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Abstract

In this paper we develop a 3D quasi-interpolating spline scheme, on a bounded do-

main, based on trivariate quartic C2 box splines on type-6 tetrahedral partitions. Then,

we describe some applications related both to the reconstruction of gridded volume data

and to numerical integration. We also provide some numerical tests.
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1. Introduction.

This paper deals with a 3D quasi-interpolating (QI) spline scheme, on a
bounded domain Ω, based on trivariate quartic C2 box splines on a type-6
tetrahedral partition Tm. We also provide two significant applications such
as the reconstruction of gridded volume data and the numerical evaluation
of integrals.

Indeed, on one hand, in many applications a non-discrete model may
be helpful to visualize and elaborate volume data, representing a type of
density obtained from suitable sensors. This construction is generally quite
complex. The problem may be simplified if data are structured on a regular
tridimensional grid and applications as medical CT and MRI, seismic phe-
nomena investigation produce structured data. On the other hand, cubature
rules are useful tools in several methods to solve integral and differential
problems.

The paper is organized as follows. In Section 2 we consider the space
S2

4(Ω, Tm) of C2 quartic splines on a type-6 tetrahedral partition of a
bounded domain and, in such a space, we define a spline QI of near-
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best type, i.e. with coefficient functionals obtained by minimizing an upper
bound for its infinity norm.

Then, in Section 3.1, we use the near-best QI for the reconstruction of
discrete data on volumetric grids, providing some numerical tests and real
world applications and, in order to explore the volumetric data, we visualize
some isosurfaces.

Finally, in Section 3.2, we define 3D cubature rules and we propose some
numerical tests, illustrating their approximation properties.

2. Quasi-interpolating operators in the spline space S2
4(Ω, Tm).

Let m1,m2,m3 ≥ 5 be integers, let Ω = [0,m1h] × [0,m2h] × [0,m3h],
h > 0, be a parallelepiped divided into m1m2m3 equal cubes and endowed
with the type-6 tetrahedral partition Tm, m = (m1,m2,m3), where each
cube is subdivided into 24 tetrahedra (see Figure 1).

Figure 1. Cube subdivision into 24 tetrahedra with 6 planes.

We consider the seven directional box spline B (see [1] for its definition
and [2, Chapter 11], [3] for general results on box splines), whose support
is shown in Figure 2, and we consider the scaled translates of B, whose
supports overlap with Ω. They are{

Bα(x, y, z) = B
(x
h
− i+ 1,

y

h
− j + 1,

z

h
− k + 3

)
, α ∈ A

}
,

where

A =


−1 ≤ i ≤ m1 + 2,

α = (i, j, k), −1 ≤ j ≤ m2 + 2, α /∈ A′
−1 ≤ k ≤ m3 + 2;

 ,

with A′ the set of indices defined by

A′ =


(i, j,−1), (i, j,m3 + 2), for − 1 ≤ i ≤ m1 + 2, j = −1,m2 + 2,
(i, j,−1), (i, j,m3 + 2), for i = −1,m1 + 2, 0 ≤ j ≤ m2 + 1,
(i,−1, k), (i,m2 + 2, k), for i = −1,m1 + 2, 0 ≤ k ≤ m3 + 1

 .
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We remark that the Bα’s supports Ξα are centered at the points
(
(i− 1

2)h ,
(j − 1

2)h, (k − 1
2)h
)
.

Figure 2. The support of the seven directional box spline B.

Now, we consider the space generated by {Bα, α ∈ A}

S2
4(Ω, Tm) =

{
s =

∑
α∈A

cαBα, cα ∈ R

}
,

and in such a space we consider the near-best quasi-interpolant of the form

(1) Qf =
∑
α∈A

λα(f)Bα.

The coefficient functionals λα’s are linear combinations of function values
and they have the following expression

(2) λα(f) =
∑
β∈Fα

σα(β)f(Mβ),

where:

• the finite set of points
{
Mβ, β ∈ Fα, Fα ⊂ AM

}
lies in some neigh-

bourhood of Ξα ∩ Ω and

{Mβ = Mi,j,k = (si, tj , uk), (i, j, k) ∈ AM},
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with AM = {(i, j, k), 0 ≤ i ≤ m1 + 1, 0 ≤ j ≤ m2 + 1, 0 ≤ k ≤
m3 + 1} and

s0 = 0, si = (i− 1
2)h, 1 ≤ i ≤ m1, sm1+1 = m1h

t0 = 0, tj = (j − 1
2)h, 1 ≤ j ≤ m2, tm2+1 = m2h

u0 = 0, uk = (k − 1
2)h, 1 ≤ k ≤ m3, um3+1 = m3h;

• the σα(β)’s are real numbers, obtained so that Qf ≡ f for all f in
P3, with P3 the space of trivariate polynomials of total degree at
most three, and minimizing an upper bound for the infinity norm
of the operator. For this reason Q is a near-best QI (see e.g. [4–7]).

