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Abstract In this paper we consider the space generated by the scaled translates of
the trivariateC2 quartic box splineB defined by a setX of seven directions, that forms
a regular partition of the space into tetrahedra. Then, we construct new cubature rules
for 3D integrals, based on spline quasi-interpolants expressed as linear combinations
of scaled translates ofB and local linear functionals.

We give weights and nodes of the above rules and we analyse their properties.
Finally, some numerical tests and comparisons with other known integration for-

mulas are presented.
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1 Introduction

The numerical evaluation of integrals is one of the corner stones in Numerical Anal-
ysis and it is also an important tool in methods to solve integral and differential prob-
lems. In particular there is a wide literature concerning the numerical evaluation of
integrals based on spline approximation. Indeed, splines have been used for numerical
integration ever since they entered on the Numerical Analysis scene [19]. We recall,
for instance, the papers [1,5–7,11,15,27,29], where quadrature formulas based on
spline interpolants and quasi-interpolants (QIs) of different degrees are considered,
also for singular integrals. Concerning the numerical evaluation of 2D integrals, we
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mention the cubatures proposed in [8–10,22,30,32], based on tensor product of uni-
variate splines, onC1 quadratic andC2 quartic quasi-interpolating splines, defined
on criss-cross triangulations and on Powell-Sabin partitions. Furthermore, numerical
integration over polygons using an eight-node quadrilateral spline finite element is
presented and studied in [23–25].

Finally, we recall [13,14], where cubature rules for a parallelepiped domain are
defined by integrating tensor product of univariateC1 quadratic spline QIs and blend-
ing sums ofC1 quadratic spline QIs in one and two variables.

In this paper, we propose new integration formulas for 3D integrals based on
trivariateC2 quartic spline quasi-interpolants on type-6 tetrahedral partitions with
higher smoothness, useful, for example, in the numerical treatment of integral equa-
tions, where the unknown function can be reconstructed withC2 smoothness.

In particular, we construct formulas based on four QIs, where the basic functions
are the scaled translates of the trivariateC2 quartic box splineB, defined on a type-6
tetrahedral partition, and the coefficient functionals arelinear combinations of values
of f at specific points in the support of the scaled translates ofB. The first operator
is based on the well-known Schoenberg-Marsden one and it is exact on the space of
trilinear polynomials. The second one is exact on the space of polynomials contained
in the spline space spanned by the scaled translates ofB. The third one is exact on the
spaceP3 of trivariate polynomials of total degree at most three, andit is of near-best
type, i.e. it is constructed by minimizing an upper bound of its infinity norm. Finally,
the fourth one is exact onP3 and shows some superconvergence properties at specific
points of the domain (the vertices and the centers of each cube of the partition).

The paper is organized as follows: in Section 2, we recall thedefinitions and
main properties of the trivariateC2 quartic box splineB, the space spanned by its
scaled translates and the four QIs. New cubature formulas, based on such QIs, are
generated in Section 3 and their convergence and stability properties are studied.
Finally, in Section 4, numerical results are presented, illustrating the performances of
the proposed cubatures.

2 Trivariate C2 quartic spline quasi-interpolants

2.1 The spline spaceS2
4(Ω ,Tm)

In order to define a box spline, it is necessary to specify a setof directions that deter-
mine the shape of its support and also its continuity properties. Following [26], we
consider the setX = {e1,e2,e3,e4,e5,e6,e7} of seven directions ofZ3, spanningR3,
where

e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1), e4 = (1,1,1),
e5 = (−1,1,1), e6 = (1,−1,1), e7 = (−1,−1,1).

Therefore, the space is cut into a symmetric regular arrangement of tetrahedra called
type-6 tetrahedral partition. The type-6 tetrahedral partitions are uniform partitions of
R

3 obtained from a given cube partition (see Fig. 2.1(a)) of the space by subdividing
each cube into 24 tetrahedra with six planes (see Fig. 2.1(b)).
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(a) (b)

Fig. 2.1 The uniform type-6 tetrahedral partition

Fig. 2.2 The support of the seven directional box spline

According to [2, Chap. 11] and [4, Chap. 1], since the setX has seven elements
and the domain isR3, the box splineB(·) = B(·|X) is of degree four. Its continuity
depends on the determination of the numberd, such thatd+1 is the minimal number
of directions to be removed fromX to obtain a reduced set that does not spanR

3.
Then, theB continuity class isCd−1. With the notation given in [2, Chap. 11],

d = min{|Y| : Y ∈ Y }−1, (2.1)

where
Y = Y (X) = {Y ⊂ X : 〈X\Y〉 6= R

3}.
In our cased = 3, thus the polynomial pieces defined over each tetrahedron are

of degree four and they are joined withC2 smoothness.
The supportΞ of theC2 quartic box splineB is the truncated rhombic dodecahe-

dron centered at the point(1
2, 1

2, 5
2) and contained in the cube[−2,3]× [−2,3]× [0,5]

(see Fig. 2.2).
Now, letm1,m2,m3 ≥ 9 be integers, letΩ = [0,m1h]× [0,m2h]× [0,m3h], h > 0,

be a parallelepiped divided intom1m2m3 equal cubes and endowed with the type-6
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tetrahedral partitionTm, m = (m1,m2,m3) (see Fig. 2.1). We set

A =
{

α = (α1,α2,α3),−1≤ αi ≤ mi +2,1≤ i ≤ 3,α /∈ A
′} ,

with A ′ the set of indices defined by

A
′ =





(α1,α2,−1), (α1,α2,m3 +2), for −1≤ α1 ≤ m1 +2, α2 = −1,m2 +2,
(α1,α2,−1), (α1,α2,m3 +2), for α1 = −1,m1 +2, 0≤ α2 ≤ m2 +1,
(α1,−1,α3), (α1,m2 +2,α3), for α1 = −1,m1 +2, 0≤ α3 ≤ m3 +1



 .

Since B is centered at the point
(

1
2, 1

2, 5
2

)
, we define the scaled translates ofB,

{Bα ,α ∈ A }, in the following way:

Bα(x,y,z) = B
(x

h
−α1 +1,

y
h
−α2 +1,

z
h
−α3 +3

)
, (2.2)

whose supportsΞα are centered at the points
(
(α1− 1

2)h, (α2− 1
2)h, (α3− 1

2)h
)

and
overlap withΩ .

Then, we define the space generated by the functions{Bα ,α ∈ A }

S2
4(Ω ,Tm) =

{
s= ∑

α∈A

cαBα , cα ∈ R

}
.

This space is a subspace of the whole space of all trivariateC2 quartic splines defined
onTm.

We also recall that the approximation power ofS2
4(Ω ,Tm) is the largest integerr

for which
dist( f ,S2

4(Ω ,Tm)) = O(hr)

for all sufficiently smooth f , with the distance measured in theLp(Ω)-norm
(1 ≤ p ≤ ∞) [4, Chap. 3]. From results given in [4, Chap. 3], we know thatthe ap-
proximation power ofS2

4(Ω ,Tm) does not exceedd + 1, with d defined by (2.1).
Therefore, in our case we haver ≤ 4 and in the following we show thatr = 4 (Theo-
rem 2.1).

