg(0) = a andg(1) = b.
Consider the grid composed by the pointsxk = g(k/(N + 1)), for k = 0, . . . ,N + 1. We denote by
un

k the approximate solution at timetn and locationxk, wherek = 0, . . . ,N+1. When considering
Dirichlet boundary conditions, the valuesu0 anduN+1 are known and can be eliminated by the
equations. Let thusun be the vector of sizeN containing the collection of the valuesun

k. for
k = 1, . . . ,N. When no potential confusion arises, we sometimes drop in both notations the
superscript indicating the time level. Boundary conditions of Neumann or Robin type can be
treated in similar ways.

We denote bytridiagN
k [βk, αk, γk] a square tridiagonal matrix of orderN where thekth row

has entriesβk on the lower diagonal,αk on the main diagonal, andγk on the upper diagonal. We
also denote withdiagN

k (αk) the squareN × N diagonal matrix withαk on thekth row.
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We choose a standard 3-points second order approximation ofthe differential operator (D(u)ux)x.
Let x j+1/2 = (x j + x j+1)/2 andh j = x j − x j−1. Denoting by the subscriptξ the numerical approx-
imation of a quantity at the pointxξ, we have

∂

∂x

(
D(u) ∂u

∂x

)∣∣∣∣∣
x j

=
D j+1/2

uj+1−uj

hj+1
− D j−1/2

uj−uj−1

hj

(h j + h j+1)/2
+ o(1), (2.1)

where we define

D j+1/2 =
D(u j+1) + D(u j)

2
, j = 0, . . . ,N,

and theo(1) error term is of orderh2 under the assumption that the compositionD(u(·)) is at
least continuously differentiable, with Lipschitz continuous first derivative. Note that, at least
for D(u) = um, a solutionu is at least Hölder continuous [19, Chap. 2]. Moreover, defining
the positivity setP(t) = {x ∈ Ω : u(t, x) > 0}, one shows that for reasonable initial data,P(t)
is expanding with finite speed and that the solutionu is regular in the interior ofP(t) and has a
singularity on its boundary [19, Chap. 14]. Thus the precision of the finite difference formula is
degraded only on∂P(t), a set of measure zero inΩ, but of course the method is expected to be
of first order accuracy in the case of a degenerate parabolic equation, as shown in the numerical
tests.

Putting together all the contributions for different grid points, the action of the elliptic differ-
ential operator onu is described by the tridiagonal matrix

−L(1)
D(u) = diagN

k

[
2

hk + hk+1

]
tridiagN

k

[
−

Dk−1/2

hk
,
Dk−1/2

hk
+

Dk+1/2

hk+1
,−

Dk+1/2

hk+1

]
. (2.2)

Remark2.1. L(1)
D(u) is similar to a symmetric real tridiagonal matrix. IfD(u(·)) is a nonnegative

function, then the matrix−L(1)
D(u) has always nonnegative eigenvalues, since it is weakly diag-

onally dominant by row. Furthermore, in the previous sentence the wordnonnegativecan be
replaced bypositiveif the equation is not degenerate.

2.2. Two space dimensions
The discretization considered above can be extended to the two-dimensional case as follows.

We consider the domainΩ = [a1, b1] × [a2, b2] ⊂ R2 and the grid pointsxi, j = (g[1](i/(N +
1)), g[2]( j/(N + 1))), whereg[i] : [0, 1] → [ai, bi ], i = 1, 2 are nondecreasing differentiable
functions. The grid is thus composed of the (N + 2)2 pointsxi, j for i and j ranging from 0 to
N + 1. We denote withui, j the numerical value approximatingu(xi, j). Of course, as in the one-
dimensional case the use of Dirichlet boundary conditions reduces the gridding to theN2 internal
points; also in this case other boundary conditions can be considered in a similar way. With this
choice, the grid spacing ish[1]

k = xk − xk−1 andh[2]
k = yk − yk−1.

The finite difference discretization of the differential operator (2.1) can be generalised as
follows:

∂

∂x

(
D(u)

∂u
∂x

)∣∣∣∣∣∣
x=xi, j

+
∂

∂y

(
D(u)

∂u
∂y

)∣∣∣∣∣∣
x=xi, j

=

Di+1/2, j
ui+1, j−ui, j

h[1]
i+1

− Di−1/2, j
ui, j−ui−1, j

h[1]
i

(h[1]
i + h[1]

i+1)/2
+

Di, j+1/2
ui, j+1−ui, j

h[2]
j+1

− Di, j−1/2
ui, j−ui, j−1

h[2]
j

(h[2]
j + h[2]

j+1)/2
+ o(1) (2.3)
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where we denoted

Di+1/2, j =
D(ui+1, j) + D(ui, j)

2
and Di, j+1/2 =

D(ui, j+1) + D(ui, j)

2
,

and where the termo(1) isO(h2) if D(u(·)) is smooth enough.
Collecting the unknownsui, j in a vectoru using the lexicographical ordering, we denote by

L(2)
D(u) the matrix representing the differential operator. This matrix has the same sparsity pattern

as the tensor productL(1)
D ⊗ IN + IN ⊗ L(1)

D , but the entries are different. More precisely,L(2)
D(u) =

A+ B whereA is block-diagonal with 3-diagonal blocks andB is block 3-diagonal with diagonal
blocks. In particular, the generic (j, j) block of A is the matrixL(1)

D(u·, j )
, which is given by formula

(2.2) applied with theD(u) evaluated on the unknownsu·, j on the horizontal segmenty = y j .
Similarly the j-th block row ofB corresponds to the matrixL(1)

D(uj,·)
. When needed, appropriate

finite rank corrections for boundary conditions are also included in the first/last blocks ofA and
first/last rows of the blocks inB. Notice that the pattern of the matrixL(2)

D(u) reminds a tensor
structure that unfortunately cannot be formalised exactlyif the functionD(u) is not separable,
due to the varying coefficients in the underlying PDE (for the spectral analysis of such structures
refer to [14] and references therein).

3. Time discretization and the Newton’s method

Following (1.2), at each timestep, we need to solve the nonlinear vector equation

un = un−1 + θ∆tL(d)
D(un)u

n + (1− θ)∆tL(d)
D(un−1)

un−1 (3.1)

whered = 1, 2 is the number of space dimensions. Thus we set up Newton iterations for the
vector function

F(u) = u − θ∆tL(d)
D(u)u − (1− θ)∆tL(d)

D(un−1)
un−1 − un−1. (3.2)

The Jacobian ofF(u) can be written as

F′(u) = X(d)
N (u) + Y(d)

N (u), (3.3a)

where, denoting byINd the identity matrix of orderNd, we have

X(d)
N (u) = INd − θ∆tL(d)

D(u) (3.3b)

andY(d)
N (u) contains the terms arising from differentiating the matrixL(d)

D(u) with respect tou and is

defined below. We note that according to Remark 2.1, the matrix X(1)
N (u) is similar to a symmetric

positive definite matrix having minimum eigenvalueλmin(X(1)
N (u)) ≥ 1.