For the explicit expression of such coefficient functionals see [8].
Concerning the approximation properties of the above quasi-interpolant,

we can deduce the following theorem by means of standard results in ap-
proximation theory.

Theorem 1. Let f ∈ C4(Ω), and |γ| = 0, 1, 2, 3 with γ = (γ1, γ2, γ3),
|γ| = γ1 + γ2 + γ3. Then there exist constants Kγ > 0 such that

‖Dγ(f −Qf)‖∞ ≤ Kγh
4−|γ|max

|β|=4

∥∥∥Dβf
∥∥∥
∞
,

where Dβ = Dβ1β2β3 = ∂|β|

∂xβ1∂yβ2∂zβ3
.

3. Applications.

In the following we show two concrete problems that can be faced with
tools based on the approximation scheme introduced in Section 2.

3.1. Reconstruction of volume data.

The construction of non-discrete models from given discrete data on vol-
umetric grids is an important problem in many applications, such as scien-
tific visualization, computer graphics and medical imaging, where a precise
evaluation, and a high visual quality are the goals of visualization. Indeed,
the volume data sets typically represent some kind of density acquired by
devices like CT or MRI sensors. Such a type of input data is structured,
so that the samples are arranged on a regular three-dimensional grid. In
order to process these gridded samples an appropriate non-discrete model
is required.

Therefore, we use the quasi-interpolating spline (1) for such a recon-
struction, providing some numerical tests and real world applications. For
the evaluation of box splines we can refer to [9], where an algorithm based
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on the Bernstein-Bézier form of the box spline is proposed. Moreover, we
visualize some isosurfaces of (1), generated as a very fine triangular mesh
by using the Matlab procedure isosurface [10].

Firstly, we approximate the smooth trivariate test function of Franke
type

f(x, y, z) =
1

2
e−10((x− 1

4
)2+(y− 1

4
)2) +

3

4
e−16((x− 1

2
)2+(y− 1

4
)2+(z− 1

4
)2)

+
1

2
e−10((x− 3

4
)2+(y− 1

8
)2+(z− 1

2
)2) − 1

4
e−20((x− 3

4
)2+(y− 3

4
)2)

on Ω =
[
−1

2 ,
1
2

]3
. In Figure 3(a) we report the maximum absolute error

EQ(f) := max
(u,v,w)∈G

|f(u, v, w)−Qf(u, v, w)|,

for increasing values of m = m1 = m2 = m3, m = 16, 32, 64, 128, and G
a 139× 139× 139 uniform three-dimensional grid of points in the domain.
We also report an estimate of the approximation order, rf , obtained by
the logarithm to base two of the ratio between two consecutive errors.
We can notice that theoretical results are confirmed. In Figures 3(b)–(c)
a visualization of the approximating spline Qf , for m = 128, using the
isovalues ρ = 0.3 and 0.5, is shown.

m EQ(f) rf

16 1.1(−2)
32 8.0(−4) 3.8
64 5.2(−5) 3.9
128 3.3(−6) 4.0

(a)
(b) (c)

Figure 3. (a) Maximum absolute errors and numerical convergence orders. Isosurfaces
of Qf for m = 128, with isovalues (b) ρ = 0.3, (c) ρ = 0.5.

For comparisons with other methods, we refer to [11] and [12], where
two C1 spline QIs of different degree (quadratic and cubic, respectively) on
type-6 tetrahedral partitions are presented and to [13], where a near-best
QI defined as as blending sum of univariate and bivariate QIs is proposed.

