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Abstract

Motivated by the modelling of marble degradation by chefinicdlutants, we consider the ap-
proximation by implicit finite diferences schemes of nonlinear degenerate parabolic eggiatio
in which sharp boundary layers naturally occur. The latteggests to consider various types
of nonuniform griddings, when defining suitable approximatschemes. The resulting large
nonlinear systems are treated by Newton methods, whilettedly Toeplitz linear systems aris-
ing from the Jacobian have to be solvefiaently. To this end, we propose the use of AMG
preconditioners and we study the related convergencesstagether with the associated spec-
tral features. We present some numerical experiments stipgpour theoretical results on the
spectrum of the cdBcient matrix of the linear systems, alongside others raggirtie numerical
simulations in the case of the specific model.

Keywords: Nonlinear and degenerate parabolic equations, Finfferdnces, Newton-Krylov,
Multigrid preconditioning, Flow in porous media, Marbldfstion
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1. Introduction

The aim of this paper is to extend previous results by theaatbn nonlinear implicit approx-
imations of degenerate parabolic equations presented.inr{%his paper we focus on nonuni-
form cartesian grids and on applications to the mathematicael for monument degradation
described in [1] and previously approximated on unifornadgidy one of the authors in [13].

We first consider a single equation of the form

ou
— =V - (D(u)Vu), (1.2)
ot
in both one and two-dimensional domains. We supposaifigtis a non-negative function and
note that the equation is degenerate whenBya)y vanishes. For the convergence analysis of our
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numerical methods, we will require tha{u) is at least dierentiable and’(u) is Lipschitz con-
tinuous, while the existence of solutions is guaranteeeutite milder assumption of continuity
(see [19]). For the eigenvalues clustering results we reghiatD(u) is also a nondecreasing
function.

We consider a time discretization based on the so-caleethod:

U(t", X) — 6AtL, (U (t", X)) = U™, x) + (1 - 6)AtLp (U ("2, X)), (1.2)

whereAt = t"—t"1, and-Lp(-) denotes the elliptic operatan— —V - (D(u)Vu). More precisely
we will employ the Crank-Nicholson method & %) and the Implicit Euler method(= 1).
However, the analysis for a genetak (0, 1] is beneficial in view of the employment of the
Lo-stable high order methods of [4].

The computation of the numerical solutibr{t", x) with (1.2) involves, at each timestep, the
solution of a nonlinear equation whose form is determinedhieyoperatotp and thus by the
nonlinear functiorD(u). This, in turn, requires the use of a fixed point scheme aacttivice
of the Newton-like methods implies the solution, at evegpsif the nonlinear solver, of a large
linear system whose cfitcient matrix islocally (multilevel) Toeplitan the sense of [17]. This
matrix will be studied by itssymbo] which describes (asymptotically) its spectrum (see [17])
and provides a useful guide for designirfi@ent preconditioners for linear Krylov solvers.

In [5], the cas& = 1 was considered, alongside finité¢fdrences discretization on uniform
grids. The nonlinear step was dealt with the Newton methdichwas proved to be convergent
if the time discretization step is proportional to the spdiseretization step. The Jacobian linear
system was solved by a Krylov method preconditioned withgetoic multigrid, that was proved
to be optimal (in the sense that the preconditioned matibastrong eigenvalues cluster). Here,
we extend the previous analysis to thenethod (1.2) and to nonuniform spatial grids under
the assumption that the grid points can be seen as the imagardform grid via an invertible
function.

In order to fix ideas, consider a one-dimensional donéain [a, b]. Mesh points are chosen
asxx = a+ (b-a)g(k/N) whereN andg : [0, 1] — [0, 1] control (independently) the number of
mesh points and, respectively, their distribution in thend. For problems with a still boundary
or internal layer in a position known a-priori, one may getim@al meshes (in the sense of error
reduction) by choosing a suitable posit®nitoring function Mandequidistributingit in the
domain by selecting a mesh functigithat satisfies (at least approximately) the relation

() 1
fo M(s)ds=§f0 M(s)ds.

A typical example is that of a fferential problem whose exact solution, due to a singular per
turbation with parameter — 0, presents an exponential boundary layer close to left &étiteo
domain wherai(x) ~ € ¥/*: one can then consider a monitoring function of the form

M(s) = max{l, %e’s/g}

and obtain a Bakhvalov-type mesh on which the convergermeepties of the numerical ap-
proximation are uniform in the perturbation parameter. &general introduction, examples and
other types of meshes, see e.g. [11] and references therein.
However, the PDE system introduced in [1] for marble sulfathas solutions that feature a
sharp internal layer that forms at the interface betweemitudble and the polluted air (boundary
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of the computational domain) and that moves towards thdénsi the monument as degradation
progresses. This layer separates the outer gypsum crusttiinner pristine marble.

Hence optimal choices for a mesh to be kept fixed in time aravaitable for this problem,
but we are still interested in non-uniform meshes for the falmwing reasons. First, from a
theoretical point of view, in this paper we do not focus ondgppropriateness of the choice of the
mesh in the sense of error reduction, but rather on the a@nalfthe nonlinear and linear systems
arising from a given choice of mesh and on developing a rgiestonditioning strategy in the
case of nonuniform meshes. To this end, the choice of the fia@stiong in some numerical
tests will not be guided by error reduction, but by the negdsbthe theoretical results on a wide
range of cases. Secondly, from a modelling point of vieworasion works must take place on
a monument before the internal layer has moved too deepiytlirt domain and thus practical
computations can be performed on a fixed nonuniform gridithéiher close to the boundary
where the internal layer will form.

Finally, we point out that, obviously, the discretizatiordaesolution technique studied here
can be plugged into a more general method that employs fildteemt discretizations aymt
adaptive mesh refinement. Regarding the discretizatiom fivitte elements, there exists a kind
of information depending only on the continuous operatat which is inherited virtually un-
changed in both finite efierences and finite elements, provided that the grids ardé-gonderm
in finite differences and the angles are not degenerating in finite elem8&noich information
consists in the locally Toeplitz structure used and in thated spectral features: conditioning,
subspaces related to small eigenvalues, global spectral/tmir, etc. (see [17] and [2]).

The paper is organized as follows. In Section 2 we describsplace discretization of (1.1)
by nonuniform finite diference grids. For the time discretization we use éfmethod (1.2)
which leads to a system of coupled nonlinear equations ted to be solved at each discrete
timestep: this is achieved using the Newton method, aslddtai Section 3. In Section 4 we
propose an algebraic multigrid preconditioner for the b&no matrix appearing in the Newton
method and provide an analysis of the spectrum of the prétioneld matrix that proves the
effectiveness of our proposal. In Section 5 we discretize a hfod¢he chemical aggression
on marble stones that consists in a system of two partitdreéintial equations and extend the
previous results to this setting. Finally, in Section 6, veefprm some numerical tests.

2. Finite difference space discretization of the operatol p(+)

2.1. One space dimension

Letg: [0, 1] — [a, b]anondecreasing fierentiable function such thgf0) = aandg(1) = b.
Consider the grid composed by the poirts= g(k/(N + 1)), fork =0, ..., N + 1. We denote by
uy the approximate solution at tinteand locatiorx,, wherek = 0,..., N+ 1. When considering
Dirichlet boundary conditions, the valuag anduy.1 are known and can be eliminated by the
equations. Let thug" be the vector of sizé\ containing the collection of the values. for
k = 1,...,N. When no potential confusion arises, we sometimes drop th botations the
superscript indicating the time level. Boundary condiiai Neumann or Robin type can be
treated in similar ways.

