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Abstract In this paper we consider the space generated by the scaleslates of
the trivariateC2 quartic box splind defined by a seX of seven directions, that forms
a regular partition of the space into tetrahedra. Then, wsttact new cubature rules
for 3D integrals, based on spline quasi-interpolants esqwe as linear combinations
of scaled translates & and local linear functionals.

We give weights and nodes of the above rules and we analyisg@tbperties.

Finally, some numerical tests and comparisons with othewknintegration for-
mulas are presented.
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1 Introduction

The numerical evaluation of integrals is one of the corneness in Numerical Anal-
ysis and it is also an important tool in methods to solve irgkand differential prob-
lems. In particular there is a wide literature concerning tiamerical evaluation of
integrals based on spline approximation. Indeed, spliaes heen used for numerical
integration ever since they entered on the Numerical Aigbeene [19]. We recall,
for instance, the papers [1,5-7,11,15,27,29], where @giad formulas based on
spline interpolants and quasi-interpolants (QIs) of défe degrees are considered,
also for singular integrals. Concerning the numerical wstbn of 2D integrals, we
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2 Catterina Dagnino et al.

mention the cubatures proposed in [8-10,22, 30, 32], bas¢ensor product of uni-
variate splines, o€! quadratic andC? quartic quasi-interpolating splines, defined
on criss-cross triangulations and on Powell-Sabin partiti Furthermore, numerical
integration over polygons using an eight-node quadridtspline finite element is
presented and studied in [23-25].

Finally, we recall [13,14], where cubature rules for a patapiped domain are
defined by integrating tensor product of univari@tequadratic spline Qls and blend-
ing sums ofC! quadratic spline Qls in one and two variables.

In this paper, we propose new integration formulas for 3[2gnals based on
trivariate C? quartic spline quasi-interpolants on type-6 tetrahedaatitons with
higher smoothness, useful, for example, in the numerieattnent of integral equa-
tions, where the unknown function can be reconstructed @itsmoothness.

In particular, we construct formulas based on four Qls, whke basic functions
are the scaled translates of the trivari@fequartic box splinéB, defined on a type-6
tetrahedral partition, and the coefficient functionalslarear combinations of values
of f at specific points in the support of the scaled translatdx dhe first operator
is based on the well-known Schoenberg-Marsden one andxaist en the space of
trilinear polynomials. The second one is exact on the sphpelgnomials contained
in the spline space spanned by the scaled translasIdfe third one is exact on the
spaceP; of trivariate polynomials of total degree at most three, émslof near-best
type, i.e. itis constructed by minimizing an upper bound®fnfinity norm. Finally,
the fourth one is exact dig and shows some superconvergence properties at specific
points of the domain (the vertices and the centers of each aiithe partition).

The paper is organized as follows: in Section 2, we recalldb@nitions and
main properties of the trivariat@? quartic box splineB, the space spanned by its
scaled translates and the four Qls. New cubature formukesedon such Qls, are
generated in Section 3 and their convergence and stabilityepties are studied.
Finally, in Section 4, numerical results are presentegstithting the performances of
the proposed cubatures.

2 Trivariate C? quartic spline quasi-interpolants
2.1 The spline spacg(Q, Im)

In order to define a box spline, it is necessary to specify afsditections that deter-
mine the shape of its support and also its continuity pragerfollowing [26], we
consider the seX = {ey, &, €3, &4, 65,65, €7} of seven directions k3, spanningR3,
where

e1:(170)0)7 e2:(07150)7 e3:(0)071)’ e4:(l71’1)7
es=(-111), e=(1,-11), e=(-1-11).

Therefore, the space is cut into a symmetric regular arraegéof tetrahedra called
type-6 tetrahedral partition. The type-6 tetrahedralifpanis are uniform partitions of
RR3 obtained from a given cube partition (see Fig.(2)} of the space by subdividing
each cube into 24 tetrahedra with six planes (see Figbp.1
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Fig. 2.2 The support of the seven directional box spline

According to [2, Chap. 11] and [4, Chap. 1], since theXdias seven elements
and the domain i®3, the box splineB(-) = B(:|X) is of degree four. Its continuity
depends on the determination of the numthesuch thatl 4 1 is the minimal number
of directions to be removed frond to obtain a reduced set that does not span
Then, theB continuity class i€9~1. With the notation given in [2, Chap. 11],

d=min{|Y|: Ye#} -1, (2.1)

where
W = (X)={Y CX: (X\Y)#R3.

In our casad = 3, thus the polynomial pieces defined over each tetrahedson a
of degree four and they are joined witk smoothness.

The support= of theC? quartic box splined is the truncated rhombic dodecahe-
dron centered at the poit, 3, 3) and contained in the culje 2,3 x [-2,3] x [0, 5]
(see Fig. 2.2).

Now, letmy, mp,mg > 9 be integers, le@ = [0, mh] x [0, mph] x [0, mgh], h > 0,
be a parallelepiped divided into;mpmg equal cubes and endowed with the type-6
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tetrahedral partitior?,, m = (mg, mp, mg) (see Fig. 2.1). We set
o ={a=(a1,02,03),-1<a <m+21<i<3a¢d'},
with <7’ the set of indices defined by

(017025_1)7 (01702,”]3—"-2), for _1§ alg ml+21 02:_1arn2+27
' =1 (a1,02,-1), (a1,02,mg+2), for a3 =—-1,m+2 0<a, <mp+1,
(a1,—1,a3), (a1,mp+2,a3), for ay=—-1m+2, 0<az3<mg+1

Since B is centered at the poin3, 3,3), we define the scaled translates Ryf
{Bg, 0 € &7}, in the following way:
X z
By (X,Y,2) = B(ﬁ — a1+1,% — cszrl,H
whose support&, are centered at the poinféa; — 3)h, (a2 — 3)h, (a3 — 3)h) and
overlap withQ.
Then, we define the space generated by the func{iBgasa € </}

7013+3>, (2.2)

Sﬁ(Q,%ﬁz{Sz Y caBa, Ca ER}.

ace/

This space is a subspace of the whole space of all triva®fatpiartic splines defined
on .