From [28], we also know that the maximal space of polynomialsincluded in
S2

4(Ω ,Tm) is D(X) = P3⊕ span{p1, p2, p3, p4, p5, p6, p7, p8, p9}, with

p1 = x4, p2 = x3y+3xyz2, p3 = xy3 +3xyz2,
p4 = y4, p5 = x3z+3xy2z, p6 = y3z+3x2yz,
p7 = xz3 +3xy2z, p8 = yz3 +3x2yz, p9 = z4.

2.2 Quasi-interpolants inS2
4(Ω ,Tm)

In the spaceS2
4(Ω ,Tm), we consider several quasi-interpolation operators [28].

A quasi-interpolant is a linear operator defined on a functional spaceF , in the
following way

Q : F → S2
4(Ω ,Tm)

Q f = ∑
α∈A

λα( f )Bα
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where theBα ’s are the scaled translates of the box splineB, defined by (2.2) with
supportΞα and theλα( f )’s are linear functionals expressed as linear combination of
values off at specific points inΞα .

We define four different QIs

Qν f = ∑
α∈A

λ ν
α ( f )Bα , ν = 1,2,3,4, (2.3)

with

• λ 1
α( f ) = fα (see Fig. 2.3(a));

• λ 2
α( f ) = 191

64 fα − 107
288( fα±e1 + fα±e2 + fα±e3) + 47

1152( fα±2e1 + fα±2e2 + fα±2e3)
(see Fig. 2.3(b));

• λ 3
α( f ) = 21

16 fα − 5
96( fα±2e1 + fα±2e2 + fα±2e3) (see Fig. 2.4(a));

• λ 4
α( f )= 16871

4416 fα − 507
736( fα±e1 + fα±e2 + fα±e3)+

47
1152( fα±2e1 + fα±2e2 + fα±2e3)+

1435
13248( fα±(e1+e2)+ fα±(e1−e2)+ fα±(e1+e3)+ fα±(e1−e3)+ fα±(e2+e3)+ fα±(e2−e3))−
2
69( fα±e4 + fα±e5 + fα±e6 + fα±e7) (see Fig. 2.4(b));

where fβ = f (Mβ ) and

Mβ =

((
β1−

1
2

)
h,

(
β2−

1
2

)
h,

(
β3−

1
2

)
h

)
(2.4)

are the data points. They are the centers of each subcube of the partition and some of
them lie outsideΩ . Therefore, their corresponding set of indices is

A
M =

{
A , ν = 1{

α = (α1,α2,α3),−3≤ αi ≤ mi +4,1≤ i ≤ 3,α /∈ A M̄
}

, ν = 2,3,4

with

A
M̃ =





A M∗ ∪





(α1,α2,α3) for α1 = −1,m1 +2, α2 = −1,m2 +2,
α3 = −2,m3 +3,

(α1,α2,α3) for α1 = −2,m1 +3, α2 = −1,m2 +2,
α1 = −1,m1 +2, α2 = −2,−1,m2 +2,m2 +3,
α3 = −1,m3 +2





, ν = 2,3

A M∗
, ν = 4

and

A
M∗

=





(α1,α2,α3) for α1 = −3,−2,−1,m1 +2,m1 +3,m1 +4, α2 = −3,m2 +4,
α1 = −3,−2,m1 +3,m1 +4, α2 = −2,m2 +3,
α1 = −3,m1 +4, α2 = −1,m2 +2,
0≤ α3 ≤ m3 +1;

(α1,α2,α3) for α1 = −3,−2,−1,m1 +2,m1 +3,m1 +4, −3≤ α2 ≤ m2 +4,
0≤ α1 ≤ m1 +1, α2 = −3,−2,−1,m2 +2,m2 +3,m2 +4,
α3 = −3,m3 +4;

(α1,α2,α3) for α1 = −3,−2,m1 +3,m1 +4, −3≤ α2 ≤ m2 +4,
−1≤ α1 ≤ m1 +2, α2 = −3,−2,m2 +3,m2 +4,
α3 = −2,m3 +3;

(α1,α2,α3) for α1 = −3,m1 +4, −3≤ α2 ≤ m2 +4,
α1 = −2,m1 +3, α2 = −3,−2,m2 +3,m2 +4,
−1≤ α1 ≤ m1 +2, α2 = −3,m2 +4,
α3 = −1,m3 +2.





.
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(a) (b)

Fig. 2.3 Data points involved in(a) λ 1
α and(b) λ 2

α

(a) (b)

Fig. 2.4 Data points involved in(a) λ 3
α and(b) λ 4

α
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The first operatorQ1 is exact on the space of trilinear polynomials, the second
oneQ2 is exact on the spaceD(X), the third oneQ3 is exact on the spaceP3 and it
is of near-best type, i.e. it is constructed by minimizing anupper bound of its infinity
norm. The fourth oneQ4 is exact onP3 and shows some superconvergence properties
at specific points of the domain (the vertices and the centersof each cube of the
partition, see [28] for more details).

By introducing the fundamental splines

L1
α = Bα , (2.5)

L2
α =

191
64

Bα − 107
288

(Bα±e1 +Bα±e2 +Bα±e3)

+
47

1152
(Bα±2e1 +Bα±2e2 +Bα±2e3),

(2.6)

L3
α =

21
16

Bα − 5
96

(Bα±2e1 +Bα±2e2 +Bα±2e3) (2.7)

L4
α =

16871
4416

Bα − 507
736

(Bα±e1 +Bα±e2 +Bα±e3)+
47

1152
(Bα±2e1 +Bα±2e2 +Bα±2e3)

+
1435
13248

(Bα±(e1+e2) +Bα±(e1−e2) +Bα±(e1+e3) +Bα±(e1−e3)

+Bα±(e2+e3) +Bα±(e2−e3))−
2
69

(Bα±e4 +Bα±e5 +Bα±e6 +Bα±e7),

(2.8)
assumingBα ≡ 0 in case ofα /∈ A , the QIs defined in (2.3) can be written in the
“quasi-Lagrange” form:

Qν f = ∑
α∈A M

f (Mα)Lν
α , ν = 1,2,3,4.

The infinity norms of the proposed quasi-interpolants have the following bounds:

‖Q1‖∞ = 1, ‖Q2‖∞ ≤ 4674
2323≈ 2.01,

‖Q3‖∞ ≤ 47
32 ≈ 1.47, ‖Q4‖∞ ≤ 1167

493 ≈ 2.37.