We denote byridiagE[,Bk, ax, yk] a square tridiagonal matrix of ordé&t where thek™ row
has entriegy on the lower diagonaky on the main diagonal, ang on the upper diagonal. We
also denote wittdiag} (ax) the squaréN x N diagonal matrix withry on thek™ row.



We choose a standard 3-points second order approximatiba diferential operatomd(u)uy)x.
Let Xj.1/2 = (Xj + Xj+1)/2 andh; = x; — x;_1. Denoting by the subscrigtthe numerical approx-
imation of a quantity at the poing;, we have
) Dji1/2 ujﬁ?ﬂ

(hj + hj+l)/2

— - Dy
]
+o(1), 2.1)

0
ax PR,
where we define
D(uj+1) + D(uj)
> )

and theo(1) error term is of ordeh? under the assumption that the compositdfu(-)) is at
least continuously dlierentiable, with Lipschitz continuous first derivative. tdhat, at least
for D(u) = U™, a solutionu is at least Holder continuous [19, Chap. 2]. Moreover, degn
the positivity setP(t) = {x € Q : u(t,x) > 0}, one shows that for reasonable initial da@{t)
is expanding with finite speed and that the solutios regular in the interior of(t) and has a
singularity on its boundary [19, Chap. 14]. Thus the precisif the finite diference formula is
degraded only 0d%P(t), a set of measure zero &, but of course the method is expected to be
of first order accuracy in the case of a degenerate paralmplation, as shown in the numerical
tests.

Putting together all the contributions forfidirent grid points, the action of the elliptictldir-
ential operator om is described by the tridiagonal matrix

D]+l/2= j=09"'9N9

_L® Dk-12 Dk-1/2 N Di:1/2 D12
he = he hir © hiea

@, 2.2)

= diagy

]tridiagE

hi + M1

Remark2.1 L(Dl()u) is similar to a symmetric real tridiagonal matrix. Df{u(-)) is a nonnegative

function, then the matri>eL|(31()u has always nonnegative eigenvalues, since it is weakly-diag
onally dominant by row. Furthermore, in the previous secgetihe wordnonnegativecan be
replaced bypositiveif the equation is not degenerate.

2.2. Two space dimensions

The discretization considered above can be extended tathdimensional case as follows.
We consider the domaif = [ag,by] X [a, by] ¢ R? and the grid points; = (g™ (i/(N +
1)), g@(j/(N + 1)), wheregl! : [0,1] — [a,bi], i = 1,2 are nondecreasingftirentiable
functions. The grid is thus composed of thé € 2)? pointsx; ; for i and j ranging from 0 to
N + 1. We denote withy ; the numerical value approximatimgx; ;). Of course, as in the one-
dimensional case the use of Dirichlet boundary conditiedsices the gridding to thé? internal
points; also in this case other boundary conditions can heidered in a similar way. With this
choice, the grid spacing " = xc - %1 andh?! = yy — yi1.

The finite diference discretization of theftirential operator (2.1) can be generalised as
follows:

0 ( du 0 du
— D(u)—) +— (D(u)—)
ox ox XX oy ay XX
Di+1/2,jui;;’[5ﬂ - Di—l/z,jUi'_i;_rLljiii Di,j+1/2%li - Di,J'fl/ZU"_J;_rsziﬁ
- TR — + o — +0(1) (2.3)
(h™ +hiy)/2 (W™ +h)/2



where we denoted
D(Ui+1,j) + D(ui )

D(ui,j+1) + D(ui,j)
2 b

and Dijs1/2 = 5

Dit1/2j =

and where the terma(1) is O(h?) if D(u(-)) is smooth enough.
Collecting the unknowns; ; in a vectoru using the lexicographical ordering, we denote by
L(Ef()u) the matrix representing theftBrential operator. This matrix has the same sparsity patter

as the tensor produtf)’ ® Iy + Iy ® LY, but the entries are fierent. More precisely, ) =
A+ BwhereAis block-diagonal with 3 -diagonal blocks aBds block 3-diagonal with diagonal
blocks. In particular, the generig () block of Ais the matrle(Dl()u " which is given by formula
(2.2) applied with theD(u) evaluated on the unknowns; on the horizontal segmemt=y;.
Similarly the j-th block row of B corresponds to the matr . When needed, appropriate
finite rank corrections for boundary conditions are aIsdJuded |n the firsfast blocks ofA and
first/last rows of the blocks ifB. Notice that the pattern of the matrb{az)u) reminds a tensor
structure that unfortunately cannot be formalised exattlye function Déu) is not separable,
due to the varying cdgcients in the underlying PDE (for the spectral analysis chsstructures
refer to [14] and references therein).

3. Time discretization and the Newton’s method
Following (1.2), at each timestep, we need to solve the nealivector equation

u"+ (1- Q)AL L un? (3.1)

n C)
u 14 6AtL U

D(u")

whered = 1,2 is the number of space dimensions. Thus we set up Newtatiites for the
vector function y ’
F(u) = u - 6ALLS), u— (1- G)AtLI(D()Un Ut - U (3.2)

The Jacobian off (u) can be written as
F'(u) = XD) + YO(u), (3.3a)
where, denoting byy« the identity matrix of ordeN?, we have

XD (u) = 1o — 6ALLY

@ (3.3b)

andY(d)(u) contains the terms arising fromftérentiating the matrlkD( u) with respect tar and is

defined below. We note that according to Remark 2.1, the nﬁ,ﬂq(u) is similar to a symmetric
positive definite matrix having minimum eigenvalman(X,(\,l)(u)) > 1.
In the one-dimensional case

Vi (u) = oAt diagy 4| T (u)diagh[D;] (3.3¢)
T(u) = tridiag) [ tpes teaith _ Uty Mt ) (3.3d)

HereD, denote’(ux). In the two-dimensional caslér(\lz)(u) is obtained from the one-dimensional
analogues in the same waylg is obtained from thé})'s. In particular it has the same nonzero
pattern ofYM @ Iy + Iy @ Y.
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In the case of a uniform spatial grid with discretizatiorpstgual tch, in [5] the convergence
of Newton’s method was proved assuming that the initial gugghe solution at the previous
time step and\t < Ch, for a positive constar@ independent ofi. Accordingly, we fix

1

At=h= .
N+1

(3.4)

The numerical experiments in Section 6 show that the Newtor@thod usually converges fast
enough with such choice dft. Note that this is appropriate for the theoretical analirsithe
following section, since the domain dfis [0, 1] and that one would consider the real domain
size in a practical situation.

At each Newton iteration, we need to solve a linear systenseltodicient matrix is repre-
sented by the Jacobiafi(u). In principle, the Jacobian is recomputed at each Newtration,
S0 we are interested infficient iterative methods for the linear system. To this end,finst
analyse the spectral properties of the makiu). This will lead us to consider preconditioned
Krylov methods, with an algebraic multigrid preconditiofi2].

4. Asymptotic spectral analysis of the preconditioned Jadmian sequence

Since we are interested in nonuniform grids, we follow thalgsis of [15]. The dficulty
arising from the non-uniformity can be overcome by reintetipg the nonuniform grid Jacobian
matrices as an approximation of uniform grid Jacobian ro@srcoming from a dlierent contin-
uous problem which still has the form (1.1), but a new weigimiction and a dierent domain.
In this way we can successfully apply the preconditionirdpteque just proposed in the case of
an equispaced grid-sequence [5].

4.1. Preliminary definitions

The following classification of sequence of grigs= {Gn} will be useful to analyse the
spectral distribution and the preconditioning strategthefJacobian matrix sequence.

