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Abstract. We propose intersection type assignment systems for two resource
control term calculi: the lambda calculus and the sequent lambda calculus with
explicit operators for weakening and contraction. These resource control calculi,
λr and λGtz

r , respectively, capture the computational content of intuitionistic nat-
ural deduction and intuitionistic sequent logic with explicit structural rules. Our
main contribution is the characterisation of strong normalisation of reductions in
both calculi. We first prove that typability implies strong normalisation in λr by
adapting the reducibility method. Then we prove that typability implies strong
normalisation in λGtz

r by using a combination of well-orders and a suitable em-
bedding of λGtz

r -terms into λr-terms which preserves types and enables the sim-
ulation of all its reductions by the operational semantics of the λr-calculus. Fi-
nally, we prove that strong normalisation implies typability in both systems using
head subject expansion.

Introduction

It is well known that simply typed λ-calculus captures the computational content of
intuitionistic natural deduction through Curry-Howard correspondence [21]. This con-
nection between logic and computation can be extended to other calculi and logical
systems [19]: Parigot’s λµ-calculus [28] corresponds to classical natural deduction,
whereas in the realm of sequent calculus, Herbelin’s λ-calculus [20], Espı́rito Santo’s
λGtz-calculus [14], Barbanera and Berardi’s symmetric calculus [3] and Curien and Her-
belin’s λµµ̃-calculus [11] correspond to its intuitionistic and classical versions. Extend-
ing λ-calculus (λGtz-calculus) with explicit operators for weakening and contraction
brings the same correspondence to intuitionistic natural deduction (intuitionistic se-
quent calculus) with explicit structural rules, as investigated in [22, 23, 18].

Among many extensions of the simple type discipline is the one with intersec-
tion types, originally introduced in [9, 10, 29, 33] in order to characterise termination
properties of term calculi [36, 16, 17]. The extension of Curry-Howard correspondence
to other formalisms brought the need for intersection types into many different set-
tings [13, 24–26].
⋆ Partially supported by the Ministry of Education and Science of Serbia, projects III44006 and ON174026



Our work is inspired by Kesner and Lengrand’s work on resource operators for λ-
calculus [22]. Their linear λlxr calculus introduces operators for substitution, erasure
and duplication, preserving at the same time strong normalisation, confluence and sub-
ject reduction property of its predecessor λx [8].

Explicit control of erasure and duplication leads to decomposing of reduction steps
into more atomic steps, thus revealing the details of computation which are usually left
implicit. Since erasing and duplicating of (sub)terms essentially changes the structure
of a program, it is important to see how this mechanism really works and to be able to
control this part of computation. We choose a direct approach to term calculi, namely
lambda calculus and sequent lambda calculus, rather than taking a more common path
through linear logic [1, 7]. In practice, for instance in the description of compilers by
rules with binders [31, 32], the implementation of substitutions of linear variables by
inlining is simple and efficient when substitution of duplicated variables requires the
cumbersome and time consuming mechanism of pointers and it is therefore important
to tightly control duplication. On the other hand, precise control of erasing does not
require a garbage collector and prevents memory leaking.

We introduce the intersection types into λr and λGtz
r , λ-calculus and λGtz-calculus

with explicit rules for weakening and contraction. To the best of our knowledge, this is
a first treatment of intersection types in the presence of resource control operators. Our
intersection type assignment systems λr∩ and λGtz

r ∩ integrate intersection into logical
rules, thus preserving syntax-directedness of the system. We assign restricted form of
intersection types, namely strict types, therefore minimizing the need for pre-order on
types. Using these intersection type assignment systems we prove that terms in both
calculi enjoy the strong normalisation property if and only if they are typable.

We first prove that typability implies strong normalisation in λr-calculus by adapt-
ing the reducibility method for explicit resource control operators. Then we prove strong
normalisation for λGtz

r by using a combination of well-orders and a suitable embedding
of λGtz

r -terms into λr-terms which preserves types and enables the simulation of all
its reductions by the operational semantics of the λr-calculus. Finally, we prove that
strong normalisation implies typability in both systems using head subject expansion.

The paper is organised as follows. In Section 1 we extend the λ-calculus and λGtz-
calculus with explicit operators for weakening and contraction obtaining λr-calculus
and λGtz

r -calculus, respectively. Intersection type assignment systems with strict types
are introduced to these calculi in Section 2. In Section 3 we first prove that typability
implies strong normalization in λr-calculus by adapting the reducibility method. Then
we prove that typability implies strong normalization in λGtz

r -calculus by using a com-
bination of well-orders and a suitable embedding of λGtz

r -terms into λr-terms which
preserves types and enables the simulation of all its reductions by the operational se-
mantics of the λr-calculus. Section 4 gives a proof of strong normalization of typable
terms for both calculi using head subject expansion. We conclude in Section 5.



1 Untyped resource control calculi

1.1 Resource control lambda calculus λr

The resource control lambda calculus, λr, is an extension of the λ-calculus with ex-
plicit operators for weakening and contraction. It corresponds to the λcw-calculus of
Kesner and Renaud, proposed in [23] as a vertex of ”the prismoid of resources”.

The pre-terms of λr-calculus are given by the following abstract syntax:

Pre-terms f ::= x |λx. f | f f |x⊙ f |x <x1
x2 f

where x ranges over a denumerable set of term variables. λx. f is an abstraction, f f is an
application, x⊙ f is a weakening and x <x1

x2 f is a contraction. The contraction operator
is assumed to be insensitive to order of the arguments x1 and x2 i.e. x <x1

x2 f = x <x2
x1 f .

The set of free variables of a pre-term f , denoted by Fv( f ), is defined as follows:
Fv(x) = x; Fv(λx. f ) = Fv( f )\{x}; Fv( f g) = Fv( f )∪Fv(g);
Fv(x⊙ f ) = {x}∪Fv( f ); Fv(x <x1

x2 f ) = {x}∪Fv( f )\{x1,x2}.
In x <x1

x2 f , the contraction binds the variables x1 and x2 and a free variable x is
introduced. The operator x⊙ f also introduces a free variable x. In order to avoid paren-
theses, we let the scope of all binders extend to the right as much as possible.