In the one-dimensional case

Y(1)
N (u) = θ∆t diagN

k

[
1

hk+hk+1

]
T(1)

N (u)diagN
k [D′k] (3.3c)

T(1)
N (u) = tridiagN

k

[
− uk−uk−1

hk
,

uk+1−uk
hk+1

− uk−uk−1
hk

,
uk+1−uk

hk+1

]
. (3.3d)

HereD′k denotesD′(uk). In the two-dimensional case,Y(2)
N (u) is obtained from the one-dimensional

analogues in the same way asL(2)
D is obtained from theL(1)

D ’s. In particular it has the same nonzero
pattern ofY(1)

N ⊗ IN + IN ⊗ Y(1)
N .
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In the case of a uniform spatial grid with discretization step equal toh, in [5] the convergence
of Newton’s method was proved assuming that the initial guess is the solution at the previous
time step and∆t ≤ Ch, for a positive constantC independent ofh. Accordingly, we fix

∆t = h =
1

N + 1
. (3.4)

The numerical experiments in Section 6 show that the Newton’s method usually converges fast
enough with such choice of∆t. Note that this is appropriate for the theoretical analysisin the
following section, since the domain ofg is [0, 1] and that one would consider the real domain
size in a practical situation.

At each Newton iteration, we need to solve a linear system whose coefficient matrix is repre-
sented by the JacobianF′(u). In principle, the Jacobian is recomputed at each Newton iteration,
so we are interested in efficient iterative methods for the linear system. To this end, we first
analyse the spectral properties of the matrixF′(u). This will lead us to consider preconditioned
Krylov methods, with an algebraic multigrid preconditioner [12].

4. Asymptotic spectral analysis of the preconditioned Jacobian sequence

Since we are interested in nonuniform grids, we follow the analysis of [15]. The difficulty
arising from the non-uniformity can be overcome by reinterpreting the nonuniform grid Jacobian
matrices as an approximation of uniform grid Jacobian matrices coming from a different contin-
uous problem which still has the form (1.1), but a new weight function and a different domain.
In this way we can successfully apply the preconditioning technique just proposed in the case of
an equispaced grid-sequence [5].

4.1. Preliminary definitions

The following classification of sequence of gridsG = {GN} will be useful to analyse the
spectral distribution and the preconditioning strategy ofthe Jacobian matrix sequence.

Definition 4.1 ([15]). A grid sequenceG = {GN} on [a, b], GN = {x0 = a < x1 < · · · <
xN < xN+1 = b}, is said to beweakly equivalentto the grid sequenceW = {WN} on [c, d],
W = {y0 = c < y1 < · · · < yN < yN+1 = d}, if there exists a functiong so thatg(y j) = x j . The
functiong is required to be a homeomorphism from [a, b] to [c, d], to be piecewiseC1 with g′

having at most a finite number of discontinuity points and a finite number of zeros. Moreover, if
bothg and its inverseg−1 are Lipschitz continuous, thenG is said to be equivalent toW.

Definition 4.2 ([15]). A grid sequenceG is said to be(weakly) regularif it is (weakly) equivalent
to the basic equispaced grid sequenceU = {UN} on [0, 1], with g : [0, 1] → [a, b] being the
associated homeomorphism according to Definition 4.1.

For example, the grid sequence associated to the Gauss-Lobatto points is weakly regular: in
fact, they correspond to the choiceg(x) = cos(πx), whose derivativeg′(x) is smooth and with a
unique zero in [0, 1]. The Bakhvalov grid generated by the monitoring functionmentioned in the
Introduction is regular for any finiteε, sinceg′(0) ∼ ε (see (5.2)).

In order to design fast iterative solvers, we analyse the asymptotical behaviour of the spec-
trum of the Jacobian matrix whenN goes to infinity. In the following, we study asymptotical
quantities associated to matrix sequences whose definitionis reported below.
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Definition 4.3. Let {AN}N∈V denote a sequence of matrices where the set of nonnegative indices
V is of infinite cardinality and where the matrixAN is a square matrix of orderN with complex
entries.

A sequence of matrices{AN} naturally arises considering the same discretization of the same
differential or integral equation for a sequence of grids with anincreasing number of points or
elements.

Definition 4.4. Let C0(C) be the set of continuous functions with bounded support defined over
the complex field,d be a positive integer, andψ be a complex-valued measurable function defined
on a setG ⊂ Rd of finite and positive Lebesgue measureµ(G). A matrix sequence{AN} is said
to bedistributed(in the sense of the eigenvalues) as the pair(ψ,G), or to have the eigenvalue
distribution functionψ ({AN} ∼λ (ψ,G)), if, ∀F ∈ C0(C), the following limit relation holds

lim
N→∞

1
N

N∑

j=1

F
(
λ j(AN)

)
=

1
µ(G)

∫

G
F(ψ) dµ, t = (t1, . . . , td), (4.1)

whereλ j(AN) ranges over the spectrum ofAN for j = 1, . . . ,N.

Example 4.5. The matrix AN = tridiagN
k [−1, 2−1] is related to the second order finite difference

discretization of the second derivative in one spatial dimension. It is well-known thatλ j(AN) =
2− 2 cos

(
jπ

n+1

)
, for j = 1, . . . , n. Hence{AN} ∼λ (2− 2 cos(x), (0, π)) according to Definition 4.4.

Along with the distribution in the sense of eigenvalues, forthe practical convergence analysis
of iterative solvers we are also interested in a further asymptotic property calledclustering.

Definition 4.6. A matrix sequence{AN} is clustered at S⊂ C (in the eigenvalue sense), if for
anyε > 0 the number of the eigenvalues ofAN outside the disks

D(S, ε) =
⋃

s∈S
D(s, ε), D(s, ε) := {z : |z− s| < ε}

is o(N). In other words

qε(N, s) := #{λ j(AN) : λ j < D(S, ε)} = o(N), N→ ∞.

If every AN has only real eigenvalues (at least for allN large enough), then anys ∈ S is real
and the related diskD(s, ε) reduces to the interval (s− ε, s+ ε). The cluster is strong if the term
o(N) is replaced byO(1) so that the number of outlying eigenvalues is bounded by aconstant not
depending on the sizeN of the matrix.

We say that a preconditionerPN is optimal forAN if the sequence{P−1
N AN} is clustered at one

(or to any constant with positive real part) in the strong sense. Of course, the optimality is also
reached if the clustering is at a setS, with S contained in a complex box [α, β] × i[−γ, γ] with
α, β, γ independent ofN and 0< α ≤ β: as already mentioned a very interesting case occurs
whenS contains just a point or a finite number of points.

The (weak or general) clustering is also of interest as a heuristic indication that the precon-
ditioner is effective.

Remark4.7. {AN} ∼λ (ψ,G) with ψ ≡ sa constant function is equivalent to{AN} being clustered
at s ∈ C.
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The previous Definitions 4.4 and 4.6 can be stated also for thesingular values just replacing
λ with σ andeigenvaluewith singular value.

Definition 4.8. A sequence of matrices{AN} is sparsely vanishingif and only if ∀M > 0, ∃NM

s.t.∀N ≥ NM it holds

#{i : σi(AN) < 1/M} ≤ r(M)N, lim
M→∞

r(M) = 0.

Remark4.9. If {AN} ∼σ φ with measurableφ, then{AN} is sparsely vanishing if and only ifφ is
sparsely vanishing, that is limM→∞ µ{x : |φ(x)| < 1/M} = 0 with µ{·} denoting the usual Lebesgue
measure.