Definition 4.1 ([15]). A grid sequences = {Gn} On [a,b], Gn = (X0 = a < X3 < --- <
XN < Xni1 = b}, is said to beweakly equivalento the grid sequenc®/ = {Wy} on [c,d],
W ={yo=C< ¥y <--- <Yn < Yns1 = d}, if there exists a functiog so thatg(y;) = x;. The
functiong is required to be a homeomorphism from if] to [c, d], to be piecewis&! with g’
having at most a finite number of discontinuity points and &€inumber of zeros. Moreover, if
bothg and its inversg are Lipschitz continuous, thefis said to be equivalent t&y.

Definition 4.2 ([15]). A grid sequencg is said to bdweakly) regulaif it is (weakly) equivalent
to the basic equispaced grid sequefi¢e= {Uyn} on [0, 1], with g : [0,1] — [&, b] being the
associated homeomorphism according to Definition 4.1.

For example, the grid sequence associated to the Gausstd points is weakly regular: in
fact, they correspond to the choigéx) = cosrx), whose derivativey (x) is smooth and with a
unique zero in [01]. The Bakhvalov grid generated by the monitoring functisentioned in the
Introduction is regular for any finite, sinceg’(0) ~ ¢ (see (5.2)).

In order to design fast iterative solvers, we analyse thenasytical behaviour of the spec-
trum of the Jacobian matrix whed goes to infinity. In the following, we study asymptotical
guantities associated to matrix sequences whose defifstieported below.
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Definition 4.3. Let {An}ney denote a sequence of matrices where the set of nonnegatizcesn
V is of infinite cardinality and where the matri is a square matrix of ordéy with complex
entries.

A sequence of matricg#\} naturally arises considering the same discretization@ftdme
differential or integral equation for a sequence of grids witlinereasing number of points or
elements.

Definition 4.4. Let Co(C) be the set of continuous functions with bounded supporhddfover
the complex fieldd be a positive integer, anbe a complex-valued measurable function defined
on a seG c RY of finite and positive Lebesgue measu(&). A matrix sequenc¢Ay} is said

to bedistributed(in the sense of the eigenvaldies the pair(y, G), or to have the eigenvalue
distribution functiony ({An} ~1 (¥, G)), if, YF € Co(C), the following limit relation holds

N—oo

lim 1zN:F(a-(A ))—ifF(lp)d t=(t tq) (4.1)
N& o T uG) Js H T '

whereA;(An) ranges over the spectrumAf, for j =1,...,N.

Example 4.5. The matrix A = tridiagy [-1, 2 — 1] is related to the second order finiteféirence
discretization of the second derivative in one spatial digien. It is well-known that;(Ay) =

2-2co(2%), for j = 1.....n. HencelAy} ~a (2 - 2 cos), (0. 7)) according to Definition 4.4.

Along with the distribution in the sense of eigenvaluestffi@rpractical convergence analysis
of iterative solvers we are also interested in a further gutgtit property calle@lustering

Definition 4.6. A matrix sequencé¢Ay} is clustered at Sc C (in the eigenvalue sense), if for
anye > 0 the number of the eigenvaluesAyf outside the disks

D(S, &) = U D(se), D(se&):={z:|z-9 <&
seS

is o(N). In other words
0:(N, 9) :=#Aj(An) 1 1 € D(S,€)} =0o(N), N — co.

If every Ay has only real eigenvalues (at least for Mlllarge enough), then any e S is real
and the related disR(s, €) reduces to the intervabt ¢, s+ €). The cluster is strong if the term
o(N) is replaced byD(1) so that the number of outlying eigenvalues is boundeddpnatant not
depending on the sizé of the matrix.

We say that a preconditionBy, is optimal forAy if the sequencéP ' An} is clustered at one
(or to any constant with positive real part) in the strongsserOf course, the optimality is also
reached if the clustering is at a s®twith S contained in a complex box[8] x i[—y, y] with
a, 3,y independent oN and 0< «@ < B: as already mentioned a very interesting case occurs
whenS contains just a point or a finite number of points.

The (weak or general) clustering is also of interest as ai$tguindication that the precon-
ditioner is dfective.

Remarkd.7. {An} ~a (¥, G) with ¢ = sa constant function is equivalent 8y} being clustered
atse C.
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The previous Definitions 4.4 and 4.6 can be stated also fogittgailar values just replacing
A with o andeigenvaluavith singular value

Definition 4.8. A sequence of matricd#\y} is sparsely vanishing and only if YM > 0, ANy
s.t. YN > Ny it holds

#ioi(An) <My <r(M)N,  lim (M) =0.

Remarkd.9. If {An} ~» ¢ with measurable, then{Ay} is sparsely vanishing if and only df is
sparsely vanishing, that is ligy,. u{X : [¢(X)| < 1/M} = 0 with u{-} denoting the usual Lebesgue
measure.

Remark4.10 The notion of sparsely vanishing matrix sequence is impoitathe context of
preconditioning. Let us assume th&4} is used as a preconditioning matrix sequenceAq:
if {An — Pn}is clustered at zero, the{ﬁ’ﬁlAN} is clustered at 1 if in additiofPy} (and a fortiori
{An}) is sparsely vanishing. The latter argument is crucial @ghoof of Theorem 4.14.

For a matrixA, we will denote by||A|| the spectral norm, i.e. the largest singular value,
and by||All; the trace norm, that is the sum of all singular values. Forféflewing results,
we freely exploit the algebra structure of the locally Taphatrices introduced in [17] and its
extension, the algebra of Generalized Locally Toeplitz{{3h [14]. For the spectral distribution
of non-symmetric matrix sequences, the results in [6] a@wdial importance. In particular, we
report the following theorem, where a basic test on the tnace of a perturbatio€y allows to
conclude thatAy = By + Cn} has the same eigenvalue distribution{Bg}, provided that, for
everyN, By is Hermitian.

Theorem 4.11([6]). Let{By} and{Cn} be two matrix sequences, wherq B Hermitian and
An = By + Cn. Assume further thatBy} ~2 (v, G), G of finite and positive Lebesgue mea-
sure, both|By|| and||Cy|| are uniformly bounded by a constant independent of N, |i@adly =
o(N), N — co. Theny is real valued andAn} ~, (¢, G).

4.2. Algebraic multigrid preconditioning

The Jacobiarr’(u) is not symmetric, so we suggest to solve the linear systeprégondi-
tioned GMRES (PGMRES), in particular using the algebraidtignid in [12] as preconditioner.
We point out that, with this choice, the method convergesiniferations and we have to mem-
orise only few vectors, without resorting to a restart prhoe.

Firstly, we prove that the matriX,(f)(u), d = 1,2, is a M-matrix and it is anféective precon-
ditioner for F’(u). Finally, since, as already observed in Sectioh(ﬁ),(u), d=1,2,is similar
to a symmetric positive definite matrix and since the AMG isoatimal solver for symmetric
M-matrices [12], we conclude that it is affective preconditioner fo’(u).

There are several equivalents definitions of M-matrix (88 We use the following.

Definition 4.12. A square matrix is #M-matrixif it has all of-diagonal entries less than or equal
to zero and all eigenvalues have positive real part.

Proposition 4.13. The matrix X(u), d = 1, 2, defined in(3.3b)is a M-matrix.