Standard results in approximation theory [4] allow us to deduce Theorem 2.1, for
which we need the following notations:

– for any functionf ∈C(H), with H a compact set, we denote the infinity norm of
f by ‖ f‖H = sup{| f (x,y,z)| : (x,y,z) ∈ H};

– ω(ϕ, t) = max{|ϕ(x1,y1,z1)−ϕ(x2,y2,z2)|; (x1,y1,z1),(x2,y2,z2) ∈ H,
‖(x1,y1,z1)− (x2,y2,z2)‖ ≤ t} is the usual modulus of continuity ofϕ ∈ C(H),
where‖·‖ is the Euclidean norm onR3;

– Dβ = Dβ1β2β3 = ∂ |β |

∂xβ1∂yβ2∂zβ3
, with |β | = β1 +β2 +β3;

– ω(Drϕ, t) = max{ω(Dβ ϕ, t), |β | = r};
– Ωh = [−2h,(m1 + 2)h] × [−2h,(m2 + 2)h] × [−2h,(m3 + 2)h] for Q1 and

Ωh = [−4h,(m1 +4)h]× [−4h,(m2 +4)h]× [−4h,(m3 +4)h] for Qν , ν = 2,3,4.
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Theorem 2.1 For each operator Qν , ν = 1,2,3,4, there exist positive constantsCr,ν ,
such that

i) if f ∈Cr(Ωh), r = 0,1, then
∥∥ f −Q1 f

∥∥
∞ ≤ Cr,1hrω(Dr f ,h);

if, in addition, f ∈C2(Ωh), then
∥∥ f −Q1 f

∥∥
∞ ≤ C2,1h2max|β |=2

∥∥Dβ f
∥∥

∞;

ii) if f ∈Cr(Ωh), r = 0,1,2,3, then‖ f −Qν f‖∞ ≤ Cr,νhrω(Dr f ,h), ν = 2,3,4;
if, in addition, f ∈ C4(Ωh), then‖ f −Qν f‖∞ ≤ C4,νh4max|β |=4

∥∥Dβ f
∥∥

∞, ν =
2,3,4.

3 Cubature rules based onQν , ν = 1,2,3,4

For any functionf ∈C(Ωh), we consider the evaluation of the integral

I( f ) = I( f ;Ω) :=
∫

Ω
f (x,y,z) dx dy dz

by cubature rules defined by

IQν ( f ) = I(Qν f ;Ω) := ∑
α∈A M

wν
α f (Mα), ν = 1,2,3,4, (3.1)

where theMα ’s are the evaluation points defined by (2.4) and the cubatureweights
are

wν
α =

∫

suppLν
α∩Ω

Lν
α(x,y,z) dx dy dz. (3.2)

In the following theorems we show some features of the rules (3.1). First we define
the chains of equalities

Eν
1 : wν

α1,α2,α3
= wν

m1−α1+1,α2,α3
= wν

α1,m2−α2+1,α3
= wν

α1,α2,m3−α3+1
= wν

m1−α1+1,m2−α2+1,m3−α3+1 = wν
α1,m2−α2+1,m3−α3+1

= wν
m1−α1+1,α2,m3−α3+1 = wν

m1−α1+1,m2−α2+1,α3
,

(3.3)

Eν
2 : wν

α1,s,t = wν
α1,m2−s+1,t = wν

α1,s,m3−t+1 = wν
α1,m2−s+1,m3−t+1

= wν
α1,t,s = wν

α1,m2−t+1,s = wν
α1,t,m3−s+1 = wν

α1,m2−t+1,m3−s+1
= wν

s,α2,t = wν
m1−s+1,α2,t

= wν
s,α2,m3−t+1 = wν

m1−s+1,α2,m3−t+1
= wν

t,α2,s = wν
m1−t+1,α2,s

= wν
t,α2,m3−s+1 = wν

m1−t+1,α2,m3−s+1
= wν

s,t,α3
= wν

m1−s+1,t,α3
= wν

s,m2−t+1,α3
= wν

m1−s+1,m2−t+1,α3

= wν
t,s,α3

= wν
m1−t+1,s,α3

= wν
t,m2−s+1,α3

= wν
m1−t+1,m2−s+1,α3

,

(3.4)

Eν
3 : wν

α1,α2,t = wν
α1,α2,m3−t+1

= wν
α1,t,α3

= wν
α1,m2−t+1,α3

= wν
t,α2,α3

= wν
m1−t+1,α2,α3

,
(3.5)

for ν = 1,2,3,4, where the involved indices will be specified in the subsequent The-
orem 3.1 and Theorem 3.3.

Theorem 3.1 The cubature weights in (3.1), in caseν = 1, satisfy the following sym-
metry properties:
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Table 3.1 The 26 values ¯w1
α , with w1

α = h3

840w̄1
α

w̄1
0,0,−1 = 1/8 w̄1

0,0,0 = 69/8 w̄1
1,1,1 = 3081/8 w̄1

2,2,2 = 819 w̄1
3,3,3 = 840

w̄1
1,0,−1 = 3/4 w̄1

1,0,0 = 253/8 w̄1
2,1,1 = 3975/8 w̄1

3,2,2 = 826
w̄1

1,1,−1 = 43/8 w̄1
1,1,0 = 937/8 w̄1

2,2,1 = 2555/4 w̄1
3,3,2 = 833

w̄1
2,0,−1 = 7/8 w̄1

2,0,0 = 321/8 w̄1
3,1,1 = 2009/4

w̄1
2,1,−1 = 49/8 w̄1

2,1,0 = 148 w̄1
3,2,1 = 5159/8

w̄1
2,2,−1 = 7 w̄1

2,2,0 = 749/4 w̄1
3,3,1 = 651

w̄1
3,0,0 = 161/4

w̄1
3,1,0 = 595/4

w̄1
3,2,0 = 1505/8

w̄1
3,3,0 = 189

• for α1 = 0,1, α2 = 0, . . . ,α1, α3 = −1; α3 = 0,1,2, α1 = α3, . . . ,2, α2 =
α3, . . . ,α1 and for any permutation of the indicesα1, α2, α3, the equalities E11 in
(3.3) hold;

• for s= 0,1, t = −1, αr = 2, . . . ,mr −1 (r = 1,2,3), the weights involved in the
equalities E1

2 of (3.4) and E13 of (3.5) are all equal to w12,s,t and w1
2,2,t , respectively;

• for t = 0,1,2, s= t, . . . ,2, αr = 3, . . . ,mr −2 (r = 1,2,3), the weights involved
in the equalities E12 of (3.4) and E13 of (3.5) are all equal to w13,s,t and w1

3,3,t ,
respectively;

• for αr = 3, . . . ,mr −2 (r = 1,2,3)

w1
α1,α2,α3

= w1
3,3,3.

The values of the twenty-six different weights for IQ1( f ) are reported in Table 3.1.

Proof From (2.5) and (3.2)

w1
α =

∫

Ξα∩Ω
Bα . (3.6)

In order to compute (3.6), we recall that a trivariate polynomial p∈ P4 on a tetrahe-
dronT of the partitionTm can be represented in the Bernstein basis [3] as

p(τ) = ∑
|γ |=4

c(γ)bγ(τ),

where{c(γ), γ = (γ1,γ2,γ3,γ4), |γ| = 4} are the BB-coefficients ofp, bγ(τ) = 4!
γ ! τγ

are the Bernstein polynomials,τ = (τ1,τ2,τ3,τ4) are the barycentric coordinates with
respect toT andγ! = γ1!γ2!γ3!γ4!, τγ = τγ1

1 τγ2
2 τγ3

3 τγ4
4 .

SinceT is included in a cube with edge of lengthh, its volume is equal toh
3

24 and,
since [3]

∫

T
bγ =

1
35

h3

24
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for all bγ , then
∫

T
p =

1
840

h3 ∑
|γ |=4

c(γ),

where thec(γ) can be obtained by the procedure given in [20]. Therefore, byconsid-
ering all the tetrahedra involved inΞα ∩Ω , the cubature weights are given by

w1
α = ∑

T/T∈Ξα∩Ω

h3

840 ∑
|γ |=4

c(γ). (3.7)

By considering the symmetry of the domainΩ and of the supportΞα of Bα , by
tedious computations we can deduce the symmetry propertiesof the weights. Now,
by the above features and (3.7), we get the twenty-six different weights that we report
in Table 3.1. ⊓⊔

From Theorem 3.1, after some easy algebraic computations, we obtain the fol-
lowing result.