The set of λr-terms, denoted by Λr and ranged over by M,N,P,M1, .... is a subset
of the set of pre-terms, defined in Figure 1.

x ∈ Λr

f ∈ Λr x ∈ Fv( f )

λx. f ∈ Λr

f ∈ Λr g ∈ Λr Fv( f )∩Fv(g) = /0
f g ∈ Λr

f ∈ Λr x /∈ Fv( f )
x⊙ f ∈ Λr

f ∈ Λr x1,x2 ∈ Fv( f ) x /∈ Fv( f )

x <x1
x2 f ∈ Λr

Fig. 1. Λr: λr-terms

Informally, we say that a term is a pre-term in which in every subterm every free
variable occurs exactly once, and every binder binds (exactly one occurrence of) a free
variable. This notion corresponds to the notion of linear terms in [22]. In that sense,
only linear expressions are in the focus of our investigation. This assumption is not a
restriction, since every non linear λ-term has its linear correspondent, as illustrated by
the following example.

Example 1. Pre-terms λx.y and λx.xx are not λr-terms, on the other hand pre-terms
λx.(x⊙ y) and λx.x <x1

x2 (x1x2) are λr-terms.
In the sequel, we use the notation X ⊙M for x1 ⊙ ... xn ⊙M and X <Y

Z M for x1 <
y1
z1

... xn <
yn
zn M, where X , Y and Z are lists of the size n, consisting of all distinct variables

x1, ...,xn,y1, ...,yn,z1, ...,zn.



(β) (λx.M)N → M[N/x]

(γ1) x <x1
x2 (λy.M) → λy.x <x1

x2 M (ω1) λx.(y⊙M) → y⊙ (λx.M), x ̸= y
(γ2) x <x1

x2 (MN) → (x <x1
x2 M)N, if x1,x2 ∈ Fv(M) (ω2) (x⊙M)N → x⊙ (MN)

(γ3) x <x1
x2 (MN) → M(x <x1

x2 N), if x1,x2 ∈ Fv(N) (ω3) M(x⊙N) → x⊙ (MN)

(γω1) x <x1
x2 (y⊙M) → y⊙ (x <x1

x2 M), y ̸= x1,x2 (γω2) x <x1
x2 (x1 ⊙M) → M[x/x2]

Fig. 2. Reduction rules of λr-calculus

The reduction rules of λr-calculus are presented in Figure 2.
The inductive definition of the meta operator [ / ], representing the substitution of

free variables, is given in Figure 3. In this definition, the terms N1 and N2 are obtained
from N by renaming of all the free variables in N by fresh variables.

x[N/x] , N (y⊙M)[N/x] , y⊙M[N/x], x ̸= y
(λy.M)[N/x] , λy.M[N/x], x ̸= y (x⊙M)[N/x] , Fv(N)⊙M
(MP)[N/x] , M[N/x]P, x ∈ Fv(M) (y <y1

y2 M)[N/x] , y <y1
y2 M[N/x], x ̸= y

(MP)[N/x] , MP[N/x], x ∈ Fv(P) (x <x1
x2 M)[N/x] , Fv(N)<

Fv(N1)
Fv(N2)

M[N1/x1][N2/x2]

Fig. 3. Substitution in λr-calculus

In the λr, one works modulo equivalencies given in Figure 4.

x⊙ (y⊙M) ≡ y⊙ (x⊙M) x <x1
x2 M ≡ x <x2

x1 M
x <y

z (y <u
v M) ≡ x <y

u (y <z
v M) x <x1

x2 (y <
y1
y2 M) ≡ y <y1

y2 (x <
x1
x2 M), x ̸= y1,y2, y ̸= x1,x2

M[(y⊙N)/x] ≡ y⊙M[N/x] M[(y <y1
y2 N)/x] ≡ y <y1

y2 M[N/x], y1,y2 ∈ Fv(N)

Fig. 4. Equivalences in λr-calculus

1.2 Resource control sequent lambda calculus λGtz
r

The resource control lambda Gentzen calculus λGtz
r is derived from the λGtz-calculus

(more precisely its confluent sub-calculus λGtz
V ) by adding the explicit operators for

weakening and contraction. It is proposed in [18]. The abstract syntax of λGtz
r pre-

expressions is the following:

Pre-values F ::= x |λx. f |x⊙ f |x <x1
x2 f

Pre-terms f ::= F | f c
Pre-contexts c ::= x̂. f | f :: c |x⊙ c |x <x1

x2 c

where x ranges over a denumerable set of term variables.



A pre-value can be a variable, an abstraction, a weakening or a contraction; a pre-
term is either a value or a cut (an application). A pre-context is one of the following:
a selection, a context constructor (usually called cons), a weakening on pre-context
or a contraction on a pre-context. Pre-terms and pre-contexts are together referred to
as the pre-expressions and will be ranged over by E. Pre-contexts x⊙ c and x <x1

x2 c
behave exactly like corresponding pre-terms x⊙ f and x <x1

x2 f in the untyped calculus,
so they will not be treated separately. The set of free variables of a pre-expression is
defined analogously to the free variables in λr-calculus with the following additions:

Fv( f c) = Fv( f )∪Fv(c); Fv(x̂. f ) = Fv( f )\{x}; Fv( f :: c) = Fv( f )∪Fv(c).
Like in the case of λr-calculus, the set of λGtz

r -expressions (namely values, terms
and contexts), denoted by ΛGtz

r ∪ΛGtz
r,C, is a subset of the set of pre-expressions, defined

as in Figure 1 plus:

f ∈ ΛGtz
r x ∈ Fv( f )

x̂. f ∈ ΛGtz
r,C

f ∈ ΛGtz
r c ∈ ΛGtz

r,C Fv( f )∩Fv(c) = /0

f :: c ∈ ΛGtz
r,C

Values are denoted by T, terms by t,u,v..., contexts by k,k′, ... and expressions by e,e′.
The computation over the set of λGtz

r -expressions reflects the cut-elimination pro-
cess. Four groups of reductions in λGtz

r -calculus are given in Figure 5.