Proof. SinceD(u) is a nonnegative function, (3.3b) shows that @ftdiagonal entries o)f(,(\‘,j)(u)
are less than or equal to zero. Moreover, the diagonal erﬂfi}i,(\j’)(u) are positive and(,(\j’)(u)
is diagonally dominant. Therefore, thanks to the Gersimptheorem (Theorem 6.9.4 in [16]),
the eigenvalues are contained in the union of disks whicltan¢ained in the positive complex
half plane. O
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Even if the matrixx®(u), d = 1,2, is not symmetric, it can be easily rescaled to be sym-
metric. Hence, by Proposition 4.13 and the optimality of ANt® symmetric M-matrices, we
obtain that the AMG converges in a constant number of itenativhen applied to linear systems
with codficient matrixX,(f)(u), d=1,2.

Now we prove that)(,(\‘f)(u) is an dfective preconditioner foF’(u), describing in detail
the spectral analysis for the one-dimensional case andkesthing its extension to the two-
dimensional case. The following theorem shows that botkipenvalues and the singular values
of the preconditioned matrices sequence cluster at 1.

Theorem 4.14. Consider a (weakly) regular sequence of grids according édiriition 4.1, G=
[0, 1] x (0, 27) and assume that B O a.e.. If & D(u) > Othen

(X)) ()} ~a (1, G).

Otherwise
(X)) ~ (1, G).

Proof. Define the diagonal positive definite matrix

Sn = diagy

}. 4.2)

i + Dy
that provides a diagonal scaling useful to prove the clugieresult. From equation (3.3),
O () = I+ L) YPW) = I+ (SEIXP ) sytv(w),

and thus the sequene(P(u))~1F’(u)} is clustered at one if the sequer &Y (u)} is clus-
tered at zero anCS;ﬁX,(\‘l)(u)} is sparsely vanishing (see [15, Theor. 3.6]). Indeed, thsteting
at zero of{S;,lY,(\,l)(u)} is not enough to ensure the clustering at zero of the seqy&a¢®f the
whole matrixBy = (SIX{P(u))1S1Y{(u), because, roughly speaking {8, X (u)} is not
sparsely vanishing it amplifies the eigenvalues of the m&yi (see Remark 4.10).

First, we prove thaiS;,lx,(\ll)(u)} is sparsely vanishing. From equation (3.3b), it holds

SX{(U) = Syt - 6hSILE),,. (4.3)

The grid points are defined ag = g(z) wherez = k/(N + 1), k = 0,...,N. Therefore
Z41 -z =hand

Miia + e = 9(z1) — 9(&-1) = 2hd (&), & € (Ze-1, Zur1)-

It follows that
{SN'} ~4 (0,G), (4.4)

sinceg’(X) is bounded. The matriaehSﬁlL(Dl)u is a positive semidefinite matrix and its spectral
distribution was already studied in [15, Theor. 3.7]. Inailet

{=hSLE,) ~1 (w1, G), (4.5)



whereG = [0, 1] x (0, 2r) and
ya(x,9) = WP (x)(2 - 2 cos§)),
0 () = { DUE) —jf g7 () is defined and nonzero

g (x )
1, otherwise

For a (weakly) regular sequence of grids the functigiis sparsely vanishing. Therefore, apply-
ing Theorem 4.11 to the splitting (4.3), thanks to (4.4) ah8), we have that

(SAXB(U)) ~4 (Y1, G)

and thus the sequen(ﬁ@lx,(\,l)(u)} is sparsely vanishing according to Remark 4.9.
Now we prove thath,lY,gl)(u)} is clustered at zero observing that

. fAt , ,
SYD(u) = - T (u)diagh[Dy. (4.6)

In order to estimate the eigenvalue distributioﬂ'ﬁf)(u) in (3.3d), we preliminarily observe that

Us1) = UCG) _ U(9(Zei1)) — U(9(Z)) 2 — %

Pii1 Ze1— & 9(ze1) — 9(z)
_ V@)@ @7
g (¢w)
whereéy, & € (., Z.1). Owing to well-known results on Toeplitz matrices (sed [#]holds that
{tridiagi[-1, 0, 1]} ~, (i2sin(9), (0, 21)). (4.8)

Since the diagonal oT,(\,l)(u) represents a lower order term, due to (4.7), we have
TR (u) = diagy[u'(g(80)]tridiagy [-1,0, 1] + En

whereEy has infinitesimal§pectral norm, so th&k} ~, (0, G). Furthermore a direct computa-
tion shows thatdiagy [U'(9(&))]} ~a (U'(9(X)), [0, 1])). However, the sequences

{En}, {diagi[u'(9(€))]}, {tridiagh[-1,0, 1]}

are GLT sequences with symbolsu(g(x)), i2 sin(s), and the set of all GLT sequences forms
an algebra (see [14]), and in particular any linear commnabf products of GLT sequences
is a new GLT sequence having as symbol the same linear cotidvired products of the basic
symbols. As a consequence, by combining equations (4..8), (#he previous argument, and
taking into account the antisymmetric part )(u) haso(N) trace norm, by Theorem 4.11, we
conclude that
(TR(W) ~, (i2u'(g() sin(S), G). (4.9)

Hence, from equation (4.6) it follows thm,(llY,(\ll)(u)} ~,(0,G).

If D’(u) > 0, by equation (4.6) and the similarity transformation
OAt
2
we obtain an antisymmetric matrix that, up to a lower ordemteshows spectral norm going to
zero ash tends to zero. Therefore, thanks to Theorem 4.11, we aneedldo consider only the

symmetric part and hence we obtain trta,le,(\ll)(u)} has also an eigenvalue cluster at zerl
10
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Remarlkd.15 The assumptio®’(u) > 0 is often satisfied in the applications, e.g. in all phenom-
ena described by the heat equation with constafiislon codicient and by the porous media
equation, i.e. the PDE (1.1) witB(u) = mu™?! for m> 1 (see e.g. [19, Chap. 2]).

As already observed in Remark 4.15, in real applicationsjesassumptions concerning
D(u(x)) have to be considered. For instance, in the one-dimeaksatting, a practical situa-
tion occurs when(x), and thusD(u), vanishes identically in some nontrivial sub-intervahi§
situation is not covered by Theorem 4.14 where we requiratiDhis positive a.e.. however
the argument that proves Theorem 4.14 can be used again tlvedgeneral assumption thiat
vanishes on a finite number of disjoint nontrivial close@imbls and it is positive a.e. in the rest
of the domain. More precisely, by looking at the expressinrf2.2), (3.3), and assumirgnon-
trivial disjoint closed sub-intervald, . .., Jk in which u vanishes, we observe that b )(u)
andF’(u) essentially decompose in a direct sum with blocks of theessie with identities of
appropriate size corresponding to the samplings whésédentically zero.

More in detail, Iet(U!(:Ol Ki) u (U:lo Ji) be a partition of the whole domaia,[b], whereKq
andKy,1 may be empty. For a matriMy € RV*N define the restrictioiiy|k; to be the diagonal
block of My corresponding to the indices iy and the decomposition

D(MN) = Mnlk, @ 13, ® Mnlk, ® - - - & Mnlk, ® 13, ® Mnlkess

where for square matrices andB, of sizeu andv, respectively, its direct surA @ B has size
u+ v and is defined as the following block diagonal matrix

AeB= 0 B

AO}'

By examining the entries of the Jacobian matrix (3.3) we liase
XPU) = DXPW) +Ruk, F/(u) = D(F'(u)) + R

where the termBy andﬁN,k have rank not exceedingld{ 1). In order to understand the latter
statement, denote with andL;, j = 0,...,k + 1, the first and the last index ig;, and observe
that the elements

(F" (W) 4-1- (F W1y, » (F"(Wh-11,1

are generically nonzero, while the corresponding posstafi?D(F’(u)) are null by construction.
Moreover, the same holds replaciijgandlj — 1 in the previous formula with.; andL; + 1
respectively and both remarks are valid ¥y(u) too. ThusRyx andﬁN,k have nonzero entries
in at most 4K + 1) rows.

