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Abstract We give a detailed analytical and numerical description of the global dynamics of
4 + 1 points interacting through the singular logarithmic potential and subject to the following
symmetry constraint: at each instant 4 of them form an orbit of the Klein group D2 of order 4.
The main device in order to achieve our results is to use a McGehee-like transformation introduced
in [PaPo] for a problem analogous to the present one.

After performing this transformation in order to regularize the total collision, we study the
rest-points of the flow, the invariant (stable and unstable) manifolds and we derive some interesting
information about the global dynamics.
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1 Introduction

The equations of motion of interacting point vortices were introduced by Helmholtz in a seminal
paper published in 1858. In Helmholtz’s view, point vortices on a plane actually were infinitely
tall, infinitely thin, parallel vortex filaments perpendicular to the plane. Therefore, it was natural
to ask questions about filaments which are not perfectly straight nor perfectly parallel. Based
upon the equations governing the evolution of vorticity in a three-dimensional fluid, Da Rios in
1906 derived the localized self-induction approximation (LIA) describing the approximate motion
of a weakly curved, isolated filament. The approximation was re-derived by Arms and Hama in
1965. Building on these results, Klein, Majda and Damodaran in [KlMaDa95] wrote a simplified
model describing the time evolution of N -vortex filaments nearly but not perfectly parallel to the
z-axis. According to this model the motion of N -interacting nearly parallel filaments is given by
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the following coupled partial differential equations:

1

i
∂tΨj = Γ̃j∂

2
σΨj +

∑

k 6=j

Γ̃k

2π

Ψj − Ψk

‖Ψj − Ψk‖2
(1)

for j, k ∈ {1, ..., N}, Γ̃j ∈ R
∗ and where each Ψj is a complex-valued function. Among all the

solutions of the system (1) a special role is played by the stationary solutions .
In this paper we are interested in studying the geometry of the stationary solutions of (1).

Therefore, by substituting in (1) Ψj(σ, t) with qj(σ), where q : R → R
2, we bring equations (1)

down to the following system of coupled ordinary differential equations for stationary vortices
filaments:

Γ̃j q̈j(σ) +
∑

k 6=j

Γ̃k

2π

qj(σ)− qk(σ)

‖qj(σ)− qk(σ)‖2
= 0 (2)

where ˙ denotes differentiation with respect to the arc-length parameter σ.
By multiplying each equation in (2) by Γ̃j and defining the potential function U as

U(q) := −
N
∑

j=1
k 6=j

Γ̃jΓ̃k

4π
log ‖qj − qk‖ (3)

where q := (q1, . . . , qN ), the ODE in (2) can be written as

Γ q̈ =
∂U

∂q
. (4)

Here Γ is the diagonal block matrix defined by Γ = [Γij ] and Γij = Γ̃ 2
i δijI2 where I2 denotes

the two by two identity matrix. By interpreting the parameter σ as a time-like coordinate, the
equation (4) can be seen as describing the dynamics of point masses on the plane, interacting
with a logarithmic potential. Therefore, from now on, we shall refer to the parameter σ as a
time-parameter. A severe difficulty in investigating a system such as (4) is due to the presence of
singularities both partial and total: physically they represent collisions between some or all of the
vortices. This problem motivates the introduction of a change of coordinates that regularizes the
equation of motion.

By using the change of coordinates studied in [PaPo], which mimics the change of coordinates
introduced in 1974 by McGehee[McG74] in order to study collisions in the collinear three-body
problem, we are able to derive some precise results about the global dynamics of our problem.

Summarizing, McGehee transformations consists of a polar-like change of coordinates in the
configuration space, an energy-dependent rescaling of the momentum and a time scaling. The idea
behind this non Hamiltonian change of coordinates is to blow-up the total collision to an invariant
manifold called total collision manifold over which the flow extends smoothly. Furthermore, each
hypersurface of constant energy has this manifold as a boundary. The effect of rescaling time, is
to study some qualitative properties of the solutions close to total collision. In fact, by looking at
the transformation defined in equation (9), it readily follows that the effect of this transformation
is to slow the motion in the neighborhood of the total collapse, which is reached in the new time
asymptotically. (For further details, please refer to [PaPo] and references therein).