Remark4.10. The notion of sparsely vanishing matrix sequence is important in the context of
preconditioning. Let us assume that{PN} is used as a preconditioning matrix sequence for{AN}:
if {AN − PN} is clustered at zero, then{P−1

N AN} is clustered at 1 if in addition{PN} (and a fortiori
{AN}) is sparsely vanishing. The latter argument is crucial in the proof of Theorem 4.14.

For a matrixA, we will denote by‖A‖ the spectral norm, i.e. the largest singular value,
and by‖A‖tr the trace norm, that is the sum of all singular values. For thefollowing results,
we freely exploit the algebra structure of the locally Toeplitz matrices introduced in [17] and its
extension, the algebra of Generalized Locally Toeplitz (GLT) in [14]. For the spectral distribution
of non-symmetric matrix sequences, the results in [6] are ofcrucial importance. In particular, we
report the following theorem, where a basic test on the tracenorm of a perturbationCN allows to
conclude that{AN = BN + CN} has the same eigenvalue distribution as{BN}, provided that, for
everyN, BN is Hermitian.

Theorem 4.11([6]). Let {BN} and {CN} be two matrix sequences, where BN is Hermitian and
AN = BN + CN. Assume further that{BN} ∼λ (ψ, G), G of finite and positive Lebesgue mea-
sure, both‖BN‖ and‖CN‖ are uniformly bounded by a constant independent of N, and‖CN‖tr =
o(N),N→ ∞. Thenψ is real valued and{AN} ∼λ (ψ, G).

4.2. Algebraic multigrid preconditioning
The JacobianF′(u) is not symmetric, so we suggest to solve the linear system byprecondi-

tioned GMRES (PGMRES), in particular using the algebraic multigrid in [12] as preconditioner.
We point out that, with this choice, the method converges in few iterations and we have to mem-
orise only few vectors, without resorting to a restart procedure.

Firstly, we prove that the matrixX(d)
N (u), d = 1, 2, is a M-matrix and it is an effective precon-

ditioner for F′(u). Finally, since, as already observed in Section 3,X(d)
N (u), d = 1, 2, is similar

to a symmetric positive definite matrix and since the AMG is anoptimal solver for symmetric
M-matrices [12], we conclude that it is an effective preconditioner forF′(u).

There are several equivalents definitions of M-matrix (see [9]). We use the following.

Definition 4.12. A square matrix is aM-matrix if it has all off-diagonal entries less than or equal
to zero and all eigenvalues have positive real part.

Proposition 4.13. The matrix X(d)
N (u), d = 1, 2, defined in(3.3b)is a M-matrix.

Proof. SinceD(u) is a nonnegative function, (3.3b) shows that all off-diagonal entries ofX(d)
N (u)

are less than or equal to zero. Moreover, the diagonal entries of X(d)
N (u) are positive andX(d)

N (u)
is diagonally dominant. Therefore, thanks to the Gershgorin’s theorem (Theorem 6.9.4 in [16]),
the eigenvalues are contained in the union of disks which arecontained in the positive complex
half plane.
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Even if the matrixX(d)
N (u), d = 1, 2, is not symmetric, it can be easily rescaled to be sym-

metric. Hence, by Proposition 4.13 and the optimality of AMGfor symmetric M-matrices, we
obtain that the AMG converges in a constant number of iterations when applied to linear systems
with coefficient matrixX(d)

N (u), d = 1, 2.
Now we prove thatX(d)

N (u) is an effective preconditioner forF′(u), describing in detail
the spectral analysis for the one-dimensional case and justsketching its extension to the two-
dimensional case. The following theorem shows that both theeigenvalues and the singular values
of the preconditioned matrices sequence cluster at 1.

Theorem 4.14. Consider a (weakly) regular sequence of grids according to Definition 4.1, G=
[0, 1] × (0, 2π) and assume that D, 0 a.e.. If d

duD(u) ≥ 0 then

{(X(1)
N (u))−1F′(u)} ∼λ (1, G).

Otherwise
{(X(1)

N (u))−1F′(u)} ∼σ (1, G).

Proof. Define the diagonal positive definite matrix

SN = diagN
k

[
2

hk + hk+1

]
. (4.2)

that provides a diagonal scaling useful to prove the clustering result. From equation (3.3),

(X(1)
N (u))−1F′(u) = IN + (X(1)

N (u))−1Y(1)
N (u) = IN + (S−1

N X(1)
N (u))−1S−1

N Y(1)
N (u),

and thus the sequence{(X(1)
N (u))−1F′(u)} is clustered at one if the sequence{S−1

N Y(1)
N (u)} is clus-

tered at zero and{S−1
N X(1)

N (u)} is sparsely vanishing (see [15, Theor. 3.6]). Indeed, the clustering
at zero of{S−1

N Y(1)
N (u)} is not enough to ensure the clustering at zero of the sequence{BN} of the

whole matrixBN = (S−1
N X(1)

N (u))−1S−1
N Y(1)

N (u), because, roughly speaking, if{S−1
N X(1)

N (u)} is not
sparsely vanishing it amplifies the eigenvalues of the matrix BN (see Remark 4.10).

First, we prove that{S−1
N X(1)

N (u)} is sparsely vanishing. From equation (3.3b), it holds

S−1
N X(1)

N (u) = S−1
N − θhS−1

N L(1)
D(u). (4.3)

The grid points are defined asxk = g(zk) wherezk = k/(N + 1), k = 0, . . . ,N. Therefore
zk+1 − zk = h and

hk+1 + hk = g(zk+1) − g(zk−1) = 2hg′(ξk), ξk ∈ (zk−1, zk+1).

It follows that
{S−1

N } ∼λ (0,G), (4.4)

sinceg′(x) is bounded. The matrix−hS−1
N L(1)

D(u) is a positive semidefinite matrix and its spectral
distribution was already studied in [15, Theor. 3.7]. In detail

{−hS−1
N L(1)

D(u)} ∼λ (ψ1, G), (4.5)

9



whereG = [0, 1] × (0, 2π) and

ψ1(x, s) = w̃[D](x)(2− 2 cos(s)),

w̃[D] (x) =

{ D(u(g(x)))
g′(x) , if g′(x) is defined and nonzero,

1, otherwise,

For a (weakly) regular sequence of grids the functionψ1 is sparsely vanishing. Therefore, apply-
ing Theorem 4.11 to the splitting (4.3), thanks to (4.4) and (4.5), we have that

{S−1
N X(1)

N (u)} ∼λ (θψ1, G)

and thus the sequence{S−1
N X(1)

N (u)} is sparsely vanishing according to Remark 4.9.
Now we prove that{S−1

N Y(1)
N (u)} is clustered at zero observing that

S−1
N Y(1)

N (u) =
θ∆t
2

T(1)
N (u)diagN

k [D′k]. (4.6)

In order to estimate the eigenvalue distribution ofT(1)
N (u) in (3.3d), we preliminarily observe that

u(xk+1) − u(xk)
hk+1

=
u(g(zk+1)) − u(g(zk))

zk+1 − zk

zk+1 − zk

g(zk+1) − g(zk)

=
u′(g(ξ̃k))g′(ξ̃k)

g′(ξ̂k)
, (4.7)

whereξ̃k, ξ̂k ∈ (zk, zk+1). Owing to well-known results on Toeplitz matrices (see [7]), it holds that