(β) (λx.t)(u :: k) → u(x̂.tk) (σ) T (x̂.v) → v[T/x]
(π) (tk)k′ → t(k@k′) (µ) x̂.xk → k

(γ1) x <x1
x2 (λy.t) → λy.x <x1

x2 t (ω1) λx.(y⊙ t) → y⊙ (λx.t), x ̸= y
(γ2) x <x1

x2 (tk) → (x <x1
x2 t)k, if x1,x2 ∈ Fv(t) (ω2) (x⊙ t)k → x⊙ (tk)

(γ3) x <x1
x2 (tk) → t(x <x1

x2 k), if x1,x2 ∈ Fv(k) (ω3) t(x⊙ k) → x⊙ (tk)
(γ4) x <x1

x2 (ŷ.t) → ŷ.(x <x1
x2 t) (ω4) x̂.(y⊙ t) → y⊙ (x̂.t), x ̸= y

(γ5) x <x1
x2 (t :: k) → (x <x1

x2 t) :: k, if x1,x2 ∈ Fv(t) (ω5) (x⊙ t) :: k → x⊙ (t :: k)
(γ6) x <x1

x2 (t :: k) → t :: (x <x1
x2 k), if x1,x2 ∈ Fv(k) (ω6) t :: (x⊙ k) → x⊙ (t :: k)

(γω1) x <x1
x2 (y⊙ e) → y⊙ (x <x1

x2 e) x1 ̸= y ̸= x2 (γω2) x <x1
x2 (x1 ⊙ e) → e[x/x2]

Fig. 5. Reduction rules of λGtz
r -calculus

The first group consists of β, π, σ and µ reductions from λGtz. New reductions are
added to deal with explicit contraction (γ reductions) and weakening (ω reductions). The
groups of γ and ω reductions consist of rules that perform propagation of contraction
into the expression and extraction of weakening out of the expression. This discipline
allows us to optimize the computation by delaying the duplication of terms on the one
hand, and by performing the erasure of terms as soon as possible on the other.

The meta-substitution v[T/x] is defined as in Figure 3 with the following additions:

(tk)[u/x] = t[u/x]k, x ∈ Fv(t) (tk)[u/x] = tk[u/x], x ∈ Fv(k)
(ŷ.t)[u/x] = ŷ.t[u/x]

(t :: k)[u/x] = t[u/x] :: k, x ∈ Fv(t) (t :: k)[u/x] = t :: k[u/x], x ∈ Fv(k)



In the π rule, the meta-operator @, called append, joins two contexts and is defined as:

(x̂.t)@k′ = x̂.tk′ (u :: k)@k′ = u :: (k@k′)
(x⊙ k)@k′ = x⊙ (k@k′) (x <y

z k)@k′ = x <y
z (k@k′).

2 Intersection type assignment systems for resource control

In this section we introduce intersection type assignment systems which assign strict
types to λr-terms and λGtz

r -expressions. Strict types were proposed in [36] and already
used in [15] for characterisation of strong normalisation in λGtz-calculus.

The syntax of types is defined as follows:

Strict types σ ::= p | α → σ
Types α ::= σ | σ∩α

where p ranges over a denumerable set of type atoms. We denote types with α,β,γ...
and strict types with σ,τ,υ.... We assume that intersection operator is idempotent, com-
mutative and associative. Due to this property, equivalent terms have the same type.

Definition 1. (i) A basic type assignment is an expression of the form x : α, where x is
a term variable and α is a type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all term
variables are different. Dom(Γ) = {x1, . . . ,xn}. A basis extension Γ,x : α denotes
the set Γ∪{x : α}, where x ̸∈ Dom(Γ).

(iii) A bases intersection is ∩Γi = {x :∩αi | x : αi ∈Γi}, where for all i, j, Dom(Γi) = Dom(Γ j).

2.1 Intersection types for λr

The type assignment system λr∩ is given in Figure 6.

x : ∩σi ⊢ x : σi
(Ax)

Γ,x : α ⊢ M : σ
Γ ⊢ λx.M : α → σ

(→I)
Γ ⊢ M : ∩αi → σ ∆i ⊢ N : αi

Γ,∩∆i ⊢ MN : σ
(→E)

Γ,x : α,y : β ⊢ M : σ
Γ,z : α∩β ⊢ z <x

y M : σ
(Cont) Γ ⊢ M : σ

Γ,x : α ⊢ x⊙M : σ
(Weak)

Fig. 6. λr∩: λr-calculus with intersection types

The Generation lemma induced by the proposed system is the following:



Proposition 2 (Generation lemma for λr∩).

(i) Γ ⊢ λx.M : β iff there exist α and σ such that β ≡ α → σ and Γ,x : α ⊢ M : σ.
(ii) Γ ⊢ MN : σ iff Γ = Γ′,∩∆i and there exists a type ∩αi such that

Γ′ ⊢ M : ∩αi → σ and for all i ∆i ⊢ N : αi.
(iii) Γ ⊢ z <x

y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β
and Γ′,x : α,y : β ⊢ M : σ.

(iv) Γ ⊢ x⊙M : σ iff there exist Γ′,β such that Γ = Γ′,x : β and Γ′ ⊢ M : σ.

The proposed system satisfies the following properties.

Proposition 3. If M → M′ then Fv(M) = Fv(M′).

Proposition 4. (i) If Γ ⊢ M : , then Dom(Γ) = Fv(M).
(ii) If Γ1 ⊢ M : σ and Γ2 ⊢ M : σ , then Γ1 ∩Γ2 ⊢ M : σ .

Proposition 5 (Substitution lemma). If Γ,x : ∩αi ⊢ M : σ and for all i, ∆i ⊢ N : αi,
then Γ,∩∆i ⊢ M[N/x] : σ.

Proposition 6 (Subject reduction and equivalence). For every λr-term M: if Γ ⊢ M : σ
and M → M′ or M ≡ M, then Γ ⊢ M′ : σ.

2.2 Intersection types for λGtz
r

The type assignment system λGtz
r ∩ is given in Figure 7.

x : ∩σi ⊢ x : σi
(Ax)

Γ,x : α ⊢ t : σ
Γ ⊢ λx.t : α → σ

(→R)
Γi ⊢ t : αi ∆;σ ⊢ k : τ

∩Γi,∆;∩αi → σ ⊢ t :: k : τ
(→L)

Γi ⊢ t : αi ∆;∩αi ⊢ k : σ
∩Γi,∆ ⊢ tk : σ

(Cut)
Γ,x : α ⊢ t : σ
Γ;α ⊢ x̂.t : σ

(Sel)

Γ,x : α,y : β ⊢ t : σ
Γ,z : α∩β ⊢ z <x

y t : σ
(Contt)

Γ ⊢ t : σ
Γ,x : α ⊢ x⊙ t : σ

(Weakt)

Γ,x : α,y : β;γ ⊢ k : σ
Γ,z : α∩β;γ ⊢ z <x

y k : σ
(Contk)

Γ;γ ⊢ k : σ
Γ,x : α;γ ⊢ x⊙ k : σ

(Weakk)

Fig. 7. λGtz
r ∩: λGtz

r -calculus with intersection types

The Generation lemma induced by the proposed system is the following:

Proposition 7 (Generation lemma for λGtz
r ∩).