Notice that a similar argument can be used in the two-dinoedisetting if thek sub-
domains wher® identically vanishes have smooth enough boundaries: wnfately in that
case, ifN? is the global size of the involved Jacobian, then the rankeotion will grow asN
with constant proportional t& and therefore the quality of the corresponding clusterktveil
lower.

Now, due to the corresponding direct-sum structure of theldian and of the preconditioner
and owing to the constant rank Bfx andRy, we have clustering at one C(b(,(\,l)(u))’lF’(u)}
if we have the same clustering fe(X(u)lk,)"*F’(u)lk,}, for everyj = 0,...,k + 1. In other
words, the statement of the clustering in this setting redwompletely to Theorem 4.14.
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We end this section observing that the two-dimensional casée treated in a similar fash-
ion but with weaker results. Since in this case, due to thelimaarity, it is not possible to
symmetrizeXy by a similarity transformation, we limit ourselves to detéme the singular value
distribution. To this end, it diices to replac&y in (4.2) with Sﬁ\,z) = LI\2 Following the proof
of Theorem 4.14 in a two-dimensional setting and using Téwa3.8 in [15] it holds

{(XQU)F )~ (1, G), (4.11)

whereG = [0, 1]? x (0, 27)2. Unfortunately, in the two-dimensional case a similarignsform
like equation (4.10) does not hold even assunﬁ?%@ > 0 and so the existence an eigenvalue
cluster can not be easily proved.

The dificulty in the solution of a linear system with dfieient matrixF’(u) is now moved
to the solution of a linear system with dtieient matrixX,(\‘f)(u). From Proposition 4.13 we have

that X,(\f)(u) is a M-matrix and the algebraic multigrid (AMG) is well-kwa to be an optimal
solver for M-matrices. A detailed description of the AMG damfound in [12] or [18].

Remark4.16 The AMG described in [12] converges with a convergence faictdependent
of the size of the problem when applied to a linear system aitymmetric M-matrix (see
Theorem 5.5in [12]). Therefore the AMG is afiective solver foD(,(f)(u) since it is a M-matrix
and it can be rescaled to be symmetric. If we combine therlategement with the fact that
Xﬁf)(u) ensures clustering at 1 when used as preconditionér’{on, then we can conclude that
we have an gective AMG-preconditioning solver for the whole systemhibdficient matrix
F’(u). Indeed the numerical experiments in the last sectionalgthrly show that the proposed
strategies work optimally (or quasi optimally when the duidction is highly nonlinear) with
a total computational cost which is linear (or almost lineaith respect to the siz8l of the
involved matrices.

5. Marble sulfation

In [13] simulations for the sulfation of marble on the sudasf monuments are described.
This phenomenon is the transformation of Ca@®the marble stone into CaQ02H,0 (gyp-
sum), that is triggered in a moist atmosphere by the aviditiabf SO, at the marble surface and
inside the pores of the stone.

The mathematical model employed in [13] was described in [I}e two main variables
of the model are(t, X) denoting the local concentration of calcium carbonate gfa) for the
local concentration of S© As the reaction proceeds, the calcium carbonate conciemtia
reduced from the initial valuey, as CaCQ@ is progressively replaced by gypsum. The porosity
of the marble-gypsum mixture is assumed to be the linearpotation between the porosities
of pure-marble and pure-gypsum phases, namfdy = ac + g8 for constantsr andg such that
¢(c) > 0 forc > 0. The model considered is thus described by the followirstesy of PDES:

3906(;3)3 = —2p(0)sc+dV - (V).
" (5.1)
o auose

The parametenss andm. are fixed by the physical properties of the species involagdé reac-
tion and make sure that the mass balance is fulfilled. On ther dianda represents the reaction

12
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Figure 1: Sample two-dimensional doma¥for problem (5.1). In the left panel, the “brick pattern” anepresents the
marble stone, while the dotted area is air. The boundaryasmiwith a solid line where Dirichlet boundary conditions
are applied and with a dotted line where free-flow boundanditmns are imposed. In the right panel we showxhe
points of a non-uniform grid.

rate and it depends (among other things) on the moistureedditrand on the temperature, but
we keep it constant in this work.

The spatial domaif2 where (5.1) is set represents a piece of marble stone, forhwti
least a portion of the bounda#{2 is in contact with the polluted atmosphere. In particdler
is, in general, split into two parts: one represents theralieface of the marble sample, in
contact with the air, and the complementary part that sépathe portion of the marble object
of the simulation and the rest of the monument (see Figur8ayndary conditions are set, by
imposing the value of on the outer boundary and by imposing free-flow conditiomsfon the
inner boundary. Since a boundary layer separating the gupsum crust from the inner pristine
marble emerges at the Dirichlet boundaries, we employ niéorm grids as depicted in Figure
1 in order to better resolve the solution there.

The general setup for the scheme is the same as in the scaéarfuoat discretize the time
variable using (1.2) and then discretize the spatial doraaththe elliptic diferential operator
with finite differences, write the time-advancement problem as an impliciation and set up a
Newton scheme for solving it.

5.1. One space dimension

We consideQ = [0, 1] and the grid pointxx = g(k/N) for a nondecreasing filerentiable
functiong : [0, 1] — [0, 1] such thaig(0) = 0 andg(1) = 1. Forg(t) = t we would obtain the
uniform grid employed in [13].

In this problem, the reaction ratecan be considered as a singular perturbation parameter
and, fora — co, the solution tends to the solution of a Stefan problem [8pré&bver, for finite
a and for the boundary conditions of interest, the functiofisx) and s(t, X) are nondecreasing
(respectively non-increasing) far> 0 and present a sharp transition from the boundary value 0
(respectivelysy) to ¢y (respectively 0). As noted in [1], the change of variabdesas andt = a’r
completely removes the paramegefirom the system. Thus the sup-norm of theéerivative of
the solution should scale &{a). This suggests the use of a Bakhvalov mesh generated by the

function
o0 = x(®) =-%In(%) fort € [0, 7] 5.2)
xalt) = x(r) + ¥’ (0)(t-71) forte(r,1] '
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The parameteq controls how many points are taken in the nonuniform portibtihe mesh (we
setq = 0.5), while o controls the grading of the mesh, that is how much can vangites of
two neighbouring intervals. In order to accommodate forrf@ement of the boundary layer
towards the interior of the domain, we take a very large value ~ +/a, that sets up a fine
nonuniform mesh on a thick enough area. It is worth pointingtbat the choice of mesh will
affect the convergence of the approximation of the solutioh@RDE, but, to a large extent, not
the convergence of the methods for the nonlinear systemhangreconditioner for the Jacobian
that are studied here below.

We denote the midpoints by.1/2 = (X1 + X)/2 and employ two staggered grids in the
domainQ: the set of pointx; (j € N) carrying the unknowns? for g(t", x;) and the set of
pointsxj.12 (j € N) with the unknown$’l.‘+l/2 for c(t", Xj+1/2). The shorthand notatio,lﬁfj‘ﬂ/2 =
¢(c?,;,,) will also be used.

We describe explicitly only the equations for a generic nagay from the boundary, but the
boundary conditions can be easily imposed setting the \@&flgg and considering ghost points
on thex = 1 boundary.