We also recall that the approximation powerSﬁ(Q, Im) is the largest integer
for which

dist(f, §4(Q, Jm)) = O(h")

for all sufficiently smoothf, with the distance measured in thg(Q)-norm
(1 < p< )[4, Chap. 3]. From results given in [4, Chap. 3], we know ttiet ap-
proximation power ofS3(Q, ) does not exceed + 1, with d defined by (2.1).
Therefore, in our case we have 4 and in the following we show that= 4 (Theo-
rem 2.1).

From [28], we also know that the maximal space of polynomiatduded in
SH(Q, Tm) is Z(X) = P3c spar{ pa, P2, P3, P4, Ps, Pe, P7, P, Po}, With

pr=x% p2 =X}y +3XyZ, Pz =Xy +3xyZ,
pa=Y?, ps = x3z+ 3Xy22, Ps = y32+ 3x2yz,
pr=x2+3xyz, pg=YyZ+3%z po=72"

2.2 Quasi-interpolants ig(Q, )

In the spaccsﬁ(Q, Im), we consider several quasi-interpolation operators [28].
A quasi-interpolant is a linear operator defined on a fumeticpace%, in the
following way
Q:.7 — S(Q,Tm)

Qf= ¥ Aa(f)Ba

ace/
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where theB,'s are the scaled translates of the box spBelefined by (2.2) with
support=, and theA4(f)’s are linear functionals expressed as linear combination o
values off at specific points irEy.

We define four different Qls

Qvf: Z AL‘T{/(f)BCM V:1,273a4a (23)
ace
with
e AX(f) = fq (See Fig. 2.8));

. /\§(f) = %fa — %73( fate + fate, + faieg) + %22( fat+oe, + fa+oe, + fai2e3)
(see Fig. 2.80));

o A3(f)=Zfq— &(faroe + fatoe, + fatze;) (€€ Fig. 2.40));

b /\g( f) = ]2&817611:0 - %( faiel + faiez + fai&3) + %Z‘,z( foiZel + fuiZez + fcriZeg) +

Taoel fa(ey res) T fac(ey—e) T facc(ey res) T Farce(ey —es) T Facc(eptes) T Faccier ) —
& (fase, + fate + fates + fate;) (Se€ Fig. 2.400));
wherefg = f(Mg) and

(D) e

are the data points. They are the centers of each subcube péttition and some of
them lie outsideR. Therefore, their corresponding set of indices is

v o, ~ v=1
aT= {02(01702703)7—3§ai§m+4,1§i§3,a¢£{M}yV:27374

with
(a1,a2,a3) for a1 =—-1m+2, ap=-1mp+2,
M az=-—-2,mg+3,
Vi ™V U (a1,0,03) for ay=-2m+3, az=—-1m+2, ,v=273
gV = 1= 1M +2 ar=—2,—1,m+2,m+3,
az=-1mg+2
M* _
g™ v=4

and

(ag,az,03) for o9 =-3,—-2,—1m+2,m+3,m+4, ap=—-3,m+4,
01 =-3,-2,m +3,m+4, ax=-2,m+3,
a1 =-3m+4, ax=-1m+2,
0<az3<mg+1;
(a1,02,03) for a3 =-3,-2,-1m+2m+3,m+4, -3<a,<mp+4,
0<on<m+1 a;=-3,-2,-1m+2,m+3,nm+4,
ﬂM* _ a3 =—3,mz+ 4,
) (a1,02,a3) for a3 =-3,-2,;m +3,m +4, -3< 02 <mp+4,
—1<a1<m+2, a,=-3,—-2,m+3,mp+4,
03 =—2,mg+3;
(a1,02,03) for a1 =-3,m+4, -3< a2 <mp+4,
a;=-2m+3, a,=-3,-2,m+3,mp+4,
—1<a1<m+2, a,=-3m+4,
az=-1,mz+2.
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The first operatoQ! is exact on the space of trilinear polynomials, the second
one@? is exact on the spacg(X), the third oneQ?® is exact on the spadg; and it
is of near-best type, i.e. it is constructed by minimizingugper bound of its infinity
norm. The fourth on€* is exact oriP; and shows some superconvergence properties
at specific points of the domain (the vertices and the cemteeach cube of the
partition, see [28] for more details).

By introducing the fundamental splines

LY =By, (2.5)
191 107
Lg = —Bg — (Baiel + Baiez + Baieg)
644 288 (2.6)
1152(Bai2e1 + BaiZez + BO(iZes)
21 5
Lﬁ = EBG - %(BaiZQ + BaiZez + BaiZeg) (2-7)
1687 507 47
Lg = 2416 °° s 736(80&81 +Bg+e, +Bate;) + 1152(BaiZe1 +Ba+2e, +Bazt2e;)

+413248(Bai(e1+e2) + Bgi(el,eZ) + Ba:t(e1+e3) + Bui(el—eg)

2
+Bat(eyrey) Bai(eg—eg)) - @(Bai&l + Bate; + Bates + Baze;)s

(2.8)
assumingB, = 0 in case ofa ¢ <7, the Qls defined in (2.3) can be written in the
“quasi-Lagrange” form:

Qf= S f(Ma)Ly, v=1234

aeaM

The infinity norms of the proposed quasi-interpolants hheddllowing bounds:
QM =1, 1Q%l < 5553~ 2.01,