(i) Γ ⊢ λx.t : β iff there exist α and σ such that β ≡ α → σ and Γ,x : α ⊢ t : σ.
(ii) Γ;γ ⊢ t :: k : τ iff Γ = ∩Γi,∆, γ ≡∩αi → σ, and Γi ⊢ t : αi,∀i and ∆;σ ⊢ k : τ .

(iii) Γ ⊢ tk : σ iff Γ = ∩Γi,∆ and there exists a type ∩αi such that Γi ⊢ t : αi, ∀i and
∆;∩αi ⊢ k : σ.

(iv) Γ;α ⊢ x̂.t : σ iff Γ,x : α ⊢ t : σ.
(v) Γ ⊢ z <x

y t : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and
Γ′,x : α,y : β ⊢ t : σ.

(vi) Γ ⊢ x⊙ t : σ iff there exist Γ′,β such that Γ = Γ′,x : β and Γ′ ⊢ t : σ.
(vii) Γ;ε ⊢ z <x

y k : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and
Γ,x : α,y : β;ε ⊢ k : σ.

(viii) Γ;γ ⊢ x⊙ k : σ iff there exist Γ,β such that Γ = Γ′,x : β and Γ;γ ⊢ k : σ.

3 Typability ⇒ SN in both systems

3.1 Typeability ⇒ SN in λr∩

The main idea of the reducibility method, introduced in Tait [35] for proving the strong
normalization property for the simply typed lambda calculus, is to interpret types by
suitable sets of lambda terms which satisfy certain realizability properties.

In the remainder of the paper we consider Λr as the applicative structure whose
domain are λr-terms and where the application is just the application of λr-terms. We
recall some notions from [4]. The set of strongly normalizing terms is defined as

SN = {M ∈ Λr | ¬(∃M1,M2, . . . ∈ Λr)M → M1 → M2 → . . .}.

Definition 8. For M ,N ⊆ Λr, we define M // N ⊆ Λr as

M // N = {N ∈ Λr | ∀M ∈ M . ( f v(M )∩ f v(N ) = /0 ⇒ NM ∈ N )}.

Definition 9. The type interpretation [[−]] : Types → 2Λr is defined by:

(I1) [[p]] = SN , where p is a type atom;
(I2) [[σ∩α]] = [[σ]]∩ [[α]];
(I3) [[α → σ]] = ([[α]] // [[σ]]) = {M ∈ Λr | ∀N ∈ [[α]] MN ∈ [[σ]]}.

Next, we introduce the notions of saturation property, obtained by extending the
saturation property given in [5], and weakening property. To this aim we introduce the
following notation: if R denotes the set of reductions given in Figure 2, r ∈ R \ (β),
then redexr (contrr) denote the left (right) hand side of the reduction r (its redex and
contractum, respectively).

Definition 10.

– A set X ⊆ SN satisfies the saturation property, notation SAT(X ), if
• VAR(X ): (∀n ≥ 0) (∀x ∈ var) (∀M1, . . . ,Mn ∈ SN )

(x∩ f v(M1)∩ . . .∩ f v(Mn) = /0 ⇒ xM1 . . .Mn ∈ X .



• SATβ(X ):4 (∀n ≥ 0)(∀M1, . . . ,Mn ∈ SN )
M[N/x]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X .

• SATr(X ): (∀n ≥ 0)(∀M1, . . . ,Mn ∈ SN )
contrrM1 . . .Mn ∈ X ⇒ redexrM1 . . .Mn ∈ X .

– A set X ⊆ SN satisfies the weakening property, notation WEAK(X ),
• WEAK(X ): (∀x ∈ var) M ∈ X , x ̸∈ Fv(M) ⇒ x⊙M ∈ X .

Definition 11 (r-Saturated set). A set X ⊆ Λr is called r-saturated, if it satisfies
the saturation and weakening properties.

Proposition 12. Let M ,N ⊆ Λr.

(i) SN is r-saturated.
(ii) If M and N are r-saturated, then M // N is r-saturated.

(iii) If M and N are r-saturated, then M ∩N is r-saturated.
(iv) For all types φ ∈ Types, [[φ]] is r-saturated.

We further define a valuation of terms [[−]]ρ : Λr → Λr and the semantic satisfia-
bility relation |= which connects the type interpretation with the term valuation.

Definition 13. Let ρ : var→ Λr be a valuation of term variables in Λr. For M ∈ Λr,
with Fv(M) = x1, . . . ,xn the term valuation [[−]]ρ : Λr → Λr is defined as:

(i) [[x]]ρ = ρ(x);

(ii) [[MN]]ρ ≡
{
[[M]]ρ[[N]]ρ, if Fv([[M]]ρ)∩Fv([[N]]ρ) = /0
Y <Y ′

Y ′′ ([[M]]ρ(Y ′/Y )[[N]]ρ(Y ′′/Y )), if Fv([[M]]ρ)∩Fv([[N]]ρ) = {y1, . . . ,yk}
where Y = {y1, . . . ,yk}, Y ′ = {y′1, . . . ,y

′
k} and Y ′′ = {y′′1 , . . . ,y

′′
k} and

ρ(Y ′/Y ) denotes ρ(y′1/y1, . . . ,y′k/yk) (similarly for ρ(Y ′′/Y )).
(iii) [[λx.M]]ρ ≡ λx.[[M]]ρ(x/x).
(iv) [[x⊙M]]ρ ≡ Fv(ρ(x))⊙ [[M]]ρ.

(v) [[z <x
y M]]ρ ≡ Fv(ρ(z))<Fv(N1)

Fv(N2)
[[M]]ρ(N1/x,N2/y)

where N1 and N2 are obtained from ρ(z) by renaming its free variables.

Lemma 14.

(i) [[M]]ρ(N/x) ≡ [[M]]ρ(x/x)[N/x].
(ii) [[z <x

y M]]ρ(N/z) ≡ (z <x
y [[M]]ρ(x/x,y/y))[N/z].

(iii) [[M]]ρ(N/x,N/y) ≡ Fv(N) <
Fv(N′)
Fv(N′′) [[M]]ρ(N′/x,N′′/y), where N′ and N′′ are obtained

from N by renaming all free variables of N with fresh variables.

Proof. By induction on the construction of M. For the cases (i)-(iv) we consider only
the base cases when M is a variable, other cases being straightforward using IH.

(i) [[y]]ρ(N/x) = y[N/x,ρ(y)/y] = ρ(y).
[[y]]ρ(x/x)[N/x] = y[x/x,ρ(y)/y][N/x] = ρ(y).