We approximate the elliptic operator along the same linds é3.1) with the second order
finite difference formula

. (0(x111/2)) L — (g )) L) s
x(@(C)OxIy, = TEMIE (5.3)
and the other terms as
hjr10(Cj-1/2) + hjp(Cj+1/2)
o= - A4
hj+1¢(Cj-1/2)Cj—1/2 + hj(Cj+1/2)C;
(,D(C)dei _ Dir1Psj-12 Jh.l/f_ - i j+1/2 J+1/ZS]_’ (5.4b)
| j+1
_ . Sj + Sj+1 ' 4
‘/’(C)ij,l/z = ‘/’(C]—l/Z)TCJ—l/Z- (5.4¢)

Note the two diferent kinds of averaging procedures required in the firsprseé and last lines:
Xj+1/2 is the midpoint betweer; andx;.1, butx; is not the midpoint betweex.1,> andx;j_1».

Thus the tridiagonal matrix representing the elliptic ger in (5.1) is-L, = —LS()CH) and is
defined as in (2.2). Introducing tiéx N matrices
. [ e (Crr/2) + hk+190(Ck—1/2)]
®(c) = diagl , 5.5a
( ) gk i hk + hk+1 ( )
[h h _ _
co) = diagl[:] k@ (Ckt1/2)Ch+1/2 + Mk 100(Ck-1/2) Ck 1/2}’ (5.5b)
I i + hiq
. [ +
S(c, s) = diagy w(ck+1/z)(s‘”2 Sk)] (5.5¢)

our scheme computes andcy, , , with theg-method for time diferencing, namely as the solu-
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tion of the following system of equations

0=F9(sc) = dC)s— D Hs L + eAt%C(c)s+ 6Atd Lfal()c)s

a n-1yen-1
+6Ath(c) + (1 - G)AtEC(C )s" (5.6)
+(1-0)AtdLY | 1+ (1 - 6)Ath(c™ ),

p(c™1)
0=FO(sc) = c-c" +6AtES(c, 9c+ (1 - A2 S(c™, s ),

Equations (5.6) are not linear, since also the mati@es, L, and® depend ore” ands”, either
directly or via the functiorp. Obviously, forg(t) = t, formulae above reduce to those of [13].
The terms involving the functiob are the Neumann boundary terms and will be disregarded in
the theoretical considerations below.

Both Crank-Nicholsond = %) and Implicit Euler § = 1) give rise to an unconditionally
stable scheme and we employ Newton iterations to solve thénear problem (5.6). To this
end, one needs the Jacobian matrix, which is naturallyispdittour N x N block as

NN u
R I ] u=(5). 5.7
[Jg J8 Uc ®.7)

We now describe in more detail its entries, disregardingifiemk corrections for the boundary
conditions. In particular,

3= o) + GAt%C(c) +oatd L) (5.8)
J¢ = diagy [1- HAthS Sk_l; * (@ (Cer2)Orz + ¢(Ck—1/2))] , (5.9)
32 = oAttridiagy |3, 3. 0] diagy [¢(Ci-1/2)C-1/2] (5.10)
B =d(c,9) + 9At%(~2(c, 9 - 6Atd YJ(9), (5.11)

whereY,(\ll)(s) is computed as in (3.3c), but usisgn place ofu andy’(c) in place ofD’(u) and

@(c, 9) = tridiagy, [0, h:lkﬁiﬂ S’ (C-1/2), ﬁ%ﬂ'(cku/z)],
C(c.s) = tridiag) [0, 72— S(¢’ (Ck-1/2)Ci-1/2 + ¢(Ci-172)-

h
Ao (9 (Gkr1/2) G2 + 9(Cr12)) |

5.2. Two space dimensions

In two space dimensions we consider the grid poifs= (g (i/N), g (j/N)) and the stag-
gered grid of the pointsi_y/2j-1/> With abscissag (gl((i — 1)/N) + gi*!(i/N)) and ordinates
2(dP((j - 1)/N) + g2(j/N))). The unknownss; for i, j = 1,...,N are collected in lexico-
graphic order into the vecta while the unknowns;_12j_12 fori,j = 1,..., N, are collected
in lexicographic order into the vector (See Figure 1 for an example)

Each time step requires the solution of a nonlinear equatiaN? unknowns that can still be
represented by formula (5.6), with the matrices descritexd below. The dierential operator
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is represented by a matrix (denote%) that has the sparsity pattern of the tensor product

LS()C) @l+1® Lfal()c) and with entries computed as thoseL§§f (see Section 2.2).

The other matrices appearing in (5.6) are the two-dimeisianalogues of the (5.5). For
example, matrice® andC are again diagonal and have entries obtained with weighigging
in both thex and they directions since we approximate

Cij

__h hjCit1/2j+1/2 + hj+lci+l/2,jl/2)
hi + hi+1 hj + hj+1

hisa (hjCi—l/Z,j+1/2 + hj+1Ci—1/2,j—1/2)
hi + hi+1 hj + hj+1

in perfect analogy with formulae (5.4a) and (5.4b). Avenggihe s variables in (5.4c) can
again be performed with fixed weights also on honuniformgrithe main dierence with the
one-dimensional case is that each entrydé? and C® depend on four unknowns io (e.g.
Ci+1/2 j+1/2) and each entry & now depends on four unknownssrfe.g. s j+- for e = 0, 1).

Correspondingly, the Jacobian has the same2block structure as in the one-dimensional
case, but now

3= 0@ + 9At% cO(c) + oatLE),

which is a diagonal correction of ord&(1 + At) to the penta-diagonal matrix representing the
elliptic operator. Moreover thd$ and J blocks have now nonzero entries on four diagonals,
while the J¢ block is again diagonal.

5.3. Solving the linear system

At each Newton iteration, one has to solve a linear systern métrix J, which is not sym-
metric and thus GMRES is a natural choice for the main Krylolver. In order to devise a
preconditioning strategy, we follow the proposal in [13]e\dbserve that the lower left block
has nonzero entries only on two diagonals (respectively fotwo space dimensions) and these
decay a®(At), while the bottom right blocKg is the identity matrix plus a diagonal matrix with
O(At) entries.

Theorem 5.1([13]). Assuminght = h = ﬁ the upper triangular part of J if5.7), namely

S S
pz[ %s%g } (5.12)
Cc

is an optimal preconditioner for J, both in one and two spagaeahsions, assuming that the
functiony(c) in (5.1) is bounded away frora (i.e. when the porosity of the gypsum-carbonate
mixture is never zero).

Remarks.2 When applying the precondition€rin (5.12), the block triangular systeRy = b
is solved as

Ye = (39 be
and
Ys = (JS)_l(bs - \]g)’c)’ (5.13)

where the the sybuper-scripts and ¢ stand for the upper half and to the lower half of the
vectors, respectively. Theorem 5.1 shows that the speodfuT!J is strongly clustered at 1
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independently on the discretization paramétand thus the block-preconditioneris optimal.
The matrixJS is easily inverted since it is a diagonal matrix. On the othend, the matrix
J$ can not be easily inverted, especially for multidimensigmablems and small values gf

Therefore, an optimal solver for thi block is needed for obtaining affieient global method.

We point out that there are many similarities betweenXhblock and the Jacobian matrix
(3.3a). In fact, with respect to (3.3a), the identity is esg@d by a diagonal matrix wit(1)
entries (0 +6At-2 C), while the tridiagonaV,ﬂ(u) term is not present ids, corresponding instead
to the third term of thel$ block. Hencel; is spectrally not too dierent fromXy(u) in (3.3a).
Thus we expect that the unpreconditioned GMRES applieddditiear system (5.13) has an
iterations count that grows similarly to the one f&¥(u) of (3.3a). In [5] there is a discussion of
such growth in the case of uniform grids, while in in Subsat.1 we provide some numerical
evidence in the case of nonuniform grids.