Corollary 3.1 For any f ∈ C(Ωh), the rule (3.1), withν = 1, can be written in the
following more compact form:

IQ1( f ) =
2

∑
α1=0

α1

∑
α2=0

w1
α1,α2,−1zα1,α2,−1( f )+

3

∑
α3=0

3

∑
α1=α3

α1

∑
α2=α3

w1
α1α2α3

zα1α2α3( f ),

defined only by the twenty-six weights, given in Table 3.1, with

• z333( f ) =
m1−2

∑
α1=3

m2−2

∑
α2=3

m3−2

∑
α3=3

fα1α2α3;

• for s= 0,1,2

z3ss( f ) =
m1−2

∑
α1=3

( fα1ss+ fα1,m2−s+1,s+ fα1,s,m3−s+1 + fα1,m2−s+1,m3−s+1)

+
m2−2

∑
α2=3

( fsα2s+ fm1−s+1,α2,s+ fs,α2,m3−s+1 + fm1−s+1,α2,m3−s+1)

+
m3−2

∑
α3=3

( fssα3 + fm1−s+1,s,α3 + fs,m2−s+1,α3 + fm1−s+1,m2−s+1,α3);

• for s= 0,1,2

zsss( f ) = fsss+ fm1−s+1,s,s+ fs,m2−s+1,s+ fm1−s+1,m2−s+1,s

+ fs,s,m3−s+1 + fm1−s+1,s,m3−s+1

+ fs,m2−s+1,m3−s+1 + fm1−s+1,m2−s+1,m3−s+1;
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• for s= 0,1

z1+s,s,−1+s( f ) = ∑
(α1,α2,α3)∈Π

( fα1α2α3 + fm1−α1+1,α2,α3 + fα1,m2−α2+1,α3

+ fm1−α1+1,m2−α2+1,α3 + fα1,α2,m3−α3+1 + fm1−α1+1,α2,m3−α3+1

+ fα1,m2−α2+1,m3−α3+1 + fm1−α1+1,m2−α2+1,m3−α3+1),

whereΠ = {(−1+s,s,1+s), (−1+s,1+s,s), (s,−1+s,1+s), (s,1+s,−1+
s), (1+s,s,−1+s), (1+s,−1+s,s)} is the permutation set of(1+s,s,−1+s);

• for (s, t) = (2,−1),(3, ℓ), ℓ = 0,1,2

zsst( f ) =
m1−s+1

∑
α1=s

m2−s+1

∑
α2=s

( fα1α2t + fα1,α2,m3−t+1)

+
m1−s+1

∑
α1=s

m3−s+1

∑
α3=s

( fα1tα3 + fα1,m2−t+1,α3)

+
m2−s+1

∑
α2=s

m3−s+1

∑
α3=s

( ftα2α3 + fm1−t+1,α2,α3);

• for (r,s, t) = (2,s,−1),(3,s+1, t), s= 0,1, t = 0, . . . ,s

zrst( f ) =
m1−r+1

∑
α1=r

( fα1st + fα1,m2−s+1,t + fα1,s,m3−t+1 + fα1,m2−s+1,m3−t+1

+ fα1ts+ fα1,m2−t+1,s+ fα1,t,m3−s+1 + fα1,m2−t+1,m3−s+1)

+
m2−r+1

∑
α2=r

( fsα2t + fm1−s+1,α2,t + fs,α2,m3−t+1 + fm1−s+1,α2,m3−t+1

+ ftα2s+ fm1−t+1,α2,s+ ft,α2,m3−s+1 + fm1−t+1,α2,m3−s+1)

+
m3−r+1

∑
α3=r

( fstα3 + fm1−s+1,t,α3 + fs,m2−t+1,α3 + fm1−s+1,m2−t+1,α3

+ ftsα3 + fm1−t+1,s,α3 + ft,m2−s+1,α3 + fm1−t+1,m2−s+1,α3);

• for s= 0,1,2, t = −1, . . . ,s−1 and(s, t) 6= (2,−1)

zsst( f ) = fsst+ fm1−s+1,s,t + fs,m2−s+1,t + fm1−s+1,m2−s+1,t

+ fsts+ fm1−s+1,t,s+ fs,m2−t+1,s+ fm1−s+1,m2−t+1,s

+ ftss+ fm1−t+1,s,s+ ft,m2−s+1,s+ fm1−t+1,m2−s+1,s,
+ fs,s,m3−t+1 + fm1−s+1,s,m3−t+1

+ fs,m2−s+1,m3−t+1 + fm1−s+1,m2−s+1,m3−t+1

+ fs,t,m3−s+1 + fm1−s+1,t,m3−s+1

+ fs,m2−t+1,m3−s+1 + fm1−s+1,m2−t+1,m3−s+1

+ ft,s,m3−s+1 + fm1−t+1,s,m3−s+1

+ ft,m2−s+1,m3−s+1 + fm1−t+1,m2−s+1,m3−s+1;
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Table 3.2 The numberFα of function evaluations related to the weightsw1
α ’s of Table 3.1

F0,0,−1 = 24
F1,0,−1 = 48
F1,1,−1 = 24
F2,0,−1 = 8(m1 +m2 +m3−6)
F2,1,−1 = 8(m1 +m2 +m3−6)
F2,2,−1 = 2[(m1−2)(m2−2)+(m1−2)(m3−2)+(m2−2)(m3−2)]
F0,0,0 = 8
F1,0,0 = 24
F1,1,0 = 24
F2,0,0 = 24
F2,1,0 = 48
F2,2,0 = 24
F3,0,0 = 4(m1 +m2 +m3−12)
F3,1,0 = 8(m1 +m2 +m3−12)
F3,2,0 = 8(m1 +m2 +m3−12)
F3,3,0 = 2[(m1−4)(m2−4)+(m1−4)(m3−4)+(m2−4)(m3−4)]
F1,1,1 = 8
F2,1,1 = 24
F2,2,1 = 24
F3,1,1 = 4(m1 +m2 +m3−12)
F3,2,1 = 8(m1 +m2 +m3−12)
F3,3,1 = 2[(m1−4)(m2−4)+(m1−4)(m3−4)+(m2−4)(m3−4)]
F2,2,2 = 8
F3,2,2 = 4(m1 +m2 +m3−12)
F3,3,2 = 2[(m1−4)(m2−4)+(m1−4)(m3−4)+(m2−4)(m3−4)]
F3,3,3 = (m1−4)(m2−4)(m3−4)

• for s= 1,2, t = 0, . . . ,s−1

zstt( f ) = fstt + fm1−s+1,t,t + fs,m2−t+1,t + fm1−s+1,m2−t+1,t

+ ftst + fm1−t+1,s,t + ft,m2−s+1,t + fm1−t+1,m2−s+1,t

+ ftts+ fm1−t+1,t,s+ ft,m2−t+1,s+ fm1−t+1,m2−t+1,s

+ fs,t,m3−t+1 + fm1−s+1,t,m3−t+1

+ fs,m2−t+1,m3−t+1 + fm1−s+1,m2−t+1,m3−t+1

+ ft,s,m3−t+1 + fm1−t+1,s,m3−t+1

+ ft,m2−s+1,m3−t+1 + fm1−t+1,m2−s+1,m3−t+1

+ ft,t,m3−s+1 + fm1−t+1,t,m3−s+1

+ ft,m2−t+1,m3−s+1 + fm1−t+1,m2−t+1,m3−s+1.