4 Notice that we do not need a condition that N ∈ SN in SATβ(X ) since we only work with linear terms, hence if the
contractum M[N/x] ∈ SN , then N ∈ SN .



(ii) Using (i) and the definition of substitution.
[[z <x

y M]]ρ(N/z) = [[z <x
y M]]ρ(z/z)[N/z] = (z <x

y [[M]]ρ(x/x,y/y))[N/z] =

Fv(N)<
Fv(N1)
Fv(N2)

[[M]]ρ(x/x,y/y)[N1/x][N2/y] = Fv(N)<
Fv(N1)
Fv(N2)

[[M]]ρ(N1/x,N2/y) =

Fv(N)<
Fv(N1)
Fv(N2)

[[M]]ρ(x/x,y/y)[N1/x][N2/y] = (z <x
y [[M]]ρ(x/x,y/y))[N/z].

(iii) By straightforward application od Definition 13.

Definition 15.
(i) ρ |= M : α ⇐⇒ [[M]]ρ ∈ [[α]];

(ii) ρ |= Γ ⇐⇒ (∀(x : α) ∈ Γ) ρ(x) ∈ [[α]];
(iii) Γ |= M : α ⇐⇒ (∀ρ,ρ |= Γ ⇒ ρ |= M : α).

Proposition 16 (Soundness of λr∩). If Γ ⊢ M : α, then Γ |= M : α.

Proof. By induction on the derivation of Γ ⊢ M : α. The cases (Ax) and (→I) are anal-
ogous to the corresponding rules in ordinary λ calculus. We prove the statement for the
remaining inference rules.

– The last rule applied is (→E), i.e., Γ ⊢ M : ∩αi → σ,∆i ⊢ N : αi ⇒ Γ,∩∆i ⊢ MN : σ.
By the IH Γ |= M : ∩αi → σ and ∆i |= N : αi,∀i. Suppose that ρ |= Γ,∩∆i, then
ρ |= Γ and ρ |= ∩∆i. From ρ |= Γ, using the IH we deduce that [[M]]ρ ∈ [[∩αi → σ]].
From ρ |= ∩∆i, we deduce that ρ |= ∆i,∀i (since every variable x : α ∈ ∩∆i is of
the form x : ∩αi,x : αi ∈ ∆i), hence using the IH we deduce that [[N]]ρ ∈ [[αi]],∀i.
This means that [[N]]ρ ∈ ∩[[αi]]ρ = [[∩αi]]ρ. Using Definition 13(ii) we obtain that
[[M]]ρ[[N]]ρ = [[MN]]ρ ∈ [[σ]].

– The last rule applied is (Weak), i.e., Γ ⊢ M : α ⇒ Γ,x : β ⊢ x⊙M : α. By the IH
Γ |= M : α. Suppose that ρ |= Γ,x : β ⇔ ρ |= Γ and ρ |= x : β. From ρ |= Γ we obtain
[[M]]ρ ∈ [[α]]. Using the weakening property WEAK and Definition 13(iv) we obtain
Fv(ρ(x))⊙ [[M]]ρ = [[x⊙M]]ρ ∈ [[α]], since Fv(ρ(x))∩Fv([[M]]ρ) = /0.

– The last rule applied is (Cont), i.e., Γ,x : α,y : β ⊢ M : γ ⇒ Γ,z : α ∩ β ⊢ z <x
y

M : γ. By the IH Γ,x : α,y : β |= M : γ. Suppose that ρ |= Γ,z : α ∩ β, in order
to prove [[z <x

y M]]ρ ∈ [[γ]]. This means that ρ |= Γ and ρ |= z : α∩ β ⇔ ρ(z) ∈
[[α]] and ρ(z) ∈ [[β]]. For the sake of simplicity let ρ(z) ≡ N. We define a new ρ′

such that ρ′ = ρ(N/x,N/y). Then ρ′ |= Γ,x : α,y : β since x,y ̸∈ Dom(Γ), N ∈
[[α]] and N ∈ [[β]]. By the IH [[M]]ρ′ ∈ [[γ]]. By the definition of term valuation
(Definition 13), Lemma 14(i), (ii) and (iii) and the definition of substitution we
obtain [[M]]ρ′ = [[M]]ρ(N/x,N/y) = Fv(N) <

Fv(N′)
Fv(N′′) [[M]]ρ(N′/x,N′′/y) = Fv(N) <

Fv(N′)
Fv(N′′)

[[M]]ρ(x/x,y/y)[N′/x][N′′/y] = (z<x
y [[M]]ρ(x/x,y/y)[N/z] = ([[z<x

y M]]ρ(z/z))[N/z] = [[z<x
y

M]]ρ(N/z) = [[z <x
y M]]ρ, since ρ(z) = N. Hence, [[z <x

y M]]ρ ∈ [[γ]]. ⊓⊔

Theorem 17 (SN for λr∩). If Γ⊢M : α, then M is strongly normalizing, i.e. M ∈ SN .

Proof. Suppose Γ⊢M : α. By Proposition 16 Γ |=M : α. According to Definition 15(iii),
this means that (∀ρ |= Γ) ρ |= M : α. We can choose a particular ρ0(x) = x for all
x ∈ var. By Proposition 12(iv), [[β]] is saturated for each type β, hence x = [[x]]ρ ∈ [[β]]
(variable condition for n= 0). Therefore, ρ0 |=Γ and we can conclude that [[M]]ρ0 ∈ [[α]].
On the other hand, M = [[M]]ρ0 and [[α]]⊆ SN (Proposition 12), hence M ∈ SN . ⊓⊔



3.2 Typeability ⇒ SN in λGtz
r ∩

In this section, we prove the strong normalisation property of the λGtz
r -calculus with

intersection types. The termination is proved by showing that the reduction on the set
ΛGtz
r ∪ΛGtz

r,C of the typeable λGtz
r -expressions is included in a particular well-founded

relation, which we define as the lexicographic product of three well-founded component
relations. The first one is based on the mapping of λGtz

r -expressions into λr-terms. We
show that this mapping preserves types and that all λGtz

r -reductions can be simulated by
the reductions or identities of the λr-calculus. The other two well-founded orders are
based on the introduction of quantities designed to decrease a global measure associated
with specific λGtz

r -expressions during the computation.