{tridiagN
k [−1, 0, 1]} ∼λ (i2 sin(s), (0, 2π)) . (4.8)

Since the diagonal ofT(1)
N (u) represents a lower order term, due to (4.7), we have

T(1)
N (u) = diagN

k [u′(g(ξ̃k))]tridiagN
k [−1, 0, 1]+ EN

whereEN has infinitesimal spectral norm, so that{EN} ∼λ (0,G). Furthermore a direct computa-
tion shows that{diagN

k [u′(g(ξ̃k))]} ∼λ (u′(g(x)), [0, 1])). However, the sequences

{EN}, {diagN
k [u′(g(ξ̃k))]}, {tridiagN

k [−1, 0, 1]}

are GLT sequences with symbols 0, u′(g(x)), i2 sin(s), and the set of all GLT sequences forms
an algebra (see [14]), and in particular any linear combination of products of GLT sequences
is a new GLT sequence having as symbol the same linear combination of products of the basic
symbols. As a consequence, by combining equations (4.7), (4.8), the previous argument, and
taking into account the antisymmetric part ofT(1)

N (u) haso(N) trace norm, by Theorem 4.11, we
conclude that

{T(1)
N (u)} ∼λ (i2u′(g(x)) sin(s),G). (4.9)

Hence, from equation (4.6) it follows that{S−1
N Y(1)

N (u)} ∼λ (0,G).
If D′(u) ≥ 0, by equation (4.6) and the similarity transformation

diagN
k [D′k]

1/2S−1
N Y(1)

N (u)diagN
k [D′k]

−1/2 =
θ∆t
2

diagN
k [D′k]

1/2 T(1)
N (u)diagN

k [D′k]
1/2, (4.10)

we obtain an antisymmetric matrix that, up to a lower order term, shows spectral norm going to
zero ash tends to zero. Therefore, thanks to Theorem 4.11, we are allowed to consider only the
symmetric part and hence we obtain that{S−1

N Y(1)
N (u)} has also an eigenvalue cluster at zero.
10



Remark4.15. The assumptionD′(u) ≥ 0 is often satisfied in the applications, e.g. in all phenom-
ena described by the heat equation with constant diffusion coefficient and by the porous media
equation, i.e. the PDE (1.1) withD(u) = mum−1 for m> 1 (see e.g. [19, Chap. 2]).

As already observed in Remark 4.15, in real applications, some assumptions concerning
D(u(x)) have to be considered. For instance, in the one-dimensional setting, a practical situa-
tion occurs whenu(x), and thusD(u), vanishes identically in some nontrivial sub-interval. This
situation is not covered by Theorem 4.14 where we required that D is positive a.e.: however
the argument that proves Theorem 4.14 can be used again underthe general assumption thatD
vanishes on a finite number of disjoint nontrivial closed intervals and it is positive a.e. in the rest
of the domain. More precisely, by looking at the expressionsin (2.2), (3.3), and assumingk non-
trivial disjoint closed sub-intervalsJ0, . . . , Jk in which u vanishes, we observe that bothX(1)

N (u)
andF′(u) essentially decompose in a direct sum with blocks of the same size with identities of
appropriate size corresponding to the samplings whereu is identically zero.

More in detail, let
(⋃k+1

i=0 Ki

)
∪

(⋃k
i=0 Ji

)
be a partition of the whole domain [a, b], whereK0

andKk+1 may be empty. For a matrixMN ∈ RN×N define the restrictionMN |K j to be the diagonal
block of MN corresponding to the indices inK j and the decomposition

D(MN) = MN |K0 ⊕ IJ0 ⊕ MN |K1 ⊕ · · · ⊕ MN |Kk ⊕ IJk ⊕ MN |Kk+1,

where for square matricesA andB, of sizeµ andν, respectively, its direct sumA ⊕ B has size
µ + ν and is defined as the following block diagonal matrix

A⊕ B =

[
A 0
0 B

]
.

By examining the entries of the Jacobian matrix (3.3) we havethat

X(1)
N (u) = D(X(1)

N (u)) + R̃N,k, F′(u) = D(F′(u)) + RN,k,

where the termsRN,k andR̃N,k have rank not exceeding 4(k+ 1). In order to understand the latter
statement, denote withl j andL j , j = 0, . . . , k + 1, the first and the last index inK j , and observe
that the elements

(
F′(u)

)
l j ,l j−1 ,

(
F′(u)

)
l j−1,l j

,
(
F′(u)

)
l j−1,l j−1

are generically nonzero, while the corresponding positions ofD(F′(u)) are null by construction.
Moreover, the same holds replacingl j and l j − 1 in the previous formula withL j and L j + 1
respectively and both remarks are valid forXN(u) too. ThusRN,k andR̃N,k have nonzero entries
in at most 4(k+ 1) rows.

Notice that a similar argument can be used in the two-dimensional setting if thek sub-
domains whereD identically vanishes have smooth enough boundaries: unfortunately in that
case, ifN2 is the global size of the involved Jacobian, then the rank correction will grow asN
with constant proportional toK and therefore the quality of the corresponding clusters will be
lower.

Now, due to the corresponding direct-sum structure of the Jacobian and of the preconditioner
and owing to the constant rank ofRN,k andR̃N,k, we have clustering at one of{(X(1)

N (u))−1F′(u)}
if we have the same clustering for{(X(1)

N (u)|K j )
−1F′(u)|K j }, for every j = 0, . . . , k + 1. In other

words, the statement of the clustering in this setting reduces completely to Theorem 4.14.
11



We end this section observing that the two-dimensional casecan be treated in a similar fash-
ion but with weaker results. Since in this case, due to the non-linearity, it is not possible to
symmetrizeXN by a similarity transformation, we limit ourselves to determine the singular value
distribution. To this end, it suffices to replaceSN in (4.2) with S(2)

N =
1
h IN2 Following the proof

of Theorem 4.14 in a two-dimensional setting and using Theorem 3.8 in [15] it holds

{(X(2)
N (u))−1F′(u)} ∼σ (1, G), (4.11)

whereG = [0, 1]2 × (0, 2π)2. Unfortunately, in the two-dimensional case a similarity transform
like equation (4.10) does not hold even assuming∂D(u(x))

∂u ≥ 0 and so the existence an eigenvalue
cluster can not be easily proved.

The difficulty in the solution of a linear system with coefficient matrixF′(u) is now moved
to the solution of a linear system with coefficient matrixX(d)

N (u). From Proposition 4.13 we have

that X(d)
N (u) is a M-matrix and the algebraic multigrid (AMG) is well-known to be an optimal

solver for M-matrices. A detailed description of the AMG canbe found in [12] or [18].

Remark4.16. The AMG described in [12] converges with a convergence factor independent
of the size of the problem when applied to a linear system witha symmetric M-matrix (see
Theorem 5.5 in [12]). Therefore the AMG is an effective solver forX(d)

N (u) since it is a M-matrix
and it can be rescaled to be symmetric. If we combine the latter statement with the fact that
X(d)

N (u) ensures clustering at 1 when used as preconditioner forF′(u), then we can conclude that
we have an effective AMG-preconditioning solver for the whole system with coefficient matrix
F′(u). Indeed the numerical experiments in the last section willclearly show that the proposed
strategies work optimally (or quasi optimally when the gridfunction is highly nonlinear) with
a total computational cost which is linear (or almost linear) with respect to the sizeN of the
involved matrices.