The previous discussion suggests to use the AMG preconditimr the cofficient matrix
J$, in analogy with the strategy discussed in Subsection 4.2he codficient matrix F’(u).
Indeed, whers > 0 the matrifoﬁd()c) is a M-matrix and the diagonal matrig + 6At-2C has
positive entries, thugs is a M-matrix and the AMG is a optimal preconditioner for tireebr
system (5.13).

In conclusion, we solve the linear system of the Jacoliam (5.7) using the P-GMRES
with the preconditioneP defined in (5.12) and where the linear system (5.13) is sobrdd
approximately by employing just one V-cycle iteration of MG algorithm.

6. Numerical tests

Numerical tests were performed in MatLab 7.0, exploiting MatLab interface to the AMG
library of [10]. In particular, the algebraic multigrid prenditioner was the one provided by the
functionhsl_mi20_precondition with the following choices: the smoother is the damped Ja-
cobi method with damping parameter set {8 21 pre-smoothing and post-smoothing iteration
were used, coarsening is halted if less thgmints are left in the coarse mesh or if all rows in
the coarse matrix do not have a negatiffediagonal element. All other parameters were left to
their default values.

In Subsection 6.1, we present tests on the predictions dhtary developed in Section 4,
while Subsection 6.2 is devoted to the model described ini®@eb. Finally 6.3 is about the
convergence of the Newton method.

6.1. Scalar, degenerate, equation

The purpose of the following tests is to highlight the featuof the approximation techniques
developed in the paper. Therefore, we start with a monodsinaal example, even if iterative
methods are not necessary since the linear system withridlgaominant tridiagonal matrices
can be éiciently solved by a direct method, because the asymptotieaieur can be easily
estimated showing that the numerical results agree witththeretical analysis provided in the
previous sections. To this end, we consider the scalar equ@t 1) forD(u) = mu™?* form> 1
and approximate numerically the self-similar exact sohsi

u(t, ) =t [1- o 3= (xI(t + 1)*“)2]i%1 ., a=-L (6.1)
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due to Barenblatt and Pattle [19] (thesubscript denotes the positive part). The exact solution
features singular points that move towards the boundarfie@fibmain at finite speed (Figure
2a), and it is nonzero and smooth in between these pointseandmutside.

Although for this kind of equations one would naturally emphdaptive mesh refinement
techniques, we solve the problem on a set of nonuniform fixeshms, varying the distribution
of the mesh points in the domain. The tests confirm the (olsyiocemark that employing too
many points in the smooth region at the centre of the domadetismental for the error of the
scheme, but more surprisingly that doing so also puts uredaentra stress on the solver, since
the condition number of the linear systems may grow drarall§icThis is accurately predicted
by the theory o§4 and verified here below. On the side, we also show that AMGqurditioning
remains optimal even with the worst choice of meshes coreilleere.

In particular we consider the meshes generated by the gndifinsg, : [-1,1] — [-1,1]
defined by

e (t) = sign(t)lt|”

Note thatg; corresponds to the uniform mesh, while choosing 1 generates a weakly regular
mesh that is finer in the middle of the domain¥ 1) or at the endpointsy € (0, 1)). We also
consider two regular meshes of Shishkin and Bakhvalov tgpe {11]). A mesh of each kind
(with 32 points) is depicted at the bottom of Figure 2a.

Condition number.First note that a direct consequence of the spectral asatySlection 4.2 is
that introducing a grid refinement at a point where tHféudion codicient is not degenerate has
adverse consequences on the condition number of the Jacuhiaix.

For the one-dimensional case, we consM@r = hF’(u) since the spectral condition number
is not dfected from constant scaling. From the proof of Theorem 4@4 jn particular equation
(4.5), it follows that{ A} ~; (wa, G), whereG = [0, 1] x (0, 7) and

wa(x, s) = O (X)(2 - 2 cosg)),

with

g/(x)z ’

wiPl(x) = DLl if g’'(x) is defined and nonzeyo
g otherwise :

Hence, the spectral condition numbelﬁéj) can be estimated since the largest eigenvalue grows

as the order of strongest poledia(x, 9), i.e., inwi®!(x). Thehly term inAﬁ) implies that the
smallest eigenvalue goes to zeroag, ~ 1/N. The strongest divergence @f,,x may arise
from the first term, especially whegi(x) has a zero where the numerator does not vanish: in this
situation, the largest eigenvalue,@ﬁ) would grow asimax ~ N?% if g’(x) has a zero of orda.

The resulting spectral condition number then growsl&8*. This actually happens in our tests
when using they,- andgs-generated grids, since in these cases the zegbisfatx = 0, where

the solutioru of (6.1) is nonzero.

In particular we computed solutions for the one-dimendiBaaenblatt problem witim = 3,
final time 20’32, At = 1/N and N ranging from 32 to 4096. During the computations we
estimated the spectral condition number of the Jacobianxr(@bndest in MatLab) and, in
different runs, the number of iterations used by GMRES withoetqnmditioner, with Jacobi
preconditioner and with the AMG V-cycle preconditioner eeecorded. Table 1 collects all
data, as well as the CPU time used for the setup of preconditsoand linear system solves
during a complete simulation on tie= 4096 grids.
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Barenblatt solution for tin [0,1]
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Figure 2: Exact Barenblatt solution (arrows indicate ttrection of time evolution) and meshes with 32 points (a) and
Euclidean norm of the error at the final time for the Barerttdgtiation (6.1) in one space dimensions (b). Thin lines are
regular meshes, thick ones are weakly regular meshes.
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1D cond(d) GMRES iterations Newton GMRES CPU time

mesh noP Jac | AMG | iterations| noP Jac AMG
unif NOI7 | NO42 [ NO47 [ 2,54 2.24 1058 1892 45
Shish | N4 | N046 | N048 | 273 3.00 1466 2590 93

Bakh | NO85 | NO29 | NO41 | 237 2.00 925 1821 55
du/2 NO94 1 NO3B | NO44 1 250 2.99 1343 2194 85
I N300 | NO76 | NOTO | 347 2.01 17558 | 41721 86
g3 N500 | NO83 | NO78 | 383 2.02 n/a | 159993 88

Table 1: Regular (at the top) and weakly regular (bottong fymctions fom € [-1, 1]. Condition number of the Jacobian
matrix, average humber of GMRES iterations per Newton steprage number of Newton iterations per timestep, for
N ranging from 32 to 4096. The last columns are the CPU timesaorsds spent on GMRES (including setup of
preconditioners) for a complete run on the largest grid.e(Thavailable data is due to GMRES stagnation). The sub-
columns refer to the preconditioning strategy used insifR&S (unpreconditioned, Jacobi, AMG V-cycle).

These data confirm the prediction on the growth of the commliiumber and also the opti-
mality of our preconditioning strategy: in all cases coes@dl, the number of GMRES iterations
grows with N, but the PGMRES iterations (where the preconditioner is A&k V-cycle) re-
mains constant with respect dand siifers only a very moderate increase with the worsening
of the grid irregularity.

Forg, with @ = 4,5, we observe a growth of the condition number with the nunoberid
points with the lawdN” andN®, respectively. We did not report the result in the table sithe
Newton method has fliculties to converge in these extreme cases. In such casesdlud other
nonlinear solvers with guaranteed convergence should b&dered at the beginning (see e.g.
[3]). Also, we do not report data for the two-dimensionalegsince they show a similar pattern
as the one-dimensional ones discussed here.

Errors. In Figure 2b we compare the errors at the final time recordetthénprevious runs.
We consider the Crank-Nicholson time integration schentl warious choices for the spatial
mesh. We observed that this method leads to lower errorsttieamplicit Euler method, but
its theoretical order of convergence is not reached owintipeonon-regularity of the solution,
which has a compact support expanding in time, with two ndiiedintiable points with vertical
tangent at the boundary of the support.