Definition 18. The mapping ⌊ ⌋ : ΛGtz
r → Λr is defined together with the auxiliary

mapping ⌊ ⌋k : ΛGtz
r,C → (Λr → Λr) in the following way:

⌊x⌋ = x ⌊x̂.t⌋k(M) = (λx.⌊t⌋)M
⌊λx.t⌋ = λx.⌊t⌋ ⌊t :: k⌋k(M) = ⌊k⌋k(M⌊t⌋)
⌊x⊙ t⌋ = x⊙⌊t⌋ ⌊x⊙ k⌋k(M) = x⊙⌊k⌋k(M)
⌊x <y

z t⌋ = x <y
z ⌊t⌋ ⌊x <y

z k⌋k(M) = x <y
z ⌊k⌋k(M)

⌊tk⌋ = ⌊k⌋k(⌊t⌋)

Lemma 19. (i) Fv(t) = Fv(⌊t⌋), for t ∈ ΛGtz
r .

(ii) ⌊v[t/x]⌋= ⌊v⌋[⌊t⌋/x], for v, t ∈ ΛGtz
r .

We prove that the mappings ⌊ ⌋ and ⌊ ⌋k preserve types. In the sequel, the notation
Λr(Γ′⊢λrα) stands for {M | M ∈ Λr & Γ′ ⊢λr M : α}.

Proposition 20 (Type preservation with ⌊ ⌋).

(i) If Γ′ ⊢ t : α, then Γ′ ⊢λr ⌊t⌋ : α.
(ii) If Γ′;α ⊢ k : β, then ⌊k⌋k : Λr(Γ′′⊢λrα) → Λr(Γ′,Γ′′⊢λr β), for some Γ′′.

Proof. The proposition is proved by simultaneous induction on derivations. We distin-
guish cases according to the last typing rule used.

– Cases (Ax), (→R), (Weakt) and (Contt) are easy, because the intersection type as-
signment system of λr has exactly the same rules.

– Case (Sel): the derivation ends with the rule

Γ′,x : α ⊢ t : σ
Γ′;α ⊢ x̂.t : σ

(Sel)

By IH we have that Γ′,x : α ⊢λr ⌊t⌋ : σ. For any M ∈ Λr such that Γ′′ ⊢λr M : α,
for some Γ′′, we have

Γ′,x : α ⊢λr ⌊t⌋ : σ
(→I)

Γ′ ⊢λr λx.⌊t⌋ : α → σ Γ′′ ⊢λr M : α
(→E)

Γ′,Γ′′ ⊢λr (λx.⌊t⌋)M : σ



Since (λx.⌊t⌋)M = ⌊x̂.t⌋k(M), we conclude that ⌊x̂.t⌋k : Λr(Γ′′⊢λrα)→Λr(Γ′,Γ′′⊢λrσ).
– Case (→L): the derivation ends with the rule

Γ′
i ⊢ t : αi ∆;σ ⊢ k : β

∩Γ′
i,∆;∩αi → σ ⊢ t :: k : β

(→L)

By IH we have that Γ′
i ⊢λr ⌊t⌋ : αi, ∀i. For any M ∈ Λr such that Γ′′′ ⊢λr M :

∩αi → σ, we have

Γ′′′ ⊢λr M : ∩αi → σ Γ′
i ⊢λr ⌊t⌋ : αi

∩Γ′
i,Γ′′′ ⊢λr M⌊t⌋ : σ

(→E)

From the right-hand side premise in the (→L) rule, by IH, we get that ⌊k⌋k is the
function with the scope ⌊k⌋k : Λr(Γ′′′′⊢λrσ) → Λr(Γ′′′′,Γ′′⊢λr β). For Γ′′′′ ≡ ∩Γ′

i,Γ′′′

and by taking M⌊t⌋ as the argument of the function ⌊k⌋k, we get ∩Γ′
i,∆,Γ′′′ ⊢λr

⌊k⌋k(M⌊t⌋) : β. Since ⌊k⌋k(M⌊t⌋) = ⌊t :: k⌋k(M), we have that ∩Γ′
i,∆,Γ′′′ ⊢λr ⌊t ::

k⌋k(M) : β. This holds for any M of the appropriate type, yielding
⌊t :: k⌋k : Λr(Γ′′′⊢λr∩αi→σ) → Λr(∩Γ′i,∆,Γ

′′′⊢λr β), which is exactly what we need.
– Case (Cut): the derivation ends with the rule

Γ′
i ⊢ t : αi ∆;∩αi ⊢ k : σ

∩Γ′
i,∆ ⊢ tk : σ

(Cut)

By IH we have that Γ′
i ⊢λr ⌊t⌋ : α and ⌊k⌋k : Λr(Γ′′⊢λr∩αi) → Λr(Γ′′,∆⊢λrσ). Hence,

for any M ∈ Λλr such that Γ′′ ⊢λr M : ∩αi, it holds Γ′′,∆ ⊢λr ⌊k⌋k(M) : σ. By
taking M ≡⌊t⌋ and Γ′′ ≡∩Γ′

i, we get ∩Γ′
i,∆⊢λr ⌊k⌋k(⌊t⌋) : σ. But ⌊k⌋k(⌊t⌋)= ⌊tk⌋,

so the proof is done.
– Case (Weakk): the derivation ends with the rule

Γ′;γ ⊢ k : β
Γ′,x : α;γ ⊢ x⊙ k : β

(Weakk)

By IH we have that ⌊k⌋k is the function with the scope ⌊k⌋k : Λr(Γ′′⊢λr γ)→Λr(Γ′,Γ′′⊢λr β),
meaning that for each M ∈Λr such that Γ′′ ⊢λr M : γ holds Γ′,Γ′′ ⊢λr ⌊k⌋k(M) : β.
Now, we can apply (Weak) rule:

Γ′,Γ′′ ⊢ ⌊k⌋k(M) : β
Γ′,Γ′′,x : α ⊢ x⊙⌊k⌋k(M) : β

(Weak)

Since x⊙⌊k⌋k(M)= ⌊x⊙k⌋k(M), this means that ⌊x⊙k⌋k : Λr(Γ′′⊢λr γ)→Λr(Γ′,Γ′′ ,x:α⊢λr β),
which is exactly what we wanted to get.

– Case (Contk): similar to the case (Weakk), relying on the rule (Cont) in λr. ⊓⊔

For the given encoding ⌊ ⌋, we show that each λGtz
r -reduction step can be simulated

by λr-reduction or identity. In order to do so, we prove the following lemmas. The
proofs of Lemma 22 and Lemma 23 use Regnier’s σ reductions, investigated in [30].