1Q%le < 35~ 147, | Qe < G ~ 2.37.
Standard results in approximation theory [4] allow us towdedTheorem 2.1, for
which we need the following notations:

— for any functionf € C(H), with H a compact set, we denote the infinity norm of
f by |l =sup{[f(xy.2)|: (xy,2) €H};

— w(¢,t) = max{|d (X1, y1,21) — ¢ (X2, Y2, 2)|; (X1,¥1,21), (X2, Y2, 22) € H,
I1(Xx1,¥1,21) — (X2,¥2,22)|| <t} is the usual modulus of continuity @f € C(H),
where||-|| is the Euclidean norm oR3;

Bl ,
_ DB — DBiBbBs — delgW’ with |B| = B1+ B2+ Bs;

- (")(Dr¢7t) = maX{O)(Dﬁ(p,t), |B| = r}!
— Qn = [~2h,(my + 2)h] x [~2h, (M + 2)h] x [~2h, (mg + 2)h] for Q and
Q= [—4h, (M + 4)h] x [—4h, (M, + 4)h] x [—4h, (mg+ 4)h] for Q", v = 2,3, 4.



8 Catterina Dagnino et al.

Theorem 2.1 For each operator @, v = 1,2, 3,4, there exist positive constaris,,
such that

i) if f €C"(Qn),r=0,1, then||f — Q' f||, < € 1h"w(D" f,h);
if, in addition, fe C?(Qp), then||f — Q' f|| < %21h?maxg_, ||DPf]|.;

i) if f eC"(Qn),r=0,1,2,3, then||f —Q"f||,, <% h"w(D f h),v=234

if, in addition, f € C*(Qy), then | f —Q"f|, < €4vh*maxg_4||DPf| ., v =
2,3,4.
3 Cubature rules based orQ¥,v=1,2,3,4
For any functionf € C(Qy,), we consider the evaluation of the integral
I(f)=I(f;Q) ::/Q f(x,y,z) dxdydz
by cubature rules defined by
() =1(Q"1:Q2):= 5 wgf(Mqg), v=1234, (3.1)

acaM

where theMy's are the evaluation points defined by (2.4) and the cubateights
are

wY = LY (x,y,2) dxdy dz 3.2
o SUppYne a(Xy,2) y (3.2)

In the following theorems we show some features of the rek) (First we define
the chains of equalities

V. % _ vV _ vV — %
El . Wal,az,ag - Wm —ay+1,00,03 — Wal,mz—aerl,ag, - Wal,az,mgfcrg+1

= Wx11701+l,m2702+l,m37(13+l = Wc‘;l,mzfaz+l,m3703+l (3.3
Wl"jnlfal+l,02,ln‘3703+1 = Wr‘%1701+1,m2702+l,037
EZ 1 Way st =Way my—si1t = Way s me—t+1 = Wy my—st1mg—t+1
=Wa, t.5 = Wa, my—t+1s = oy t mg—st1 = Wey.my—t+Lmg—s+1
=We ot = Wiy si1apt = Waapyme—t+1 = Wiy st Lapm—t41 (3.4)
—wW —wW Y —wW :
t,02,8 my —t+1,02,S t,00,My—s+1 m—t+1,a0,my—s+1
= W‘s},t,a3 = Wr‘;11—s+1,t,a3 = W‘s/,mz—t+l,a3 = Wr‘%l—s-&-l,mz—t-»-l.ag
= th,s,a3 = Wr‘;11—t+1,aa3 = th,mz—s+l,a3 = Wr‘%l—t-&-l,mz—s-s-l.agv
Ei\; : ng,az,t = ng,az,m37t+l
= Wél,t,as = W(:X17”12*t+1703 (3.5
=W ap,03 = Wiy —t+1,a0,05°

for v = 1,2, 3,4, where the involved indices will be specified in the subsetjThe-
orem 3.1 and Theorem 3.3.

Theorem 3.1 The cubature weights in (3.1), in cage= 1, satisfy the following sym-
metry properties:
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Table 3.1 The 26 valuesvt, with wh = 17

chl),o,fl =1/8 \/\7%)‘070 =69/8 VT’%,M =3081/8 VTI%‘Z_2 =819 VV§73‘3 =840
Wio 1=3/4 | Wio,=253/8 | Wj,,=39758 | Wj,,=2826
Vvil,—l =43/8 V\Til,o =937/8 VV%,Z‘l = 25554 "@3.2 =833
Wio 1=7/8 | Wyg0=321/8 | Wy, =20094
vVil‘_l =49/8 W%,l,o =148 VV%}Z‘1 =5159/8
Wio =7 Whp0=T749/4 | Wi,, =651

W30 = 161/4

W3 4 o = 595/4

VV%,Z.O =1505/8

"\7L3,3.0 =189

e fora;=0,1, a»=0,...,01, ag=-1, a3=0,1,2, a1 =03,...,2, Q2 =
as, ..., 01 and for any permutation of the indices, a», a3, the equalities %in
(3.3) hold;

e fors=0,1, t=-1, ar=2,....m —1(r =1,2,3), the weights involved in the
equalities B of (3.4) and § of (3.5) are all equal to W, and v , , respectively;

e fort=0,1,2, s=t,....,2, ar=3,...,m —2(r = 1,2 3), the weights involved
in the equalities & of (3.4) and § of (3.5) are all equal to W, and w3,
respectively; '

o fora,=3,....m—2(r=1,2,3)

1

Way,a,03 = W%~3~,3'

The values of the twenty-six different weights fai(f) are reported in Table 3.1.