5. Marble sulfation

In [13] simulations for the sulfation of marble on the surface of monuments are described.
This phenomenon is the transformation of CaCO3 of the marble stone into CaSO4 · 2H2O (gyp-
sum), that is triggered in a moist atmosphere by the availability of SO2 at the marble surface and
inside the pores of the stone.

The mathematical model employed in [13] was described in [1]. The two main variables
of the model arec(t, x) denoting the local concentration of calcium carbonate ands(t, x) for the
local concentration of SO2. As the reaction proceeds, the calcium carbonate concentration is
reduced from the initial valuec0, as CaCO3 is progressively replaced by gypsum. The porosity
of the marble-gypsum mixture is assumed to be the linear interpolation between the porosities
of pure-marble and pure-gypsum phases, namelyϕ(c) = αc+ β for constantsα andβ such that
ϕ(c) > 0 for c > 0. The model considered is thus described by the following system of PDEs:



∂ϕ(c)s
∂t

= − a
mc
ϕ(c)sc+ d∇ · (ϕ(c)∇s) ,

∂c
∂t

= − a
ms
ϕ(c)sc.

(5.1)

The parametersms andmc are fixed by the physical properties of the species involved in the reac-
tion and make sure that the mass balance is fulfilled. On the other handa represents the reaction
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Figure 1: Sample two-dimensional domainΩ for problem (5.1). In the left panel, the “brick pattern” area represents the
marble stone, while the dotted area is air. The boundary is drawn with a solid line where Dirichlet boundary conditions
are applied and with a dotted line where free-flow boundary conditions are imposed. In the right panel we show thexi, j

points of a non-uniform grid.

rate and it depends (among other things) on the moisture of the air and on the temperature, but
we keep it constant in this work.

The spatial domainΩ where (5.1) is set represents a piece of marble stone, for which at
least a portion of the boundary∂Ω is in contact with the polluted atmosphere. In particular∂Ω

is, in general, split into two parts: one represents the outer surface of the marble sample, in
contact with the air, and the complementary part that separates the portion of the marble object
of the simulation and the rest of the monument (see Figure 1).Boundary conditions are set, by
imposing the value ofson the outer boundary and by imposing free-flow conditions for son the
inner boundary. Since a boundary layer separating the outergypsum crust from the inner pristine
marble emerges at the Dirichlet boundaries, we employ nonuniform grids as depicted in Figure
1 in order to better resolve the solution there.

The general setup for the scheme is the same as in the scalar case: first discretize the time
variable using (1.2) and then discretize the spatial domainand the elliptic differential operator
with finite differences, write the time-advancement problem as an implicitequation and set up a
Newton scheme for solving it.

5.1. One space dimension

We considerΩ = [0, 1] and the grid pointsxk = g(k/N) for a nondecreasing differentiable
functiong : [0, 1] → [0, 1] such thatg(0) = 0 andg(1) = 1. Forg(t) = t we would obtain the
uniform grid employed in [13].

In this problem, the reaction ratea can be considered as a singular perturbation parameter
and, fora→ ∞, the solution tends to the solution of a Stefan problem [8]. Moreover, for finite
a and for the boundary conditions of interest, the functionsc(t, x) ands(t, x) are nondecreasing
(respectively non-increasing) forx > 0 and present a sharp transition from the boundary value 0
(respectivelys0) to c0 (respectively 0). As noted in [1], the change of variablesx = aξ andt = a2τ

completely removes the parametera from the system. Thus the sup-norm of thex-derivative of
the solution should scale asO(a). This suggests the use of a Bakhvalov mesh generated by the
function

g(t) =


χ(t) = −σa ln

(
q−t
q

)
for t ∈ [0, τ]

π(t) = χ(τ) + χ′(τ)(t − τ) for t ∈ (τ, 1]
(5.2)
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The parameterq controls how many points are taken in the nonuniform portionof the mesh (we
setq = 0.5), whileσ controls the grading of the mesh, that is how much can vary thesize of
two neighbouring intervals. In order to accommodate for themovement of the boundary layer
towards the interior of the domain, we take a very large valueof σ ∼

√
a, that sets up a fine

nonuniform mesh on a thick enough area. It is worth pointing out that the choice of mesh will
affect the convergence of the approximation of the solution of the PDE, but, to a large extent, not
the convergence of the methods for the nonlinear system and the preconditioner for the Jacobian
that are studied here below.

We denote the midpoints byxk+1/2 = (xk+1 + xk)/2 and employ two staggered grids in the
domainΩ: the set of pointsx j ( j ∈ N) carrying the unknownssn

j for s(tn, x j) and the set of
pointsx j+1/2 ( j ∈ N) with the unknownscn

j+1/2 for c(tn, x j+1/2). The shorthand notationϕn
j+1/2 =

ϕ(cn
j+1/2) will also be used.
We describe explicitly only the equations for a generic nodeaway from the boundary, but the

boundary conditions can be easily imposed setting the valueof s0 and considering ghost points
on thex = 1 boundary.

We approximate the elliptic operator along the same lines asin (2.1) with the second order
finite difference formula

∂x(ϕ(c)∂xs)|x j
≃
ϕ(c(x j+1/2))

s(x j+1)+s(x j)
hj+1

− ϕ(c(x j−1/2)) s(x j)+s(x j−1)
hj

(h j + h j+1)/2
(5.3)

and the other terms as

ϕ(c)s|x j
=

h j+1ϕ(c j−1/2) + h jϕ(c j+1/2)

h j + h j+1
sj , (5.4a)

ϕ(c)sc|x j
=

h j+1ϕ(c j−1/2)c j−1/2 + h jϕ(c j+1/2)c j+1/2

h j + h j+1
sj , (5.4b)

ϕ(c)s|x j−1/2
= ϕ(c j−1/2)

sj + sj+1

2
c j−1/2. (5.4c)

Note the two different kinds of averaging procedures required in the first, second and last lines:
x j+1/2 is the midpoint betweenx j andx j+1, but x j is not the midpoint betweenx j+1/2 andx j−1/2.

Thus the tridiagonal matrix representing the elliptic operator in (5.1) is−Lϕ = −L(1)
ϕ(cn) and is

defined as in (2.2). Introducing theN × N matrices

Φ(c) = diagN
k

[
hkϕ(ck+1/2) + hk+1ϕ(ck−1/2)

hk + hk+1

]
, (5.5a)

C(c) = diagN
k

[
hkϕ(ck+1/2)ck+1/2 + hk+1ϕ(ck−1/2)ck−1/2

hk + hk+1

]
, (5.5b)

S(c, s) = diagN
k

[
ϕ(ck+1/2)

( sk+1 + sk

2

)]
, (5.5c)

our scheme computessn
j andcn

j+1/2 with theθ-method for time differencing, namely as the solu-
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tion of the following system of equations



0 = F(s)(s, c) = Φ(c)s−Φ(cn−1)sn−1 + θ∆t
a

mc
C(c)s+ θ∆tdL(1)

ϕ(c)s

+ θ∆tb(c) + (1− θ)∆t
a

mc
C(cn−1)sn−1

+ (1− θ)∆tdL(1)
ϕ(cn−1)

sn−1 + (1− θ)∆tb(cn−1),

0 = F(c)(s, c) = c− cn−1 + θ∆t a
ms

S(c, s)c+ (1− θ)∆t a
ms

S(cn−1, sn−1)cn−1.