Lemma 21. If M →λr M′, then ⌊k⌋k(M)→λr ⌊k⌋k(M′).

Lemma 22. ⌊k⌋k((λx.P)N)→λr (λx.⌊k⌋k(P))N.

Lemma 23. If M ∈ Λr and k,k′ ∈ ΛGtz
r,C, then ⌊k′⌋k ◦⌊k⌋k(M)→λr ⌊k@k′⌋k(M).

Lemma 24. (i) If x /∈ Fv(k), then (⌊k⌋k(M))[N/x] = ⌊k⌋k(M[N/x]).
(ii) If x,y /∈ Fv(k), then z <x

y (⌊k⌋k(M))→λr ⌊k⌋k(z <x
y M).

(iii) ⌊k⌋k(x⊙M)→λr x⊙⌊k⌋k(M).

Now we can prove that the reduction rules of λGtz
r can be simulated by the reduction

rules or identities in λr-calculus.

Theorem 25 (Simulation of λGtz
r -reduction by λr-reduction).

(i) If term M → M′, then ⌊M⌋ →λr ⌊M′⌋.
(ii) If context k → k′ by γ6 or ω6 reduction, then ⌊k⌋k(M)≡ ⌊k′⌋k(M), for any M ∈ Λr.

(iii) If context k → k′ by some other reduction, then ⌊k⌋k(M) →λr ⌊k′⌋k(M), for any
M ∈ Λr.

The previous proposition shows that each λGtz
r -reduction step is interpreted either by

a λr-reduction or by an identity. If one wants to prove that there is no infinite sequence
of λGtz

r -reductions one has to prove that there cannot exist an infinite sequence of λGtz
r -

reductions which are all interpreted as identities. To prove this, one shows that if a
term is reduced with such a λGtz

r -reduction, it is reduced for another order that forbids
infinite decreasing chains. This order is itself composed of several orders, free of infinite
decreasing chains (Definition 29).

Definition 26. The functions S , || ||C, || ||W : (ΛGtz
r ∪ Λr)→N are defined in Figure 8.

S(x) = 1 ||x||C = 0 ||x||W = 1
S(λx.t) = 1+S(t) ||λx.t||C = ||t||C ||λx.t||W = 1+ ||t||W

S(x⊙ e) = 1+S(e) ||x⊙ e||C = ||e||C ||x⊙ e||W = 0
S(x <y

z e) = 1+S(e) ||x <y
z e||C = ||e||C +S(e) ||x <y

z e||W = 1+ ||e||W
S(tk) = S(t)+S(k) ||tk||C = ||t||C + ||k||C ||tk||W = 1+ ||t||W + ||k||W

S(x̂.t) = 1+S(t) ||x̂.t||C = ||t||C ||x̂.t||W = 1+ ||t||W
S(t :: k) = S(t)+S(k) ||t :: k||C = ||t||C + ||k||C ||t :: k||W = 1+ ||t||W + ||k||W

Fig. 8. Definitions of S(e), ||e||C, ||e||W

Lemma 27. For all e,e′ : Λr:

(i) If e →γ6 e′, then ||e||C > ||e′||C.
(ii) If e →ω6 e′, then ||e||C = ||e′||C.

Lemma 28. For all e,e′ ∈ Λr: If e →ω6 e′, then ||e||W > ||e′||W .



Now we can define the following orders based on the previously introduced map-
ping and norms.

Definition 29. We define the following strict orders and equivalencies on ΛGtz
r ∩:

(i) t >λr t ′ iff ⌊t⌋ →+
λr

⌊t ′⌋; t =λr t ′ iff ⌊t⌋ ≡ ⌊t ′⌋;

k >λr k′ iff ⌊k⌋k(M)→+
λr

⌊k′⌋(M) for every λr term M ;
k =λr k′ iff ⌊k⌋k(M)≡ ⌊k′⌋k(M) for every λr term M;

(ii) e >c e′ iff ||e||C > ||e′||C; e =c e′ iff ||e||C = ||e′||C;
(iii) e >w e′ iff ||e||W > ||e′||W ; e =w e′ iff ||e||W = ||e′||W ;

A lexicographic product of two orders >1 and >2 is usually defined as follows ([2]):
a >1 ×lex >2 b ⇔ a >1 b or (a =1 b and a >2 b).

Definition 30. We define the relation ≫ on ΛGtz
r as the lexicographic product:

≫ = >λr ×lex >c ×lex >w .

The following propositions proves that the reduction relation on the set of typed
λGtz
r -expressions is included in the given lexicographic product ≫.

Proposition 31. For each e ∈ ΛGtz
r : if e → e′, then e ≫ e′.

Proof. The proof is by case analysis on the kind of reduction and the structure of ≫.
If e → e′ by β, σ, π, µ, γ1, γ2, γ3, γ4 γ5, γω1, γω2, ω1, ω2, ω3 ω4 or ω5 reduction, then
e >λr e′ by Proposition 25.
If e → e′ by γ6, then e =λr e′ by Proposition 25, and e >c e′ by Lemma 27.
Finally, if e → e′ by ω6, then e =λr e′ by Proposition 25, e =c e′ by Lemma 27 and
e >w e′ by Lemma 28. ⊓⊔

SN of → is another terminology for the well-foundness of the relation → and it is
well-known that a relation included in a well-founded relation is well-founded and that
the lexicographic product of well-founded relations is well-founded.

Theorem 32 (Strong normalization). Each expression in ΛGtz
r ∩ is SN.

Proof. The reduction → is well-founded on ΛGtz
r ∩ as it is included (Proposition 31) in

the relation ≫ which is well-founded as the lexicographic product of the well-founded
relations >λr , >c and >w. Relation >λr is based on the interpretation ⌊ ⌋ : ΛGtz

r →Λr.
By Proposition 20 typeability is preserved by the interpretation ⌊ ⌋ and →λr is SN (i.e.,
well-founded) on Λr∩ (Section 3.1), hence >λr is well-founded on ΛGtz

r ∩. Similarly,
>c and >w are well-founded, as they are based on interpretations into the well-founded
relation > on the set N of natural numbers. ⊓⊔



4 SN ⇒ Typability in both systems

4.1 SN ⇒ Typability in λr∩

We want to prove that if a λr-term is SN, then it is typable in the system λr∩. We
proceed in two steps: 1) we show that all λr-normal forms are typable and 2) we prove
The head subject expansion property. First, let us observe the structure of the λr-normal
forms, given by the following abstract syntax:

Mn f ::= x |λx.Mn f |λx.x⊙Mn f |xM1
n f . . .M

n
n f |x <

x1
x2 Mn f Nn f , if x1 ∈ Fv(Mn f ),x2 ∈ Fv(Nn f )

Wn f ::= x⊙Mn f |x⊙Wn f

Proposition 33. λr-normal forms are typable in the system λr∩.