Remark 3.1From Corollary 3.1, each of the twenty-six weights is associated with
a certain number of function evaluations, as shown in Table 3.2. Therefore the total
number of function evaluations ism1m2m3 + 4(m1m2 + m1m3 + m2m3) + 12(m1 +
m2 +m3)+32.

Theorem 3.2 If in (3.1) we assume
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• ν = 2, then

w2
α =

∫

suppL2
α∩Ω

L2
α(x,y,z) dx dy dz

=
191
64

w1
α − 107

288
(w1

α±e1
+w1

α±e2
+w1

α±e3
)+

47
1152

(w1
α±2e1

+w1
α±2e2

+w1
α±2e3

),

• ν = 3, then

w3
α =

∫

suppL3
α∩Ω

L3
α(x,y,z) dx dy dz

=
21
16

w1
α − 5

96
(w1

α±2e1
+w1

α±2e2
+w1

α±2e3
),

• ν = 4, then

w4
α =

∫

suppL4
α∩Ω

L4
α(x,y,z) dx dy dz

=
16871
4416

w1
α − 507

736
(w1

α±e1
+w1

α±e2
+w1

α±e3
)+

47
1152

(w1
α±2e1

+w1
α±2e2

+w1
α±2e3

)

+
1435
13248

(w1
α±(e1+e2)

+w1
α±(e1−e2)

+w1
α±(e1+e3)

+w1
α±(e1−e3)

+w1
α±(e2+e3)

+w1
α±(e2−e3)

)− 2
69

(w1
α±e4

+w1
α±e5

+w1
α±e6

+w1
α±e7

),

with the convention w1α ≡ 0, α /∈ A .

Proof The proof immediately follows from (3.2) and (2.6)-(2.7)-(2.8). ⊓⊔

Theorem 3.3 The cubature weights of (3.1), in case

i) ν = 2,3, satisfy the following symmetry properties:
• for α1 = 0,1, α2 = 0, . . . ,α1, α3 = −3; α3 = −2,−1, α1 = 0, . . . ,α3 +4,

α2 = 0, . . . ,α1; α1 = 0,1, α2 = −1, α3 = −2,−1; α3 = 0,1,2,3,4,
α1 = α3, . . . ,4, α2 = α3, . . . ,α1 and for any permutation of the indicesα1,
α2, α3, the equalities Eν1 in (3.3) hold.

• for s= 0,1, t = −3, αr = 2, . . . ,mr −1 (r = 1,2,3), the weights involved
in the equalities Eν2 of (3.4) and Eν

3 of (3.5) are all equal to wν2,s,t and wν
2,2,t ,

respectively;

• for s= −1, t = −2 αr = 2, . . . ,mr −1 (r = 1,2,3), the weights involved in
the equalities Eν2 of (3.4) are all equal to wν2,0,−3;

• for s= 0,1,2, t = −2 αr = 3, . . . ,mr −2 (r = 1,2,3), the weights involved
in the equalities Eν2 of (3.4) and Eν

3 of (3.5) are all equal to wν3,s,t and wν
3,3,t ,

respectively;
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• for s= t = −1 αr = 2, . . . ,mr −1 (r = 1,2,3), the weights involved in the
equalities Eν

2 of (3.4) are all equal to wν2,s,t ;

• for s= 0,1,2,3, t =−1 αr = 4, . . . ,mr −3 (r = 1,2,3), the weights involved
in the equalities Eν2 of (3.4) and Eν

3 of (3.5) are all equal to wν4,s,t and wν
4,4,t ,

respectively;

• for t = 0,1,2,3,4, s= t, . . . ,4, αr = 5, . . . ,mr −4 (r = 1,2,3), the weights
involved in the equalities Eν2 of (3.4) and Eν

3 of (3.5) are all equal to wν5,s,t
and wν

5,5,t , respectively;

• for αr = 5, . . . ,mr −4 (r = 1,2,3)

wν
α1,α2,α3

= wν
5,5,5.

The values of the ninety different weights for IQ2( f ) and IQ3( f ) are reported in
Table 3.3 and Table 3.4, respectively;

ii) ν = 4, satisfy the following symmetry properties:
• for α1 = 0,1, α2 = 0, . . . ,α1, α3 =−3; α3 =−2,−1, α1 =−1, . . . ,α3+4,

α2 = −1, . . . ,α1; α3 = 0,1,2,3,4, α1 = α3, . . . ,4, α2 = α3, . . . ,α1 and for
any permutation of the indicesα1, α2, α3, the equalities E41 in (3.3) hold;

• for s= 0,1, t = −3, αr = 2, . . . ,mr −1 (r = 1,2,3), the weights involved
in the equalities E42 of (3.4) and E43 of (3.5) are all equal to w42,s,t and w4

2,2,t ,
respectively;

• for s= −1,0,1,2, t = −2 αr = 3, . . . ,mr −2 (r = 1,2,3), the weights in-
volved in the equalities E42 of (3.4) and E43 of (3.5) are all equal to w43,s,t and

w4
3,3,t , respectively;

• for s = −1,0,1,2,3, t = −1 αr = 4, . . . ,mr − 3 (r = 1,2,3), the weights
involved in the equalities E42 of (3.4) and E43 of (3.5) are all equal to w44,s,t and

w4
4,4,t , respectively;

• for t = 0,1,2,3,4, s= t, . . . ,4, αr = 5, . . . ,mr −4 (r = 1,2,3), the weights
involved in the equalities E42 of (3.4) and E43 of (3.5) are all equal to w45,s,t and

w4
5,5,t , respectively;

• for αr = 5, . . . ,mr −4 (r = 1,2,3)

w4
α1,α2,α3

= w4
5,5,5.