(5.6)

Equations (5.6) are not linear, since also the matricesC, S, Lϕ andΦ depend oncn andsn, either
directly or via the functionϕ. Obviously, forg(t) = t, formulae above reduce to those of [13].
The terms involving the functionb are the Neumann boundary terms and will be disregarded in
the theoretical considerations below.

Both Crank-Nicholson (θ = 1
2) and Implicit Euler (θ = 1) give rise to an unconditionally

stable scheme and we employ Newton iterations to solve the nonlinear problem (5.6). To this
end, one needs the Jacobian matrix, which is naturally splitinto four N × N block as

J = F′ =

[
Js

s Js
c

Jc
s Jc

c

]
, u =

(
us

uc

)
. (5.7)

We now describe in more detail its entries, disregarding fixed rank corrections for the boundary
conditions. In particular,

Js
s = Φ(c) + θ∆t

a
mc

C(c) + θ∆t d L(1)
ϕ(c), (5.8)

Jc
c = diagN

k

[
1− θ∆t

A
ms

sk−1 + sk

2
(
ϕ′(ck−1/2)ck−1/2 + ϕ(ck−1/2)

)]
, (5.9)

Jc
s = θ∆t tridiagN

k

[
1
2 ,

1
2 , 0

]
diagN

k

[
ϕ(ck−1/2)ck−1/2

]
, (5.10)

Js
c = Φ̃(c, s) + θ∆t

A
mc

C̃(c, s) − θ∆t d Y(1)
N (s), (5.11)

whereY(1)
N (s) is computed as in (3.3c), but usings in place ofu andϕ′(c) in place ofD′(u) and

Φ̃(c, s) = tridiagN
k

[
0, hk+1

hk+hk+1
skϕ
′(ck−1/2),

hk
hk+hk+1

skϕ
′(ck+1/2)

]
,

C̃(c, s) = tridiagN
k

[
0, hk+1

hk+hk+1
sk(ϕ

′(ck−1/2)ck−1/2 + ϕ(ck−1/2)),

hk
hk+hk+1

sk(ϕ
′(ck+1/2)ck+1/2 + ϕ(ck+1/2))

]
.

5.2. Two space dimensions

In two space dimensions we consider the grid pointsxi, j = (g[1](i/N), g[2]( j/N)) and the stag-
gered grid of the pointsxi−1/2, j−1/2 with abscissae12(g[1]((i − 1)/N) + g[1](i/N)) and ordinates
1
2(g[2](( j − 1)/N) + g[2]( j/N))). The unknownssi j for i, j = 1, . . . ,N are collected in lexico-
graphic order into the vectors, while the unknownsci−1/2, j−1/2 for i, j = 1, . . . ,N, are collected
in lexicographic order into the vectorc. (See Figure 1 for an example)

Each time step requires the solution of a nonlinear equationin 2N2 unknowns that can still be
represented by formula (5.6), with the matrices described here below. The differential operator
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is represented by a matrix (denotedL(2)
ϕ(c)) that has the sparsity pattern of the tensor product

L(1)
ϕ(c) ⊗ I + I ⊗ L(1)

ϕ(c) and with entries computed as those ofL(2)
D (see Section 2.2).

The other matrices appearing in (5.6) are the two-dimensional analogues of the (5.5). For
example, matricesΦ andC are again diagonal and have entries obtained with weighted averaging
in both thex and they directions since we approximate

ci j ≃
hi

hi + hi+1

(
h jci+1/2, j+1/2 + h j+1ci+1/2, j−1/2

h j + h j+1

)

+
hi+1

hi + hi+1

(
h jci−1/2, j+1/2 + h j+1ci−1/2, j−1/2

h j + h j+1

)

in perfect analogy with formulae (5.4a) and (5.4b). Averaging the s variables in (5.4c) can
again be performed with fixed weights also on nonuniform grids. The main difference with the
one-dimensional case is that each entry ofΦ(2) andC(2) depend on four unknowns inc (e.g.
ci±1/2, j±1/2) and each entry ofS now depends on four unknowns ins (e.g.si+ε, j+ε for ε = 0, 1).

Correspondingly, the Jacobian has the same 2× 2 block structure as in the one-dimensional
case, but now

Js
s = Φ

(2)(c) + θ∆t
a

mc
C(2)(c) + θ∆tL(2)

ϕ(c)

which is a diagonal correction of orderO(1+ ∆t) to the penta-diagonal matrix representing the
elliptic operator. Moreover theJs

c and Jc
s blocks have now nonzero entries on four diagonals,

while theJc
c block is again diagonal.

5.3. Solving the linear system

At each Newton iteration, one has to solve a linear system with matrix J, which is not sym-
metric and thus GMRES is a natural choice for the main Krylov solver. In order to devise a
preconditioning strategy, we follow the proposal in [13]. We observe that the lower left blockJc

s
has nonzero entries only on two diagonals (respectively four, in two space dimensions) and these
decay asO(∆t), while the bottom right blockJc

c is the identity matrix plus a diagonal matrix with
O(∆t) entries.

Theorem 5.1([13]). Assuming∆t = h = 1
N+1, the upper triangular part of J in(5.7), namely

P =

[
Js

s Js
c

0 Jc
c

]
, (5.12)

is an optimal preconditioner for J, both in one and two space dimensions, assuming that the
functionϕ(c) in (5.1) is bounded away from0 (i.e. when the porosity of the gypsum-carbonate
mixture is never zero).

Remark5.2. When applying the preconditionerP in (5.12), the block triangular systemPy = b
is solved as

yc = (Jc
c)−1bc

and
ys = (Js

s)
−1(bs− Js

cyc), (5.13)

where the the sub/super-scripts and c stand for the upper half and to the lower half of the
vectors, respectively. Theorem 5.1 shows that the spectrumof P−1J is strongly clustered at 1
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independently on the discretization parameterh and thus the block-preconditionerP is optimal.
The matrixJc

c is easily inverted since it is a diagonal matrix. On the otherhand, the matrix
Js

s can not be easily inverted, especially for multidimensional problems and small values ofβ.
Therefore, an optimal solver for theJs

s block is needed for obtaining an efficient global method.

We point out that there are many similarities between theJs
s block and the Jacobian matrix

(3.3a). In fact, with respect to (3.3a), the identity is replaced by a diagonal matrix withO(1)
entries (Φ+θ∆t a

mc
C), while the tridiagonalYd

N(u) term is not present inJs
s, corresponding instead

to the third term of theJs
c block. HenceJs

s is spectrally not too different fromXN(u) in (3.3a).
Thus we expect that the unpreconditioned GMRES applied to the linear system (5.13) has an
iterations count that grows similarly to the one forF′(u) of (3.3a). In [5] there is a discussion of
such growth in the case of uniform grids, while in in Subsection 6.1 we provide some numerical
evidence in the case of nonuniform grids.

The previous discussion suggests to use the AMG preconditioner for the coefficient matrix
Js

s, in analogy with the strategy discussed in Subsection 4.2 for the coefficient matrixF′(u).
Indeed, whenβ > 0 the matrixL(d)

φ(c) is a M-matrix and the diagonal matrixΦ + θ∆t a
mc

C has
positive entries, thusJs

s is a M-matrix and the AMG is a optimal preconditioner for the linear
system (5.13).