Comparing the results, we can notice that using our C2 quartic splines,
the error decreases faster than using both the quadratic and cubic C1

piecewise polynomials proposed in [11,12] and the near-best operator given
in [13].
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In Figure 4 we show ten among the 99 slices of 256 × 256 pixels. Such
a gridded volume data set is obtained from a MR study of head with skull
partially removed to reveal brain (courtesy of University of North Carolina).
In Figure 5 we show the isosurface of the C2 quartic spline Qf , resulting
from the application of our method in the approximation of such a gridded
volume data set. In order to visualize the isosurface, corresponding to the
isovalue ρ = 40, we evaluate the spline on N ≈ 8, 6× 106 points.

Figure 4. Ten of 256 × 256 × 99 slices, obtained from a MR study of head with skull
partially removed to reveal brain (courtesy of University of North Carolina).

Figure 5. Isosurface of the C2 trivariate quartic spline approximating the MR brain
data set with isovalue ρ = 40.
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3.2. Numerical integration.

For any function f ∈ C(Ω), we consider the numerical evaluation of the
integral

I(f) =

∫
Ω
f(x, y, z) dxdydz

by cubature rules

IQ(f) = I(Qf) =
∑
α∈A

λα(f)wα,

where the coefficients λα(f) are given in (2) and the weights

wα =

∫
Ξα∩Ω

Bα(x, y, z) dxdydz,

are computed in [14]. The above cubatures have precision degree 3, because
Q is exact on P3. Moreover, from the convergence results of Qf to f , given
in Theorem 1, if f ∈ C4(Ω), then

EIQ(f) = |I(f)− IQ(f)| = O(h4).

Assuming the standard cube Ω = [0, 1]3 as integration domain, m1 =
m2 = m3 = m and h = 1/m, in Table 1 we report the errors EIQ(f) and an
estimate of the approximation order, considering the test functions

• f1(x, y, z) = e((x−0.5)2+(y−0.5)2+(z−0.5)2), I(f1) = 0.7852115962,

• f2 = 27
8

√
1− |2x− 1|

√
1− |2y − 1|

√
1− |2z − 1|, I(f2) = 1,

for increasing values of m, i.e. m = 16, 32, 64, 128. We remark that the
function f1 is a smooth test function, coming from the testing package of
Genz [15,16], whereas the function f2 is only continuous. Concerning the
function f1, the numerical results shown in Table 1 confirm the convergence
properties above given.

Table 1. Absolute errors and numerical
convergence orders.

m EI
Q(f1) rf1 EI

Q(f2) rf2
16 2.9(-5) 4.9(-3)
32 1.9(-6) 3.9 2.4(-3) 1.1
64 1.3(-7) 3.9 9.3(-4) 1.3
128 8.1(-9) 4.0 3.5(-4) 1.4

For comparisons with other methods, we refer to [17,18], where cubature
rules for a parallelepiped domain are defined by integrating tensor product
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of univariate C1 quadratic spline QIs and blending sums of C1 quadratic
spline QIs in one and two variables. Such rules are comparable with the for-
mula IQ(f), based on trivariate quartic spline QIs with higher smoothness
C2, useful, for example, in the numerical treatment of integral equations,
where the unknown function can be reconstructed with C2 smoothness.

We also refer to [14], where cubature rules for 3D integrals based on
trivariate C2 quartic spline QIs are presented. We remark that the points
used in the integration formulas there proposed lie also outside the integra-
tion domain. Since the function to be integrated may not be defined outside
the domain of integration (as in the case of the above test function f2), here
we have considered spline cubature rules that make use of evaluation points
inside or on the boundary of the domain.
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5. D. Barrera, M. J. Ibánez-Pérez, P. Sablonnière, and D. Sbibih, On near-
best discrete quasi-interpolation on a four-directional mesh, J. Comput.
Appl. Math., vol. 233, pp. 1470–1477, 2010.

6. S. Remogna, Bivariate C2 cubic spline quasi-interpolants on uniform
Powell-Sabin triangulations of a rectangular domain, Advances in Com-
putational Mathematics, vol. 36, pp. 39–65, 2012.

7. S. Remogna, Constructing good coefficient functionals for bivariate C1

quadratic spline quasi-interpolants, in Mathematical Methods for Curves
and Surfaces (M. Daehlen, M. Floater, T. Lyche, J. L. Merrien, K. M.
rken, and L. L. Schumaker, eds.), pp. 329–346, Springer-Verlag, 2010.

8. C. Dagnino, P. Lamberti, and S. Remogna, Reconstruction of vol-
ume data by trivariate quartic C2 box splines, Quaderni Scientifici
del Dipartimento di Matematica, Università di Torino, vol. 11, 2012,
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