The values of the ninety-eight different weights for IQ4( f ) are reported in Table
3.5.
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Table 3.3 The 90 values ¯w2
α , with w2

α = h3

840w̄2
α

w̄2
0,0,−3 = 47/9216 w̄2

0,−1,−1 = −73/2304 w̄2
0,0,0 = −14551/3072 w̄2

1,1,1 = 1619357/3072 w̄2
2,2,2 = 479045/512

w̄2
1,0,−3 = 47/1536 w̄2

0,0,−1 = −6227/3072 w̄2
1,0,0 = 22163/9216 w̄2

2,1,1 = 5962451/9216 w̄2
3,2,2 = 129437/144

w̄2
1,1,−3 = 2021/9216 w̄2

1,−1,−1 = −547/4608 w̄2
1,1,0 = 317837/3072 w̄2

2,2,1 = 3606763/4608 w̄2
3,3,2 = 1323847/1536

w̄2
2,0,−3 = 329/9216 w̄2

1,0,−1 = −62813/9216 w̄2
2,0,0 = −2809/9216 w̄2

3,1,1 = 642883/1024 w̄2
4,2,2 = 4163887/4608

w̄2
2,1,−3 = 2303/9216 w̄2

1,1,−1 = −150869/9216 w̄2
2,1,0 = 1038487/9216 w̄2

3,2,1 = 3483131/4608 w̄2
4,3,2 = 7987217/9216

w̄2
2,2,−3 = 329/1152 w̄2

2,−1,−1 = −77/512 w̄2
2,2,0 = 69805/576 w̄2

3,3,1 = 1679335/2304 w̄2
4,4,2 = 1003919/1152

w̄2
2,0,−1 = −40601/4608 w̄2

3,0,0 = −24305/9216 w̄2
4,1,1 = 5809561/9216 w̄2

5,2,2 = 1388401/1536
w̄2

0,0,−2 = 2815/9216 w̄2
2,1,−1 = −53147/2304 w̄2

3,1,0 = 322117/3072 w̄2
4,2,1 = 6998635/9216 w̄2

5,3,2 = 887761/1024
w̄2

1,0,−2 = 9323/9216 w̄2
2,2,−1 = −24367/768 w̄2

3,2,0 = 1023587/9216 w̄2
4,3,1 = 6749995/9216 w̄2

5,4,2 = 125531/144
w̄2

1,1,−2 = 8545/3072 w̄2
3,0,−1 = −81541/9216 w̄2

3,3,0 = 232477/2304 w̄2
4,4,1 = 3391325/4608 w̄2

5,5,2 = 334859/384
w̄2

2,0,−2 = 12091/9216 w̄2
3,1,−1 = −53491/2304 w̄2

4,0,0 = −2393/1024 w̄2
5,1,1 = 968597/1536

w̄2
2,1,−2 = 8669/2304 w̄2

3,2,−1 = −294119/9216 w̄2
4,1,0 = 30481/288 w̄2

5,2,1 = 388941/512 w̄2
3,3,3 = 316673/384

w̄2
2,2,−2 = 23219/4608 w̄2

3,3,−1 = −147917/4608 w̄2
4,2,0 = 1035349/9216 w̄2

5,3,1 = 1125383/1536 w̄2
4,3,3 = 955577/1152

w̄2
3,0,−2 = 2023/1536 w̄2

4,0,−1 = −40747/4608 w̄2
4,3,0 = 941717/9216 w̄2

5,4,1 = 2261651/3072 w̄2
4,4,3 = 961135/1152

w̄2
3,1,−2 = 17479/4608 w̄2

4,1,−1 = −106841/4608 w̄2
4,4,0 = 158921/1536 w̄2

5,5,1 = 848407/1152 w̄2
5,3,3 = 477953/576

w̄2
3,2,−2 = 15589/3072 w̄2

4,2,−1 = −48965/1536 w̄2
5,0,0 = −10745/4608 w̄2

5,4,3 = 40061/48
w̄2

3,3,−2 = 5887/1152 w̄2
4,3,−1 = −295505/9216 w̄2

5,1,0 = 487837/4608 w̄2
5,5,3 = 961793/1152

w̄2
4,4,−1 = −12299/384 w̄2

5,2,0 = 172613/1536
w̄2

5,3,0 = 471023/4608 w̄2
4,4,4 = 322231/384

w̄2
5,4,0 = 953855/9216 w̄2

5,4,4 = 483511/576
w̄2

5,5,0 = 119273/1152 w̄2
5,5,4 = 967351/1152

w̄2
5,5,5 = 840

Proof Taking into account Theorem 3.2, the symmetry of the domainΩ and of the
supportΞα of Bα , as in Theorem 3.1, we can deduce the symmetry properties of the
weights and the values of the different ones, reported in Tables 3.3, 3.4 and 3.5. ⊓⊔

Remark 3.2For ν = 2,3, the values ¯wν
0,−1,−2 and w̄ν

1,−1,−2, appearing in Theorem
3.3, are equal to ¯wν

0,0,−3 andw̄ν
1,0,−3, respectively.

Remark 3.3With the requestm1,m2,m3 ≥ 9, in the construction of the weightswν
α ,

ν = 2,3,4, as in (3.2), we have at least one fundamental splineLν
α , ν = 2,3,4, with

support completely included in the domainΩ . Therefore, we have at least one weight
assuming the value ofwν

5,5,5 = h3

840w̄ν
5,5,5, ν = 2,3,4, with w̄ν

5,5,5 given in Tables 3.3,
3.4 and 3.5.

Remark 3.4The total number of function evaluations forIQν ( f ) ism1m2m3+8(m1m2+
m1m3+m2m3)+40(m1+m2+m3)+152 in caseν = 2,3 and it ism1m2m3+8(m1m2+
m1m3 +m2m3)+40(m1 +m2 +m3)+184 in caseν = 4.

Remark 3.5From Theorems 3.1 and 3.2, the sum of the absolute values of the weights,
for each cubatureIQν ( f ), ν = 1,2,3,4, is bounded as follows

∑
α∈A M

|wν
α | ≤ C̃ν |Ω | , (3.8)
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Table 3.4 The 90 values ¯w3
α , with w3