Proof From (2.5) and (3.2)

Wl = /E[mQ By (3.6)

In order to compute (3.6), we recall that a trivariate polyia p € P4 on a tetrahe-
dronT of the partition.7, can be represented in the Bernstein basis [3] as

S c(y)by(1).
ly|=4

p(t) =

where{c(y), y= (W1, ¥, 3, ¥a), |Y| = 4} are the BB-coefficients ab, by (1) = %TV
are the Bernstein polynomials= (11, T2, T3, T4) are the barycentric coordinates with
respect tar andy! = y!ylyslyal, TV = ool o).

SinceT is included in a cube with edge of lendthits volume is equal té‘% and,

since [3]
1n
T 3524
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for all by, then
_ 1.3
JiP= gag 2,50

where thec(y) can be obtained by the procedure given in [20]. Thereforedmngid-
ering all the tetrahedra involved H, N Q, the cubature weights are given by

h3

T/TeZaNQ 840\y|=4

wg = c(y). (3.7)

By considering the symmetry of the domaéh and of the supporE, of By, by
tedious computations we can deduce the symmetry propeftige weights. Now,
by the above features and (3.7), we get the twenty-six @iffeweights that we report
in Table 3.1. O

From Theorem 3.1, after some easy algebraic computatiom®batain the fol-
lowing result.

Corollary 3.1 For any f e C(Qp), the rule (3.1), withv = 1, can be written in the
following more compact form:

2 ap 3 3 ap

IQl(f): Z zowél.02,71%17a2771(f)+ z z z thxlazagzalazas(f)a

a1=0as= a3=001=03 0p=03

defined only by the twenty-six weights, given in Table 3th wi

m—2mp—2mg—2
o z333(f) = z Z z foya0s;

a;=3 a,=3 03=3

e fors=0,1,2

-2

3

ZSss( f) = (falss+ fa17m275+1,s+ fal,s,mg—erl + fal,mg—s+1,m3—s+l)

N W

+ (fSG25+ fm1*5+170!275+ faaz,m3—3+l+ fm1*5+17f12,m3*5+l)

N W

+

MT ST M

(fssmg + fmy—st 1505 + fsmpy—st1.a5 + fry—st1mp—si1,a3);
3

Q

3
e fors=0,1,2
Zssd T) = fssst fmy—sr1ss+ fsm—sr1s+ fry—s+1mp—stis

+ fssme—st1+ fry—sr1sme—st1
+ fsmp—s+1mg—s+1+ fy—st1my—s+1mg—st1s
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e fors=0,1

Zl+37&—l+s(f) = Z (falazas + fml—0f1+1~,0!270!3 + fal,rrlz—a2+1,a3
(a1,a2,a3)el
+ fm1—01+l,m2—02+1,0(3 + fal,az,mg,—a3+1+ fm1—01+1,0(2,n}3—03+1
+ faymy—ap+1me—as+1+ fm—ag+1Lmp—apt+ Lmg—az+1)s

wherelT = {(-1+s,5,1+5s), (-1+5s,1+5,9), (5,—1+5s,1+59), (5,1+s,—-1+
s), (14s,5,—1+59), (14s,—1+s,5)} is the permutation set gL+ s,s, —1+5);

e for (sit)=(2,-1),(3,¢),¢£=0,1,2

my—s+1mp—s+1
ZSSt(f) = z Z (falagt + fal,az,mg—tJrl)

ap;=s az=s
m—s+1mg—s+1

+ z Z (falwa + fal,mz—t+1,a3)
a1=S 0a3=S
mp—s+1mg—s+1

+ z Z (ftagag + fml—t+1,az,a3);
a2=S 03=S

e for (r,st)=(2,5,—1),(3,s+1,t),s=0,1,t=0,...,s

m—r+1

Zs(f) = z (faust+ faymp-si1t + fapsme—t+1+ faym—srime-t41
ar=r

+ falts+ forlAmz—t—s-Ls‘F fa17t,mg—s+1+ fal,rT\Z—t+1,rr13—s+1)
mp—r+1

+ z (fsopt + fry—st1a0t + fsapme—t+1 4 foy—s+1,00,me—t41
ax=r

+ fraps + fmy—t+Lans + ftoapme—s+1+ T —t+1,00,m—s+1)
mg—r+1

+ Z (fstaz + fmy—stit.as + fsmp—t+1,as + fy—s+Lmy—t+Las
az=r

+ ftsa3 + fml—t+1.&a3 + ft,mz—s+1,or3 + fml—t+1,mz—s+1,or3);
e fors=0,12,t=-1,...,s—1and(st) # (2,—1)

Zssi( T) = fsst+ foy—s+1st + fsm—sr1t + fm—sr1mp—st1t
+ fsts+ fmp—srits+ fsmp-tr1,s+ fy—st1mp—t+1s
+ frsst fmy—t1185+ fomp—sris+ fmy—t41me—siis,
+ fS.S,fT}g—t+1+ fml—s+1,s,mg—t+1
+ fsmp—srimg—t+1+ fmy—srimp-—siimg—ts1
+ fstmg—st1+ fmy—s+1t,mg—st1
+ fsmp—t+ime—s+1+ fr—stLmp—t+1mg—st+1
+ frsmg—sr1+ fm—tr1.sme-si1
+ femp-stimg-sr1+ fmy—ti1mp-srimg—si1;
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Table 3.2 The numbef, of function evaluations related to the weight}'s of Table 3.1

Foo,-1=24

Fi0-1=48

Fi1-1=24

F20,-1=8(my+m+mg —6)

Fo1,-1=8(M +m+mz—6)

Fo2-1 = 2[(my —2)(mp — 2) + (my — 2)(mg — 2) + (M — 2)(mg — 2)]
Fooo0=8

Fi00=24

Fi10=24

Fooo=24

Fo10=48

Foo0=24

Fs00=4(M +Mmp+nmg—12)

F310=8(m +nmp+mg—12)

F320=8(M +my+mg—12)