In conclusion, we solve the linear system of the JacobianJ in (5.7) using the P-GMRES
with the preconditionerP defined in (5.12) and where the linear system (5.13) is solvedonly
approximately by employing just one V-cycle iteration of the AMG algorithm.

6. Numerical tests

Numerical tests were performed in MatLab 7.0, exploiting the MatLab interface to the AMG
library of [10]. In particular, the algebraic multigrid preconditioner was the one provided by the
functionhsl_mi20_preconditionwith the following choices: the smoother is the damped Ja-
cobi method with damping parameter set to 2/3,1 pre-smoothing and1 post-smoothing iteration
were used, coarsening is halted if less than9 points are left in the coarse mesh or if all rows in
the coarse matrix do not have a negative off-diagonal element. All other parameters were left to
their default values.

In Subsection 6.1, we present tests on the predictions of thetheory developed in Section 4,
while Subsection 6.2 is devoted to the model described in Section 5. Finally 6.3 is about the
convergence of the Newton method.

6.1. Scalar, degenerate, equation

The purpose of the following tests is to highlight the features of the approximation techniques
developed in the paper. Therefore, we start with a monodimensional example, even if iterative
methods are not necessary since the linear system with diagonally dominant tridiagonal matrices
can be efficiently solved by a direct method, because the asymptotic behaviour can be easily
estimated showing that the numerical results agree with thetheoretical analysis provided in the
previous sections. To this end, we consider the scalar equation (1.1) forD(u) = mum−1 for m> 1
and approximate numerically the self-similar exact solutions

u(t, x) = t−α
[
1− αm−1

2m

(|x|(t + 1)−α
)2] 1

m−1

+
, α = 1

m+1 (6.1)
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due to Barenblatt and Pattle [19] (the+ subscript denotes the positive part). The exact solution
features singular points that move towards the boundary of the domain at finite speed (Figure
2a), and it is nonzero and smooth in between these points and zero outside.

Although for this kind of equations one would naturally employ adaptive mesh refinement
techniques, we solve the problem on a set of nonuniform fixed meshes, varying the distribution
of the mesh points in the domain. The tests confirm the (obvious) remark that employing too
many points in the smooth region at the centre of the domain isdetrimental for the error of the
scheme, but more surprisingly that doing so also puts unwanted extra stress on the solver, since
the condition number of the linear systems may grow dramatically. This is accurately predicted
by the theory of§4 and verified here below. On the side, we also show that AMG preconditioning
remains optimal even with the worst choice of meshes considered here.

In particular we consider the meshes generated by the grid functionsgα : [−1, 1] → [−1, 1]
defined by

gα(t) = sign(t)|t|α

Note thatg1 corresponds to the uniform mesh, while choosingα , 1 generates a weakly regular
mesh that is finer in the middle of the domain (α > 1) or at the endpoints (α ∈ (0, 1)). We also
consider two regular meshes of Shishkin and Bakhvalov type (see [11]). A mesh of each kind
(with 32 points) is depicted at the bottom of Figure 2a.

Condition number.First note that a direct consequence of the spectral analysis in Section 4.2 is
that introducing a grid refinement at a point where the diffusion coefficient is not degenerate has
adverse consequences on the condition number of the Jacobian matrix.

For the one-dimensional case, we considerA(1)
N = hF′(u) since the spectral condition number

is not affected from constant scaling. From the proof of Theorem 4.14,see in particular equation
(4.5), it follows that{A(1)

N } ∼λ (ψA, G), whereG = [0, 1] × (0, π) and

ψA(x, s) = θw[D] (x)(2− 2 cos(s)),

with

w[D] (x) =

{ D(u(g(x)))
g′(x)2 , if g′(x) is defined and nonzero,

1, otherwise,
.

Hence, the spectral condition number ofA(1)
N can be estimated since the largest eigenvalue grows

as the order of strongest pole inψA(x, s), i.e., in w[D] (x). ThehIN term in A(1)
N implies that the

smallest eigenvalue goes to zero asλmin ∼ 1/N. The strongest divergence ofλmax may arise
from the first term, especially wheng′(x) has a zero where the numerator does not vanish: in this
situation, the largest eigenvalue ofA(1)

N would grow asλmax ∼ N2q if g′(x) has a zero of orderq.
The resulting spectral condition number then grows asN2q+1. This actually happens in our tests
when using theg2- andg3-generated grids, since in these cases the zero ofg′ is at x = 0, where
the solutionu of (6.1) is nonzero.

In particular we computed solutions for the one-dimensional Barenblatt problem withm= 3,
final time 20/32, ∆t = 1/N and N ranging from 32 to 4096. During the computations we
estimated the spectral condition number of the Jacobian matrix (condest in MatLab) and, in
different runs, the number of iterations used by GMRES without preconditioner, with Jacobi
preconditioner and with the AMG V-cycle preconditioner were recorded. Table 1 collects all
data, as well as the CPU time used for the setup of preconditioners and linear system solves
during a complete simulation on theN = 4096 grids.
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Euclidean norm of the error at the final time for the Barenblatt equation (6.1) in one space dimensions (b). Thin lines are
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1D
cond(J)

GMRES iterations Newton GMRES CPU time
mesh no P Jac AMG iterations no P Jac AMG
unif N0.97 N0.42 N0.47 2.54 2.24 1058 1892 45
Shish N1.14 N0.46 N0.48 2.73 3.00 1466 2590 93
Bakh N0.85 N0.29 N0.41 2.37 2.00 925 1821 55
g1/2 N0.94 N0.38 N0.44 2.50 2.99 1343 2194 85
g2 N3.00 N0.76 N0.70 3.47 2.01 17558 41721 86
g3 N5.00 N0.83 N0.78 3.83 2.02 n/a 159993 88

Table 1: Regular (at the top) and weakly regular (bottom) grid functions forθ ∈ [−1, 1]. Condition number of the Jacobian
matrix, average number of GMRES iterations per Newton step,average number of Newton iterations per timestep, for
N ranging from 32 to 4096. The last columns are the CPU times in seconds spent on GMRES (including setup of
preconditioners) for a complete run on the largest grid. (The unavailable data is due to GMRES stagnation). The sub-
columns refer to the preconditioning strategy used inside GMRES (unpreconditioned, Jacobi, AMG V-cycle).

These data confirm the prediction on the growth of the condition number and also the opti-
mality of our preconditioning strategy: in all cases considered, the number of GMRES iterations
grows withN, but the PGMRES iterations (where the preconditioner is oneAMG V-cycle) re-
mains constant with respect toN and suffers only a very moderate increase with the worsening
of the grid irregularity.

For gα with α = 4, 5, we observe a growth of the condition number with the numberof grid
points with the lawsN7 andN9, respectively. We did not report the result in the table since the
Newton method has difficulties to converge in these extreme cases. In such cases theuse of other
nonlinear solvers with guaranteed convergence should be considered at the beginning (see e.g.
[3]). Also, we do not report data for the two-dimensional cases, since they show a similar pattern
as the one-dimensional ones discussed here.