α = h3

840w̄3
α

w̄3
0,0,−3 = −5/768 w̄3

0,−1,−1 = −5/64 w̄3
0,0,0 = 1293/256 w̄3

1,1,1 = 109097/256 w̄3
2,2,2 = 117327/128

w̄3
1,0,−3 = −5/128 w̄3

0,0,−1 = −403/256 w̄3
1,0,0 = 6141/256 w̄3

2,1,1 = 423995/768 w̄3
3,2,2 = 28847/32

w̄3
1,1,−3 = −215/768 w̄3

1,−1,−1 = −215/384 w̄3
1,1,0 = 86227/768 w̄3

2,2,1 = 91185/128 w̄3
3,3,2 = 113379/128

w̄3
2,0,−3 = −35/768 w̄3

1,0,−1 = −1403/256 w̄3
2,0,0 = 7837/256 w̄3

3,1,1 = 139401/256 w̄3
4,2,2 = 342559/384

w̄3
2,1,−3 = −245/768 w̄3

1,1,−1 = −10477/768 w̄3
2,1,0 = 108859/768 w̄3

3,2,1 = 269387/384 w̄3
4,3,2 = 224343/256

w̄3
2,2,−3 = −35/96 w̄3

2,−1,−1 = −245/384 w̄3
2,2,0 = 538/3 w̄3

3,3,1 = 132517/192 w̄3
4,4,2 = 27741/32

w̄3
2,0,−1 = −893/128 w̄3

3,0,0 = 7549/256 w̄3
4,1,1 = 137911/256 w̄3

5,2,2 = 342419/384
w̄3

0,0,−2 = −115/256 w̄3
2,1,−1 = −297/16 w̄3

3,1,0 = 35305/256 w̄3
4,2,1 = 533099/768 w̄3

5,3,2 = 672749/768
w̄3

1,0,−2 = −1265/768 w̄3
2,2,−1 = −4781/192 w̄3

3,2,0 = 133975/768 w̄3
4,3,1 = 524363/768 w̄3

5,4,2 = 20797/24
w̄3

1,1,−2 = −4685/768 w̄3
3,0,−1 = −5413/768 w̄3

3,3,0 = 32543/192 w̄3
4,4,1 = 86443/128 w̄3

5,5,2 = 83153/96
w̄3

2,0,−2 = −535/256 w̄3
3,1,−1 = −229/12 w̄3

4,0,0 = 22307/768 w̄3
5,1,1 = 206759/384

w̄3
2,1,−2 = −185/24 w̄3

3,2,−1 = −19579/768 w̄3
4,1,0 = 13085/96 w̄3

5,2,1 = 88809/128 w̄3
3,3,3 = 27825/32

w̄3
2,2,−2 = −3745/384 w̄3

3,3,−1 = −3339/128 w̄3
4,2,0 = 44135/256 w̄3

5,3,1 = 87353/128 w̄3
4,3,3 = 82565/96

w̄3
3,0,−2 = −805/384 w̄3

4,0,−1 = −903/128 w̄3
4,3,0 = 128597/768 w̄3

5,4,1 = 518413/768 w̄3
4,4,3 = 81655/96

w̄3
3,1,−2 = −2975/384 w̄3

4,1,−1 = −7343/384 w̄3
4,4,0 = 63511/384 w̄3

5,5,1 = 64771/96 w̄3
5,3,3 = 13755/16

w̄3
3,2,−2 = −7525/768 w̄3

4,2,−1 = −3269/128 w̄3
5,0,0 = 3717/128 w̄3

5,4,3 = 20405/24
w̄3

3,3,−2 = −315/32 w̄3
4,3,−1 = −20069/768 w̄3

5,1,0 = 52325/384 w̄3
5,5,3 = 27195/32

w̄3
4,4,−1 = −2513/96 w̄3

5,2,0 = 66185/384
w̄3

5,3,0 = 21427/128 w̄3
4,4,4 = 26915/32

w̄3
5,4,0 = 42329/256 w̄3

5,4,4 = 40355/48
w̄3

5,5,0 = 15869/96 w̄3
5,5,4 = 80675/96

w̄3
5,5,5 = 840

Table 3.5 The 98 values ¯w4
α , with w4

α = h3

840w̄4
α

w̄4
0,0,−3 = 47/9216 w̄4

−1,−1,−1 = −7397/35328 w̄4
0,0,0 = −58939/70656 w̄4

1,1,1 = 37791221/70656 w̄4
2,2,2 = 259825/276

w̄4
1,0,−3 = 47/1536 w̄4

0,−1,−1 = 2311/35328 w̄4
1,0,0 = 168097/70656 w̄4

2,1,1 = 139053119/211968 w̄4
3,2,2 = 23867863/26496

w̄4
1,1,−3 = 2021/9216 w̄4

0,0,−1 = −236021/211968 w̄4
1,1,0 = 21114467/211968 w̄4

2,2,1 = 41892839/52992 w̄4
3,3,2 = 3971947/4608

w̄4
2,0,−3 = 329/9216 w̄4

1,−1,−1 = 28871/17664 w̄4
2,0,0 = 563495/211968 w̄4

3,1,1 = 1942013/3072 w̄4
4,2,2 = 4172413/4608

w̄4
2,1,−3 = 2303/9216 w̄4

1,0,−1 = −994019/211968 w̄4
2,1,0 = 22612777/211968 w̄4

3,2,1 = 26821019/35328 w̄4
4,3,2 = 2662541/3072

w̄4
2,2,−3 = 329/1152 w̄4

1,1,−1 = −507221/23552 w̄4
2,2,0 = 12210089/105984 w̄4

3,3,1 = 840175/1152 w̄4
4,4,2 = 1003919/1152

w̄4
2,−1,−1 = 33725/17664 w̄4

3,0,0 = 1303/1024 w̄4
4,1,1 = 5845289/9216 w̄4

5,2,2 = 1391243/1536
w̄4
−1,−1,−2 = −1/276 w̄4

2,0,−1 = −621953/105984 w̄4
3,1,0 = 928289/9216 w̄4

4,2,1 = 7026649/9216 w̄4
5,3,2 = 7990255/9216

w̄4
0,−1,−2 = −73/23552 w̄4

2,1,−1 = −1476365/52992 w̄4
3,2,0 = 22849751/211968 w̄4

4,3,1 = 750225/1024 w̄4
5,4,2 = 125531/144

w̄4
0,0,−2 = 279/1024 w̄4

2,2,−1 = −1259011/35328 w̄4
3,3,0 = 12859/128 w̄4

4,4,1 = 3391325/4608 w̄4
5,5,2 = 334859/384

w̄4
1,−1,−2 = 2927/35328 w̄4

3,−1,−1 = 60181/35328 w̄4
4,0,0 = 14191/9216 w̄4

5,1,1 = 2923655/4608
w̄4

1,0,−2 = 11657/9216 w̄4
3,0,−1 = −1229383/211968 w̄4

4,1,0 = 58729/576 w̄4
5,2,1 = 292873/384 w̄4

3,3,3 = 316673/384
w̄4

1,1,−2 = 21271/9216 w̄4
3,1,−1 = −2788285/105984 w̄4

4,2,0 = 1007335/9216 w̄4
5,3,1 = 844291/1152 w̄4

4,3,3 = 955577/1152
w̄4

2,−1,−2 = 5891/70656 w̄4
3,2,−1 = −2389013/70656 w̄4

4,3,0 = 313229/3072 w̄4
5,4,1 = 2261651/3072 w̄4

4,4,3 = 961135/1152
w̄4

2,0,−2 = 326521/211968 w̄4
3,3,−1 = −49441/1536 w̄4

4,4,0 = 158921/1536 w̄4
5,5,1 = 848407/1152 w̄4

5,3,3 = 477953/576
w̄4

2,1,−2 = 41099/11776 w̄4
4,−1,−1 = 2611/1536 w̄4

5,0,0 = 791/512 w̄4
5,4,3 = 40061/48

w̄4
2,2,−2 = 524315/105984 w̄4

4,0,−1 = −6685/1152 w̄4
5,1,0 = 469973/4608 w̄4

5,5,3 = 961793/1152
w̄4

3,−1,−2 = 245/3072 w̄4
4,1,−1 = −7553/288 w̄4

5,2,0 = 20993/192
w̄4

3,0,−2 = 1771/1152 w̄4
4,2,−1 = −17269/512 w̄4

5,3,0 = 58751/576 w̄4
4,4,4 = 322231/384

w̄4
3,1,−2 = 343/96 w̄4

4,3,−1 = −32879/1024 w̄4
5,4,0 = 953855/9216 w̄4

5,4,4 = 483511/576
w̄4

3,2,−2 = 46361/9216 w̄4
4,4,−1 = −12299/384 w̄4

5,5,0 = 119273/1152 w̄4
5,5,4 = 967351/1152

w̄4
3,3,−2 = 5887/1152

w̄4
5,5,5 = 840
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where|Ω | denotes the measure ofΩ and

C̃ν =





1, ν = 1

131
24

, ν = 2

13
8

, ν = 3

5371
552

, ν = 4

.

Since the weightsw1
α are positive, then, in caseν = 1, (3.8) is an equality.

Therefore, from (3.8) and the multivariate version of the Polya-Steklov theorem,
the cubatures overΩ are stable [21,31].