F330 = 2[(m —4)(mz — 4) + (Mg — 4) (Mg — 4) + (M — 4) (Mg — 4)]
F111=8

Fo11=24

Foo1=24

Fs11=4(M+m+nmg—12)

F321=8(m +nmp+mg—12)

Faa1 = 2[(my —4)(mp —4) + (Mg — 4) (Mg — 4) + (M — 4) (Mg — 4)]
F222=8

Fa22 = 4(My + My +mg — 12)

Faz2 = 2[(my — 4)(mp — 4) + (Mg — 4) (Mg — 4) + (mp — 4) (Mg — 4)]
Faa3= (M —4)(mp—4)(ms —4)

e fors=12,t=0,...,s—1

Zstt(T) = st + fmy—sr1tt + fsmp—te1t + frmy—stLmp—to1t
+ frst+ fmg—tr1st + fompsrat + fmtrampsiat
+ fris+ fmp—tr1ts+ fomptras+ fmtram—tivs

+ fstmg—t+1+ fy—s+ 1t me—t+1

+ fs,rr12—t+l,n13—t+1 + fml—s+1,n12—t+1,m3—t+1

+ ft,&m—t+l+ fml—t+1,s,nb—t+1

+ ftmp—stimg—t+1+ fy—t+1mp—s+Lmg—t+1

+ fotmg—st1+ fm—ti16mg—st1

+ femp—t+1mg—st+1+ fy—t+Lmp—t+1mg—st+1-

Remark 3.1From Corollary 3.1, each of the twenty-six weights is assed with
a certain number of function evaluations, as shown in Talle Therefore the total
number of function evaluations iy mpmz + 4(mMuMp + Mg + Mpims) + 12(my +

mp 4 mg) + 32.

Theorem 3.2 If in (3.1) we assume
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e v =2 then
wE = /suppZmQ L2(x,Y,2) dx dy dz
a
191 107 47
=g Vo~ @(thxiel +Wé:te2 +W¢lx¢e3) + @(WéiZel +Wéi2e2 + Wéi2e3)a
e v =23, then
wS = L3 (x,y,2) dxdydz
o suppino a(Xy,2) y
21 5
= 1Va %(Wéﬂel +WclxiZe2 +Wclxize3)7
e v =4, then
wh = supn L (xy,2) dxdy dz
16871 507 47
~ 4416 Wg — ﬁ;(wéiel +Wa g, T Wysey) + 71152("\&1&2% + Wy 26, +Wa 20,
1435
+13248(W‘1’i (erten) T Was(ey—en) T Was(ey+eg) T Wak(ereo)
+W%xi(e2+e3) +Wclxi(e2 63)) - gg(wéie‘t +W%ries +Waie5 +Wéie7)a

with the convention =0, a ¢ </.
Proof The proof immediately follows from (3.2) and (2.6)-(2.2-%). O

Theorem 3.3 The cubature weights of (3.1), in case

i) v =23, satisfy the following symmetry properties:
e fora;=0,1, a,=0,...,017, a3=-3;, az3=-2,—1, a1=0,...,03+4,
a,=0,...,01;, a1 =01, a,=-1, az3=-2,—-1, a3=0,1,23/4,
o1 =0as,...,4, az=as,...,01 and for any permutation of the indices,
as, a3, the equalities E in (3.3) hold.

e fors=0,1, t=-3, a=2,....m —1(r =12 3), the weights involved
in the equalities & of (3.4) and § of (3.5) are all equal to W, and Wy, ,
respectively; ' '

e fors=-1, t=-2 a,=2,....m—1(r =1,2,3), the weights involved in
the equalities § of (3.4) are all equal to W, _5;

e fors=0,1,2, t=-2 a,=3,...,m —2(r =1,2,3), the weights involved
in the equalities & of (3.4) and § of (3.5) are all equal to W, and w5,
respectively; ’
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fors=t=-1 a,=2,....m —1(r =1,2,3), the weights involved in the
equalities B of (3.4) are all equal to W,;

fors=0,1,2,3, t=-1 a,=4,....m —3(r =1,2,3), the weights involved
in the equalities & of (3.4) and § of (3.5) are all equal to W, and W, ,,
respectively; ’

fort =0,1,2,3,4, s=t,....4, a,=5,...,m —4 (r =1,2,3), the weights
involved in the equalities ¥ of (3.4) and E of (3.5) are all equal to W,
and W, ,, respectively; -

fora,=5,....m —4(r=1,273)

v )
Way,az,03 = Ws,55-

The values of the ninety different weights fgi(if ) and kys(f) are reported in
Table 3.3 and Table 3.4, respectively;

i) v =4, satisfy the following symmetry properties:

e fora1=0,1, a,=0,...,01, a3=-3; az3=-2,—-1, a1=-1,...,03+4,

a,=-1,...,a1; a3=0,1,2,3,4, a1 =a0as,...,4, ax=as,...,a; and for
any permutation of the indices;, a2, as, the equalities E in (3.3) hold;

fors=0,1, t=-3, a=2,....m —1(r = 1,2 3), the weights involved
in the equalities E of (3.4) and § of (3.5) are all equal to §, and w5 ,,
respectively; ' '

fors=-1,0,1,2, t=-2 o, =3,...,m —2(r =1,2,3), the weights in-
volved in the equalities £of (3.4) and & of (3.5) are all equal to §, and
Wj 3, respectively;

fors=-1,0,1,23, t=-1 o, =4,....m —3(r =12 3), the weights
involved in the equalities £of (3.4) and § of (3.5) are all equal to ;; and
Wj 4., respectively;

fort =0,1,2,3,4, s=t,....4, a,=5,....,m —4 (r =1,2,3), the weights
involved in the equalities £of (3.4) and § of (3.5) are all equal to §, and
W35, respectively;

e foray =5,.... m—4(r=1,273)

val,t.'lz?ag = \Ng‘575'