Proposition 34 (Inverse substitution lemma). Let Γ ⊢ M[N/x] : α and N typable.
Then, there are ∆i and βi, i ∈ I such that ∆i ⊢ N : βi, ∀i and Γ′,x : ∩βi ⊢ M : α, where
Γ = Γ′,∩∆i.

Proof. By induction on the structure of M. ⊓⊔

Proposition 35 (Head subject expansion). For every λr-term M: if M → M′, M is
contracted redex and Γ ⊢ M′ : α , then Γ ⊢ M : α, provided that if M ≡ (λx.N)P →β
N[P/x]≡ M′, P is typable.

Proof. By the case study according to the applied reduction. ⊓⊔

Theorem 36 (SN ⇒ typability). All strongly normalising λr-terms are typable in the
λr∩ system.

Proof. The proof is by induction on the length of the longest reduction path out of a
strongly normalising term M, with a subinduction on the size of M.

– If M is a normal form, then M is typable by Proposition 33.
– If M is itself a redex, let M′ be the term obtained by contracting the redex M.

M′ is also strongly normalising, hence by IH it is typable. Then M is typable, by
Proposition 35. Notice that, if M ≡ (λx.N)P →β N[P/x] ≡ M′, then, by IH, P is
typable, since the length of the longest reduction path out of P is smaller than that
of M, and the size of P is smaller than the size of M.

– Next, suppose that M is not itself a redex nor a normal form. Then M is of one of the
following forms: λx.N, λx.x⊙N, xM1 . . .Mn, x⊙N, or x <x1

x2 NP, x1 ∈ Fv(N), x2 ∈
Fv(P) (where M1, . . . ,Mn, and NP are not normal forms). M1, . . . ,Mn and NP are
typable by IH, as subterms of M. Then, it is easy to build the typing for M. For
instance, let us consider the case x <x1

x2 NP with x1 ∈ Fv(N), x2 ∈ Fv(P). By in-
duction NP is typable, hence N is typable with say Γ,x1 : β ⊢ N : ∩αi → σ and
P is typable with say ∆i,x2 : γi ⊢ P : αi. Then using the rule (E →) we obtain
Γ,∩∆i,x1 : β,x2 : ∩γi ⊢ NP : σ. Finally, the rule (Cont) yields Γ,∩∆i,x : β∩(∩γi) ⊢
x <x1

x2 NP : σ. ⊓⊔



4.2 SN ⇒ Typability in λGtz
r ∩

Finally, we want to prove that if a λGtz
r -term is SN, then it is typable in the system

λGtz
r ∩. We follow the procedure used in Section 4.1. The proofs are similar to the ones

in Section 4.1 and omitted due to the lack of space.
The abstract syntax of λGtz

r -normal forms is the following:
tn f ::= x |λx.tn f |λx.x⊙ tn f |x(tn f :: kn f ) |x <y

z y(tn f :: kn f )
kn f ::= x̂.tn f | x̂.x⊙ tn f | tn f :: kn f |x <y

z (tn f :: kn f ), y ∈ Fv(tn f ),z ∈ Fv(kn f )
wn f ::= x⊙ en f |x⊙wn f

We use en f for any λGtz
r -expression in the normal form.

Proposition 37. λGtz
r -normal forms are typable in the system λGtz

r ∩.

The following two lemmas explain the behavior of the meta operators [ / ] and @ during
expansion.

Lemma 38 (Inverse substitution lemma).

(i) Let Γ ⊢ t[u/x] : α and u typable. Then, there exist ∩∆i and ∩βi, i ∈ I such that
∆i ⊢ u : βi, ∀i and Γ′,x : ∩βi ⊢ t : α, where Γ = Γ′,∩∆i.

(ii) Let Γ;γ ⊢ k[u/x] : α and u typable. Then, there exist ∩∆i and ∩βi, i ∈ I such that
∆i ⊢ u : βi, ∀i and Γ′,x : ∩βi;γ ⊢ k : α, where Γ = Γ′,∩∆i.

Lemma 39 (Inverse append lemma). If Γ;α ⊢ k@k′ : σ, then Γ = Γ′,Γ′′ and there is
a type ∩βi such that Γ′;α ⊢ k : βi, ∀i and Γ′′;∩βi ⊢ k′ : σ.

Now we prove that the type of a term is preserved during the expansion.

Proposition 40 (Head subject expansion). For every λGtz
r -term t: if t → t ′, t is con-

tracted redex and Γ ⊢ t ′ : α , then Γ ⊢ t : α.

Theorem 41 (SN ⇒ typability). All strongly normalising λGtz
r terms are typable in the

λGtz
r ∩ system.

5 Conclusions

In this paper, we have proposed intersection type assignment systems for λr-calculus
(λCW of [23]) and λGtz

r -calculus of [18]. The two intersection type systems proposed
here, for resource control lambda and sequent lambda calculus, give a complete char-
acterisation of strongly normalising terms for both calculi. The strong normalisation
of typeable resource lambda terms is proved directly by appropriate modification of
the reducibility method, whereas the same property for resource sequent lambda terms
is proved by well-founded lexicographic order based on suitable embedding into the
former calculus. Although the obtained results are not surprising, this paper expands
the range of the intersection type techniques and combines different methods in the
strict types environment. Unlike the approach of introducing non-idempotent intersec-
tion into the calculus with some kind of resource management [27], our intersection is



idempotent. As a consequence, our type assignment system corresponds to full intu-
itionistic logic, while non-idempotent intersection type assignment systems correspond
to intuitionistic linear logic.

Resource control lambda and sequent lambda calculi are good candidates to inves-
tigate the computational content of substructural logics ([34]) both in natural deduction
and sequent calculus. The motivation for these logics comes from philosophy (Rele-
vant Logics), linguistics (Lambek Calculus) to computing (Linear Logic). The basic
idea of resource control is to explicitly handle structural rules, so the absence of (some)
structural rules in substructural logics such as weakening, contraction, commutativity,
associativity can possibly be handled by resource control operators, which is in the do-
main of further research. Another direction will involve the investigation of the use of
intersection types, being a powerful means for building models of lambda calculus ([6,
12]), in constructing models for sequent lambda calculi.
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