Finally, from Theorem 2.1 we can immediately deduce some results on the con-
vergence of sequences of cubaturesIQν ( f ), ν = 1,2,3,4 to I( f ).

Theorem 3.4 Let f ∈C(Ωh), then we have

IQν ( f ) → I( f ) as h→ 0, ν = 1,2,3,4.

In particular
| I( f )− IQν ( f ) |≤ C̄ν ω( f ,h),

whereC̄ν is a positive constant independent on m1, m2 and m3.
Moreover,

– if f ∈Ck(Ωh), k = 1,2, then| I( f )− IQ1( f ) |= O(hk);

– if f ∈Ck(Ωh), k = 1,2,3,4, then| I( f )− IQν ( f ) |= O(hk), ν = 2,3,4.

Remark 3.6Thanks to the symmetry properties of the rules (3.1), ifΩ = [−m1h,m1h]×
[−m2h,m2h]× [−m3h,m3h], then

IQν ( f ) = I( f ), f = xr1yr2zr3,

when at least one of ther j ’s, j = 1,2,3 is odd.

4 Numerical results

In this section we present some numerical results obtained by computational proce-
dures developed in a Matlab environment.

We compare our cubatures with other known ones having the same approximation
orderO(h4) of the error, i.e. we consider

– IQν ( f ), ν = 2,3,4, defined in (3.1);
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– IP( f ) cubatures based on tensor product of univariateC1 quadratic spline QIs
proposed in [13];

– IR( f ) cubatures based on blending sums of univariate and bivariateC1 quadratic
spline QIs proposed in [14];

– IS( f ) cubatures based on tensor product of univariate composite Simpson’s rules;
– IH1( f ) composite non-product formulas for a cube exact onP3 proposed in [12,

p. 367], [16, p. 204], [31, p. 230];
– IH2( f ) composite non-product formulas for a cube exact onP3 proposed in [12,

p. 368], [16, p. 204], [31, p. 230] (different nodes and weights with respect to the
rulesIH1( f )).

We remark that the total number of function evaluations for each cubature rule is

– m1m2m3 +2(m1m2 +m1m3 +m2m3)+4(m1 +m2 +m3)+8 for IP( f ) andIR( f );
– m1m2m3 +(m1m2 +m1m3 +m2m3)+(m1 +m2 +m3)+1 for IS( f );
– 3m1m2m3 +(m1m2 +m1m3 +m2m3) for IH1( f );
– 6m1m2m3 for IH2( f ).

For IQν ( f ), ν = 2,3,4, the number of function evaluations is reported in Remark 3.4.
We assume as integration domain the standard cubeΩ = [0,1]3, m1 = m2 = m3 =

m and h = 1/m. We assumem an even number, since we consider the composite
Simpson’s rule onm+ 1 equally spaced points on[0,1], for each directionx, y and
z. The rulesIH1( f ) andIH2( f ) are used inΩ by a composite technique, applying in
each subcube of edgeh the non-product rules proposed in [12,16,31].

We apply the above cubature rules to several smooth integrand functions. The
first three ones come from the testing package of Genz [17,18], the fourth one from
[13].

The test functions are the following, for which we report theexact value of the
integral:

– f1(x,y,z) = cos
(

9πx
2 + 9πy

2 + 9πz
2

)
(Oscillatory function),I( f1) = − 16

729π3 ;

– f2(x,y,z) = 1/(1+x+y+z)4 (Corner peak function),I( f2) = 1
24;

– f3(x,y,z)= e((x−0.5)2+(y−0.5)2+(z−0.5)2) (Gaussian function),I( f3)= 0.7852115962;
– f4(x,y,z) = πy

2(e−2)e
xysin(πz), I( f4) = 1.

We compute the absolute errors

EQ( f ) = |I( f )− IQ( f )| , for Q = Q2,Q3,Q4,P,R,S,H1,H2

for each test function and for increasing values ofm, i.e.m= 16, 32, 64, 128, and we
report the corresponding graphs in Figs. 4.1, 4.2, 4.3, 4.4.

The numerical results shown in Figs. 4.1, 4.2, 4.3, 4.4 confirm the convergence
properties given in Section 3 forIQν ( f ), ν = 2,3,4 and in the literature for the other
rules.

Moreover, our cubature rules are comparable and the formulaIQ4( f ) seems to be
better than the other ones.

In Figs. 4.1, 4.2, 4.3 the error is smaller for the two formulas IH1, IH2, but we
remark that such formulas use a greater number of functionalevaluations, namely
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Fig. 4.1 Absolute errors forI( f1)

Fig. 4.2 Absolute errors forI( f2)

O(3m3) andO(6m3), respectively, instead ofO(m3) and this is evident especially for
high values ofm.

Furthermore, we recall that the cubature rulesIP( f ) are based onC1 splines of
degree six (tensor product of univariateC1 quadratic spline QIs), the rulesIR( f ) are
based onC1 splines of degree four (blending sums of univariate and bivariate C1

quadratic spline QIs) and here we have proposed new integration formulas based on
trivariate spline quasi-interpolants on type-6 tetrahedral partitions of total degree four
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Fig. 4.3 Absolute errors forI( f3)

Fig. 4.4 Absolute errors forI( f4)

with C2 smoothness. Such a higher smoothness is useful, for example, in the numeri-
cal treatment of integral equations, where the unknown function can be reconstructed
with C2 smoothness.
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Finally, we propose another example in case of integration domain different from
the standard cube. We want to evaluate the integral

I( f ) =
∫

Ω ′

x2

x2 +z2 dx dy dz, (4.1)

whereΩ ′ = {(x,y,z) ∈ R
3 : 1 < x2 +y2 +z2 < 2, x2−y2 +z2 < 0, y > 0}. We know

that I( f ) = π
6 (5

√
2−6). By using the spherical coordinates and affine transforma-

tions, we get an integral on[0,1]3. Then, we evaluate it by the three cubaturesIQν ( f ),
ν = 2,3,4, for increasing values ofm (m = 16, 32, 64, 128) and we compute the
corresponding absolute errors, obtaining the results shown in Fig. 4.5, where we note
again the better behaviour ofIQ4( f ).

Fig. 4.5 Absolute error for (4.1)

5 Final remarks

In this paper we have considered the spaceS2
4(Ω ,Tm) generated by the scaled trans-

lates of the trivariateC2 quartic box splineB defined by a setX of seven directions,
that forms a regular partition of the space into tetrahedra.Then, we have constructed
new cubature rules for 3D integrals, based on spline quasi-interpolants expressed as
linear combinations of scaled translates ofB and local linear functionals.

We have provided weights and nodes of the above rules and we have analysed
their properties.

Finally, some numerical tests and comparisons with other known integration for-
mulas have been presented.
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We remark that the points used in the integration formulas here proposed lie also
outside the integration domain. Since the function to be integrated may not be defined
outside the domain of integration, an interesting development of this paper could be
the study and construction of spline cubature rules, based on linear combinations of
the scaled translates of the box splineB, making use of evaluation points inside or on
the boundary of the domain.

Moreover, in case of integrands with singularities in the first partial derivatives,
it could be interesting the construction of 3D cubature formulas based on trivariate
B-splines defined on non-uniform partitions, in order to simulate such singularities.
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