The values of the ninety-eight different weights for(f) are reported in Table
3.5.
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Table 3.3 The 90 valuesvZ, with w2 = %2

W33 =47/9216
W2 o _g=47/1536
W2, 3 =2021/9216
W3, _g = 329/9216
W3, 5 =2303/9216
W5, 5 =329/1152

W3, _, = 28159216
W2, _,=9323/9216
W2, _, =8545/3072
W5 ,_p = 12091/9216
W3, _, = 86692304
W5, = 232194608
W3, _, = 2023/1536
W, ,=174794608
W5, ,= 155893072
W35 _, =5887/1152

1= 73/2304
0._1= —6227/3072
= —547/4608
—628139216
—150869'9216
= _77/512
—40601/4608
—53147/2304
—24367/768
—81541/9216
—53491/2304
—2941199216
—147917/4608
—40747/4608
—106847/4608
—48965/1536
—295505/9216
= —12299/384

—1—
01
1,-1
—1.-

SN

L | T | R [

SIS SRR SRR ST R LRSS

,0,—1
,1,-1
,2,—1
,0,—1
,1,—1
,2,—1
,3,—1
,0,—1
,1,-1
,2,—1
,3,—-1
4,—1

WZ 9 = —14551/3072
W2 0 = 221639216
W2 1 o = 317837/3072
W3 o = —2809/9216
W3, o = 10384879216
W3, o, = 69805576
W30 = —243059216
W3 1 o = 3221173072
W3, o = 10235879216
W3 5 0 = 232477/2304
W 00 = —2393/1024
W5 1 o = 30481/288

W5 50 = 10353499216
W, 50 = 9417179216
W; 40 = 1589271536
W20 = —107454608
W2, o = 4878374608
W2, 0= 1726131536
W2 5 o = 4710234608
W2 4o = 9538559216
W25 o= 1192731152

W2, , = 16193573072
W3, 1 = 59624519216
W3, = 36067634608
W34, = 6428831024
W3, = 34831314608
W54, = 16793352304
W; 1, = 58095619216
W2, , = 69986359216
W 5, = 67499959216
W3 41 = 33913254608
W2, = 9685971536
We,, = 388941512
W5, = 11253831536
WE 41 = 226165¥3072
W25 | = 8484071152

W5, , = 479045512
W5, , = 129437144
W3 5, = 13238471536
W, , = 41638874608
W 5, = 79872179216
W 4 = 10039191152
W ,, = 13884011536
WS 5, = 8877611024
WE 4, = 125531144
W25, = 334859384

WS 55 = 316673384
W; 53 = 9555771152
W3 43 = 9611351152
WE 553 = 477953576
W2 4 3 = 40061/48

Wi 53 = 9617931152

W5 44 = 32223Y/384
W2 4, = 483511576
Wé5 4 = 96735Y/1152

W2 g5 =840

Proof Taking into account Theorem 3.2, the symmetry of the don@aiand of the

support=, of By, as in Theorem 3.1, we can deduce the symmetry propertiég of t

weights and the values of the different ones, reported itega® 3, 3.4 and 3.5. O

Remark 3.2For v = 2,3, the valuesnvg ; , andwy _; ,, appearing in Theorem
3.3, are equal tayg , 5 andwy , 5, respectively.

Remark 3.3With the requesin;, mp, mg > 9, in the construction of the weightsg;,
v =2,3,4, as in (3.2), we have at least one fundamental splfhev = 2,3,4, with

support completely included in the domam Therefore, we have at least one weight

h3

assuming the value afg 5 s = gzWe 5 5, V = 2,3,4, with wg 5 5 given in Tables 3.3,

3.4 and 3.5.

Remark 3.4The total number of function evaluations fgg () is mympemz + 8(mMumy +
mymg 4+ mMpmg) +40(my +mp+mg) + 152 in casey = 2, 3 and it ismymymz +8(mymy +
M Mg + Mpmg) + 40(My + Mp + mg) + 184 in casey = 4.

Remark 3.5From Theorems 3.1 and 3.2, the sum of the absolute values ofdights,
for each cubaturiy (f), v =1,2,3,4, is bounded as follows

T Wl <l

acaM

(3.8)
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Table 3.4 The 90 valuesv3, with w3 = 840\1T13

W3o_5=—5/768 W, 1= —5/64 Wooo = 1293/256 [ Wi, = 109097256 | w;,, = 117327128
Wi _3=—5/128 Woo_1=—403/256 | W3,,=6141/256 | W5, =423995768 | W5, , = 28847/32
Wi, 5=-215/768 | W , ;=-215/384 | W,,=86227/768 | W3, =91185128 | W35, = 113379128
W3o 3=—35/768 | W, ;=—1403/256 | W5, =7837/256 | W3, = 139401256 | W;,, = 342559384
W3, 5=—245/768 | W5, ,=—10477/768 | W5, ,—108859768 | W3, = 269387384 | W; 5, — 224343256
W3, 5=—35/96 v@{flﬁl = —245/384 "\73,2.0 =538/3 W35, = 132517192 | W3 ,, =27741/32
' W0 1 =—893/128 | W3,,=7549256 | W3, =13791Y256 | W,, = 342419384
Wao o =—115/256 | W3, ;=—297/16 W3, = 35305256 | W;,, =533099768 | W ,,= 672749768
Wio o =—1265768 | W3, ; = —478Y192 v@ 20— 133975768 | W 5, — 524363768 | W ,, = 20797/24
W3, _,=—4685768 | Wi, ; =-5413/768 | W5,,=32543192 | W;,, =86443128 | Wiy, =8315396
W3o_p=—535/256 | W3, ; =—229/12 WE o0 = 22307/768 | W2, , — 206759384
W3, ,=—18524 | W3, ;=—19579'768 | W;,,= 1308596 W3, = 88809128 | W3, 5= 2782532
W3, o= —3745/384 | W3, , =—3339128 | Wj,,—44135256 | Wi,, —87353128 | W ;;— 8256596
W3, ,=—805/384 | Wi, ;=-903/128 vTrggo =128597768 | WZ,, = 518413768 | W, = 8165596
W3, ,=-2075/384 | W3, ,=-7343/384 | W,,=63511/384 | Wiy, =6477Y96 | W, =1375516
W3, ,= 7525768 | Wi, ,=-3269/128 | Wi,,=3717/128 W2, 5 = 2040524
W3y ,=-315/32 | Wi ,=20069768 | W2, = 52325384 Weg g = 2719532
W, ,=-2513/96 | W, = 66185384 '
W2 50 = 21427/128 W 44 = 26915/32
WE 4 o = 42329256 WS, 4 = 4035548
W25 = 1586996 W2 5, = 8067596
"T’gs.s =840