Errors. In Figure 2b we compare the errors at the final time recorded inthe previous runs.
We consider the Crank-Nicholson time integration scheme with various choices for the spatial
mesh. We observed that this method leads to lower errors thanthe Implicit Euler method, but
its theoretical order of convergence is not reached owing tothe non-regularity of the solution,
which has a compact support expanding in time, with two non differentiable points with vertical
tangent at the boundary of the support.

Also in terms of the error reduction, we see that the meshes with most points in the middle
of the domain perform most poorly (seeg2 andg3), while uniform meshes or meshes with addi-
tional points where the discontinuity inux travels give rise to more regular convergence histories.
Among these, the error reduction is more regular for meshes generated with smoother generating
function, as shown by the seriesg1/2, gB, gS.

The same comments extend to the results for the two-dimensional simulations.

6.2. Sulfation model

For the marble sulfation problem, we consider a situation that models the deterioration at an
edge of a monument. We report the solution of the model at the final time of the simulation,
as well as studies of the performance of the preconditionersand various measures of the error
committed at different grid sizes, comparing uniform and non-uniform meshes. We fix, as in
[1], the physically correct valuesd = 0.1, ms = 64.06, mc = 100.09,α = 0.01, β = 0.1, and
integrate the equations in time up tot f in = 1. As explained in [1],a controls the reaction rate and
thus the temporal scale of the PDE; in particular it depends on other ambient parameters (mainly
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Figure 3: Newton iterations and PGMRES iterations recordedduring marble sulfation simulations in one (a) and two (b)
space dimensions. Symbols indicate the median and the whiskers extend from the minimum to the maximum value. Red
crosses refer to the uniform grids and black circles to the Bakhvalov grids. In these tests the Crank-Nicholson scheme
was used.

temperature and humidity) and it is a lot harder to measure: here we fix it to the reasonable value
a = 104 as in [1].

This model prescribes boundary conditions of Dirichlet type atx = 0 (and also aty = 0 in
the two-dimensional case), that are not consistent with theinitial data: in fact the simulations
start with no SO2 inside the marble and impose a nonzero SO2 concentration in the surrounding
air. This inconsistency gives rise to oscillations due to fact that Crank-Nicholson (θ = 1

2) is not
L0-stable. Here we take the simple approach to replace the firstCrank-Nicholson step with two
Implicit Euler (θ = 1) steps with∆t = 1/2N. (Note that another approach would be to use the
three stages diagonally implicitL0-stable Runge-Kutta of second order described in [4].)

Preconditioning. In Figure 3 we show the number of Newton iterations needed to perform a
simulation with model (5.1) in one and two-dimensional square domains varying the number of
grid pointsN, with uniform and Bakhvalov grids. We point out that the number of iterations is
very small and tends to become lower with increasingN, due to the fact that the grid resolves
better the boundary layer. The lower portions of the graphs show the number of preconditioned
GMRES iterations needed for the linear solves. This is almost constant across the whole range
of values ofN, showing the optimality of the preconditioning strategy. Moreover the number of
PGMRES iterations never exceeds 6, so that there is no need toemploy restarting strategies in the
GMRES algorithm. We note that thanks to the AMG preconditioner, the use of a non-uniform
grid does not increase the computational cost with respect to employing a uniform grid, while
the quality of the solution improves a lot, in particular close to the boundary layers.

Result of the simulations.Figure 4 shows the contour plot of the solution obtained at timet = 1
with the Crank-Nicholson method, using a Bakhvalov grid of 64×64 points. We observe that the
carbonate-gypsum boundary layer has a more rounded and plausible shape that the one obtained
in [13]. This is due to the improvement of resolution grantedby the non-uniform grid.

The plot in Figure 5 shows the profiles of calcium carbonate (c variable) and SO2 content (s
variable) along the diagonal of the domain (the bisector of the first quadrant), the x-axis being
labelled with the distance from the corner. The picture clearly shows the higher resolution power
of the non-uniform grid: when using uniform grids, one needs64 points to obtain the same
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Figure 4: Contour plot of the solution obtained at timet = 1 with the Crank-Nicholson method, using a Bakhvalov grid
of 64× 64 points.
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‖Ec‖∞ rate ‖Ec‖1 rate ‖Ec‖2 rate ‖E f ‖2 rate
U16× 16 7.27 1.69 6.58E-2 0.91
U32× 32 3.97 0.87 0.60 1.48 2.92E-2 1.17 0.34 1.41
U64× 64 1.29 1.61 0.18 1.68 9.55E-3 1.61 0.14 1.26
G16× 16 3.54 0.85 3.57E-2 0.32
G32× 32 1.39 1.34 0.25 1.79 1.21E-2 1.56 0.16 1.02
G64× 64 0.42 1.72 0.06 2.09 2.91E-3 2.05 0.10 0.68
B16× 16 3.23 0.73 2.94E-2 0.26
B32× 32 0.72 2.15 0.14 2.33 6.46E-3 2.18 0.14 0.89
B64× 64 0.16 2.13 0.03 2.46 1.21E-3 2.42 0.11 0.36

Table 2: Errors in various norms for the CaCO3 profile along the diagonal of the computational domain for uniform (U),
Gauss-Lobatto (G) and Bakhvalov (B) meshes of different dimensions.Ec denotes the error at final time on thec variable
andEf (last two columns) denotes the error in the function describing the front position versus time.

resolution of the boundary layer achieved the 32 points Bakhvalov grid. This is accomplished
also thanks to a more accurate and steeper profile of thesvariable whose values are less affected
by numerical diffusion. The data shown were obtained with the Crank-Nicholson scheme. We
observed only a small difference in resolution between the two time integration schemes, with
Crank-Nicholson being slightly sharper than Implicit Euler. Since the computational cost of the
two schemes is almost identical, we favour the Crank-Nicholson one, but this latter observation
indicates that in this problem the employment of the second order L-stable scheme of [4] is not
cost-effective since it involves the computation of two implicit stages per time step.

Table 2 collects data on the convergence of the algorithm. Tothis end, errors in thec and
s variables were computed by comparing the numerical resultswith a solution computed on
a very fine mesh (indicated byreferencein the legend of Figure 5). They are listed (in three
different norms) together with the convergence rates for meshesof uniform, Gauss-Lobatto (see
the Introduction) and Bakhvalov type (see (5.2)). We reportthe data on thec variable, the other
ones being completely analogous. The benefits of nonuniformmeshes are apparent from the
table, where it can be seen that a generic nonuniform mesh canimprove the errors, but that
Bakhvalov meshes yield also the optimal (second order) convergence rates. The last column
of Table 2 is about the position of the marble-gypsum interface with respect to time, that is
important for decision making in real world applications. Such function was estimated from the
simulations by looking for the steepest gradient in the profile of c along the diagonal. In this
respect, the nonuniform meshes can approximate the front position at a given accuracy by using
far less points in the grid.

6.3. Convergence of the Newton method

Finally, Figure 6 shows the graphs of the convergence to zeroof the Newton residual in the
nonlinear scheme. The left panel is for the Barenblatt problem with m = 2 and the right one
for the sulfation problem. Curves for the one-dimensional cases refer to 128 grid points while
the two-dimensional tests were performed with 32× 32 grid points. Data were recorded during
the first timestep, with∆t = 1/N, and the initial guess was the initial data. Performance of the
method in later steps or with more grid points is similar and often better, due to a smoother
solution or enhanced grid resolutions.
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Figure 6: Decay of Newton residual during the first timestep.
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