Also in terms of the error reduction, we see that the mesh#smbst points in the middle
of the domain perform most poorly (sggandgs), while uniform meshes or meshes with addi-
tional points where the discontinuity i travels give rise to more regular convergence histories.
Among these, the error reduction is more regular for mesbaemted with smoother generating
function, as shown by the serigg2, gs, s.

The same comments extend to the results for the two-dimealssamulations.

6.2. Sulfation model

For the marble sulfation problem, we consider a situatiat thodels the deterioration at an
edge of a monument. We report the solution of the model at tia fime of the simulation,
as well as studies of the performance of the preconditiomedsvarious measures of the error
committed at dierent grid sizes, comparing uniform and non-uniform mesh#s fix, as in
[1], the physically correct valued = 0.1, mg = 64.06, m. = 10009,« = 0.01,8 = 0.1, and
integrate the equations in time upttg, = 1. As explained in [1]a controls the reaction rate and
thus the temporal scale of the PDE; in particular it depemdstber ambient parameters (mainly
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Figure 3: Newton iterations and PGMRES iterations recorlagthg marble sulfation simulations in one (a) and two (b)

space dimensions. Symbols indicate the median and the evhisktend from the minimum to the maximum value. Red

crosses refer to the uniform grids and black circles to thiehBalov grids. In these tests the Crank-Nicholson scheme
was used.

temperature and humidity) and it is a lot harder to measiere We fix it to the reasonable value
a=10*asin[1].

This model prescribes boundary conditions of Dirichletetygix = 0 (and also ay = 0 in
the two-dimensional case), that are not consistent withirtitial data: in fact the simulations
start with no SQ inside the marble and impose a nonzerg $6ncentration in the surrounding
air. This inconsistency gives rise to oscillations due t fhat Crank-Nicholsorg(= %) is not
Lo-stable. Here we take the simple approach to replace theCliestk-Nicholson step with two
Implicit Euler ¢ = 1) steps withAt = 1/2N. (Note that another approach would be to use the
three stages diagonally implidit-stable Runge-Kutta of second order described in [4].)

Preconditioning. In Figure 3 we show the number of Newton iterations needecetfopm a
simulation with model (5.1) in one and two-dimensional sgu#zomains varying the number of
grid pointsN, with uniform and Bakhvalov grids. We point out that the nmbf iterations is
very small and tends to become lower with increadihglue to the fact that the grid resolves
better the boundary layer. The lower portions of the graplosvehe number of preconditioned
GMRES iterations needed for the linear solves. This is almosstant across the whole range
of values ofN, showing the optimality of the preconditioning strategyodover the number of
PGMRES iterations never exceeds 6, so that there is no nestioy restarting strategies in the
GMRES algorithm. We note that thanks to the AMG precondéipthe use of a non-uniform
grid does not increase the computational cost with respeetrploying a uniform grid, while
the quality of the solution improves a lot, in particularsdao the boundary layers.

Result of the simulationsFigure 4 shows the contour plot of the solution obtainednag¢ti= 1
with the Crank-Nicholson method, using a Bakhvalov grid k&4 points. We observe that the
carbonate-gypsum boundary layer has a more rounded arslgashape that the one obtained
in [13]. This is due to the improvement of resolution graridgdhe non-uniform grid.

The plot in Figure 5 shows the profiles of calcium carbonateafiable) and S@content 6
variable) along the diagonal of the domain (the bisectoheffirst quadrant), the x-axis being
labelled with the distance from the corner. The picturertyeshows the higher resolution power
of the non-uniform grid: when using uniform grids, one neédspoints to obtain the same
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Figure 4: Contour plot of the solution obtained at titne 1 with the Crank-Nicholson method, using a Bakhvalov grid
of 64 x 64 points.
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Figure 5: Profile of the solutions along the diagora+ y att = 1.0 obtained with the Crank-Nicholson and Implicit
Euler schemes, uniform and Bakhvalov grids.
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IEcll | rate | [IEclla | rate | [[Ecll2 rate | | [IE¢ll2 | rate
Ul6x 16 | 7.27 1.69 6.58E-2 0.91
U32x32| 397 | 0.87| 0.60 | 1.48| 2.92E-2| 1.17 034 | 141
U64x64 | 129 | 1.61| 0.18 | 1.68| 9.55E-3| 1.61 0.14 | 1.26
G16x 16 | 3.54 0.85 3.57E-2 0.32
G32x32 | 139 | 134|025 | 1.79| 1.21E-2| 1.56 0.16 | 1.02
G64x64 | 0.42 | 1.72| 0.06 | 2.09| 2.91E-3| 2.05 0.10 | 0.68
B16x 16 | 3.23 0.73 2.94E-2 0.26
B32x32 | 0.72 | 2.15| 0.14 | 2.33| 6.46E-3| 2.18 0.14 | 0.89
B64x64 | 0.16 | 2.13| 0.03 | 2.46| 1.21E-3| 2.42 0.11 | 0.36

Table 2: Errors in various norms for the Cag@rofile along the diagonal of the computational domain fafarm (U),
Gauss-Lobatto (G) and Bakhvalov (B) meshes ékdent dimensionsE; denotes the error at final time on tbgariable
andE; (last two columns) denotes the error in the function deswilthe front position versus time.

resolution of the boundary layer achieved the 32 points Baklv grid. This is accomplished
also thanks to a more accurate and steeper profile of theiable whose values are ledtegted
by numerical difusion. The data shown were obtained with the Crank-Nicmotethheme. We
observed only a small flerence in resolution between the two time integration sasemwith
Crank-Nicholson being slightly sharper than Implicit BulBince the computational cost of the
two schemes is almost identical, we favour the Crank-N®twbne, but this latter observation
indicates that in this problem the employment of the secaddrd_-stable scheme of [4] is not
cost-dfective since it involves the computation of two implicitgés per time step.

Table 2 collects data on the convergence of the algorithmthiBoend, errors in the and
s variables were computed by comparing the numerical resuitts a solution computed on
a very fine mesh (indicated heferencein the legend of Figure 5). They are listed (in three
different norms) together with the convergence rates for meshesform, Gauss-Lobatto (see
the Introduction) and Bakhvalov type (see (5.2)). We refieetdata on the variable, the other
ones being completely analogous. The benefits of nonunifoeshes are apparent from the
table, where it can be seen that a generic nonuniform meslinganove the errors, but that
Bakhvalov meshes yield also the optimal (second order) egance rates. The last column
of Table 2 is about the position of the marble-gypsum intafavith respect to time, that is
important for decision making in real world applicationsic8 function was estimated from the
simulations by looking for the steepest gradient in the peaff c along the diagonal. In this
respect, the nonuniform meshes can approximate the fraitigoat a given accuracy by using
far less points in the grid.

6.3. Convergence of the Newton method

Finally, Figure 6 shows the graphs of the convergence to aktlee Newton residual in the
nonlinear scheme. The left panel is for the Barenblatt gwblvith m = 2 and the right one
for the sulfation problem. Curves for the one-dimensiorales refer to 128 grid points while
the two-dimensional tests were performed withx322 grid points. Data were recorded during
the first timestep, witlt = 1/N, and the initial guess was the initial data. Performancéef t
method in later steps or with more grid points is similar afiteiro better, due to a smoother
solution or enhanced grid resolutions.
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Sulfation problem: Newton convergence

Barenblatt problem: Newton convergence
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Figure 6: Decay of Newton residual during the first timestep.
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