Table 3.5 The 98 valuesv, with wi = 840‘”4

WS o3 =47/9216 W', =—7397/35328 | Wj,,=—5893970656 Wi ,, =3779122J70656 | Wj,, = 259825276
Wi o_3=47/1536 W3 _, 4 =2311/35328 W 5 = 16809770656 WA, ;, = 139053119211968 | W, , = 2386786326496
Wi, 5 =2021/9216 Wi, 4 — —236021/211968 | W, = 21114467211968 W5, = 4189283952992 | WA 5, = 39719474608
W3 =329/9216 W} _, _, =28871/17664 W o — 563495211968 | WA 11 = 19420133072 W 5, = 41724134608
W3, 5= 23039216 Wio_y =—994019211968 | Wi, ,=22612777211968 | Wi, = 2682101935328 | W4, = 26625413072
Wi, 5= 329/1152 Wi, _, = —507221/23552 W3, 0 = 12210089105984 | W5, = 8401751152 W34, = 10039191152

' \/V‘z‘;l . =3372517664 W30 = 1303/1024 W}, , = 58452899216 Wi, , = 13912431536
Wy g ,=—1/276 Wi,y =—621953105984 | WA, , = 9282899216 \Nj{‘z‘l = 70266499216 W2 5, = 79902559216
W = —73/23552 W5,y = —147636552992 Wg{z_o =2284975§211968 | W} 5, = 7502251024 WE 4, = 125531/144
W3, =279/1024 W3, 1 =-125901¥35328 | W4, = 12859128 W} 41 = 33913254608 Wi g, = 334859384
Wi, ,=2927/35328 | Wi , ,=60181/35328 Wj 00 = 14191/9216 WE 1 = 29236554608 '
Wi, _, = 11657/9216 Wi,y =—1229383211968 | W}, = 58729576 WE,, = 292873384 W 55 = 316673384
Wi, =21271/9216 Wi, | = 2788285105984 | W}, = 10073359216 WE 5, = 84429)/1152 W} 5 3 = 9555771152
WA_, ,=5891/70656 | WA, ;= —238901370656 | W, = 3132293072 We 41 = 22616513072 W}, 3 = 9611351152
W3, _,=326521/211968 | Wi, ; = —49441/1536 W} 40 = 1589211536 WE 5, = 8484071152 W2 55 = 477953576
Wi, ,=4109911776 | W_, , =2611/1536 We 0 = 791/512 W2 4 3 = 40061/48
W, ,=524315105984 | W}, , = —6685/1152 WE , o = 4699734608 W55 = 9617931152
W3 _, ,=245/3072 Wi 4 =—7553/288 W2, 0 = 20993192 ;
Wio_p=1771/1152 Wi, 4 =—17269512 W 50 = 58751/576 W, 44 = 322231/384
W3, _, = 343/96 wgs 1 = —32879/1024 W2 40 = 9538559216 W2, 4 = 48351576
W3, _, = 463619216 W4y = —12299384 vvs‘so =1192731152 Wig 4 = 9673511152
W3, , =5887/1152 '

Wgs.s =840
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where|Q| denotes the measure 6fand

1, v=1

131

240 V=2
%\): 13 .

== =3

87

5371

A

Since the weights/ are positive, then, in case= 1, (3.8) is an equality.
Therefore, from (3.8) and the multivariate version of théyReSteklov theorem,
the cubatures ove® are stable [21,31].

Finally, from Theorem 2.1 we can immediately deduce somelteen the con-
vergence of sequences of cubatuggg f), v=1,2,3,4 tol(f).

Theorem 3.4 Let f € C(Qy), then we have
Igv(f) —1(f) ash—0, v=1234.

In particular B
[ 1(f) —lgv(f) |[<Eyw(f,h),

where%_v is a positive constant independent op, m, and ny.
Moreover,

— if f € C¥(Qn), k= 1,2, then| I(f) — 15 (f) [= O(h¥);
— if f € C¥(Qn), k=1,2,3,4, then| I (f) —Igv(f) |=O(hK), v = 2,3,4.

Remark 3.6Thanks to the symmetry properties of the rules (3.1Xp, # [—myh, myh] x
[—mgh, mph] x [—mgh, mgh, then

lov(F) =1(f),  f=x1y273,

when at least one of thg’s, j = 1,2,3 is odd.

4 Numerical results

In this section we present some numerical results obtaigembimputational proce-
dures developed in a Matlab environment.

We compare our cubatures with other known ones having the aaproximation
orderO(h*) of the error, i.e. we consider

— lgv(f), v =23,4, defined in (3.1);
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— Ip(f) cubatures based on tensor product of univar@teguadratic spline Qls
proposed in [13];

— Ir(f) cubatures based on blending sums of univariate and big&tatjuadratic
spline QIs proposed in [14];

— Ig(f) cubatures based on tensor product of univariate compasitessn’s rules;

— ly1(f) composite non-product formulas for a cube exacPgmproposed in [12,
p. 367], [16, p. 204], [31, p. 230];

— ly2(f) composite non-product formulas for a cube exacPgmproposed in [12,
p. 368], [16, p. 204], [31, p. 230] (different nodes and wesghith respect to the
ruleslya(f)).

We remark that the total number of function evaluations fmtecubature rule is

— MuMmpmg + 2(MyMmp + Memg + Memg) + 4(my + M+ mg) + 8 for Ip(f) andIg(f);
— MMM + (MM + Mymg + M) + (M + M+ mg) + 1 for Ig(f);

— 3mumpmg + (MM + mymg + mpmg) for 1 ();

— 6mympmg for 142(f).

Forlgv(f), v =2,3,4, the number of function evaluations is reported in Remadk 3

We assume as integration domain the standard Qub€[0, 1}3, mMm=nMp=ng=
m andh = 1/m. We assumen an even number, since we consider the composite
Simpson'’s rule orm+ 1 equally spaced points df, 1], for each directiorx, y and
z The ruledy1(f) andly2(f) are used in2 by a composite technique, applying in
each subcube of eddethe non-product rules proposed in [12,16, 31].

We apply the above cubature rules to several smooth intddrarctions. The
first three ones come from the testing package of Genz [1/t{li8Fourth one from
[13].

The test functions are the following, for which we report theact value of the
integral:

- f1(x,y,2) = cos( +3W glz) (Oscillatory function)) (f;) = —-254;

(X,Y,2) =
— fa(x,¥,2) = 1/ (14+x+Yy+2)* (Corner peak function),( f;) = &
(X,y,2) =

— fa(x,y,2) = e{(x-05*+(y-05%+(z-05) (Gaussian function) f3) = 0.7852115962;
fa(x,y,2) = g_y eYsin(mz), | (fy) = 1.

We compute the absolute errors
Eo(f)=[1(f)—12(f)[, for 2 = Q% Q% Q" PR SH' H?

for each test function and for increasing valuespf.e.m= 16, 32, 64, 128, and we
report the corresponding graphs in Figs. 4.1, 4.2, 4.3, 4.4.

The numerical results shown in Figs. 4.1, 4.2, 4.3, 4.4 confire convergence
properties given in Section 3 fogv (), v = 2,3,4 and in the literature for the other
rules.

Moreover, our cubature rules are comparable and the forguld) seems to be
better than the other ones.

In Figs. 4.1, 4.2, 4.3 the error is smaller for the two fornsulg, 1,2, but we
remark that such formulas use a greater number of functievellations, namely
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0O(3m?®) andO(6m?), respectively, instead @(m?) and this is evident especially for
high values om.

Furthermore, we recall that the cubature ruies) are based o€ splines of
degree six (tensor product of univari&é quadratic spline QIs), the rulég(f) are
based orC! splines of degree four (blending sums of univariate andrlzitaC!
guadratic spline QIs) and here we have proposed new integrarmulas based on
trivariate spline quasi-interpolants on type-6 tetrahépartitions of total degree four



20 Catterina Dagnino et al.

_L_L_k_k
o o (o] (o]
O
m m m m m
I, T e T T
P S
L T T T

10’ 10

107 ¢
z oElf,)
107 - >Eelly]
=Euf,)

_k_k_k_k
o o o o
L4k

m m m m

T, T D T

ISTSR SR SES
L T T T

1o

10' 10
Fig. 4.4 Absolute errors fot (f4)

10

with C? smoothness. Such a higher smoothness is useful, for exaimie numeri-
cal treatment of integral equations, where the unknowntfancan be reconstructed
with C2 smoothness.
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Finally, we propose another example in case of integratiwnain different from
the standard cube. We want to evaluate the integral

2
|(f):/Q,X2X7+Z2 dx dy dz, (4.)
whereQ’ = {(x,,2) € R®: 1 < X2 +y?+22 <2, x> —y*+ 22 <0, y > 0}. We know
thatl(f) = g(S\/if 6). By using the spherical coordinates and affine transforma-
tions, we get an integral g, 1. Then, we evaluate it by the three cubatuegs f),

v = 2,3,4, for increasing values ah (m= 16, 32, 64, 128) and we compute the
corresponding absolute errors, obtaining the results shiowig. 4.5, where we note
again the better behaviour b (f).

10' 10
Fig. 4.5 Absolute error for (4.1)

5 Final remarks

In this paper we have considered the sp&{&2, 7,) generated by the scaled trans-
lates of the trivariat€? quartic box splineB defined by a seX of seven directions,
that forms a regular partition of the space into tetrahetinen, we have constructed
new cubature rules for 3D integrals, based on spline quésigolants expressed as
linear combinations of scaled translateadind local linear functionals.

We have provided weights and nodes of the above rules and veedmalysed
their properties.

Finally, some numerical tests and comparisons with othewknintegration for-
mulas have been presented.
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We remark that the points used in the integration formulas peoposed lie also
outside the integration domain. Since the function to begrated may not be defined
outside the domain of integration, an interesting develapinof this paper could be
the study and construction of spline cubature rules, basdohear combinations of
the scaled translates of the box splBienaking use of evaluation points inside or on
the boundary of the domain.

Moreover, in case of integrands with singularities in thstfpartial derivatives,
it could be interesting the construction of 3D cubature falas based on trivariate
B-splines defined on non-uniform partitions, in order towdime such singularities.
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