In these new coordinates we were able to investigate the global dynamics of an example problem
in which one vortex filament of strength γ is surrounded by four vortices, symmetrically arranged,
having strength

√
π. For example, for γ > −3

√
π/4 we could prove that unbounded, collisionless

orbits do not exist, and, conversely, for γ < −3
√
π/4 the equations of motion in McGehee coor-

dinates immediately show how to find an unbounded, collisionless orbit. The value γ = −3
√
π/4

is, in fact, a threshold where the dynamics changes drastically. Above that threshold the center
filament is attractive or weakly repulsive, and the total collision of all five vortices may happen.
Below that threshold the repulsive strength of the central vortex does not allow the total collision.
Results of this sort would be extremely difficult to prove by working in Cartesian coordinates.
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In conclusion, we find that McGehee coordinates are a very important device for investigating
this kind of singular problems. In addition to their importance from an analytical point of view,
changes of coordinates of this sort may be play a crucial role in order to obtain accurate numerical
approximations of the solutions close to total collapse, as their replace a horribly singular set of
equations with one described by a smooth vector field.

2 McGehee coordinates and regularization

The aim of this section is to recall some facts about the McGehee–like transformation. The basic
reference is [PaPo] and references therein.

2.1 General set-up and McGehee coordinates

Let N ≥ 2 be an integer. Let 0 denote the origin in R
2 and let Γ̃1, . . . , Γ̃N be N real numbers

(which can be thought as strength of the vortex filaments). By the conservation law of the center
of vorticity we can identify the configuration space Q for the problem with the subspace of R2N

defined by

Q := {q = (q1, . . . , qN ) ∈ R
2N :

N
∑

j=1

Γj qj = 0}.

For each pair of indexes i, j ∈ N let ∆i,j denote the collision set of the i-th and j-th vortex
filament; namely ∆i,j = {q ∈ R

2N : qi = qj}. We call collision set the subset of the configuration

space given by ∆ :=
⋃

i6=j ∆i,j and reduced configuration space, the set Q̂ := Q \∆. The Newton’s
equations in Hamiltonian form can be written as:











Γ q̇ = p

ṗ =
∂U

∂q

(5)

where the Hamiltonian function H is defined by:

H : T ∗(Q̂) −→ R H(q,p) :=
1

2
〈Γ−1p,p〉 − U(q), (6)

on the phase space T ∗(Q̂) = Q̂× P for

P := {p = (p1, . . . ,pN ) ∈ R
2N |

N
∑

j=1

pj = 0}.

Remark 1 The differential equations in (5) then determine a vector field with singularities on
R

2N×R
2N , or a real analytic vector field without singularities on (R2N \∆)×R

2N . The vector field
given by (5) is everywhere tangent to Q× P and so this 4(N − 1) dimensional linear subspace is
invariant under the flow. We henceforth restrict our attention to the flow on the phase space Q×P .
Consequently H is an integral of the system. This means that the level sets Σh := H−1(h)∩(Q×P )

are also invariant under the flow (5). We observe that Σh is a real analytic submanifold of Q̂×P

having dimension 4(N − 1)− 1. The flow, however, is not complete. In fact certain solutions run
off in finite time. This happens in correspondence to any initial condition leading to a collision
between two or more vortex filaments: the corresponding solution meet ∆ in finite time. We shall
call total collapse, or total collision the simultaneous collision of all the vortices. Because the center
of vorticity has been fixed at the origin, if a total collapse happens, it must occur at the origin of
Q.
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Definition 2 If q̂j := (qj , 0) ∈ R
3, p̂j := (pj , 0) ∈ R

3 then the angular momentum is defined as

M e3 =

N
∑

j=1

Γ−1
j (q̂j × p̂j). (7)

Definition 3 A point s ∈ R
2N , such that 〈Γs, s〉 = 1 is called central configuration if

∂U

∂q
(s) = µ Γ s, for some µ ∈ R.

By Definition 3 it follows that

Lemma 4 Let s be a central configuration, and ρ be a positive smooth function such that

ρ̈ = µρ−1.

Then q(σ) = ρ(σ) s is a solution of (4).

Proof See [PaPo] for further details. 2

Let ϕ1, ϕ2 be the two monotonically increasing, smooth functions on the positive half-line,
vanishing when r → 0+, defined by:







ϕ1(r) := re−1/r2

ϕ2(r) := r

(8)

We define the following McGehee-like coordinates:






















‖q‖ = ϕ1(r)

s = q/ ‖q‖

z = ϕ2(r)p.

(9)

In these coordinates, it follows that a total collapse may only happen at r = 0. This constraint
defines the collision manifold.

2.2 Equation of motions in (r, s, z)- coordinates

In order to write the equations of motion using the McGehee coordinates, it will be useful to define
v := 〈Γ−1z, s〉 and to rescale time according to e1/r

2

/r2 dσ = dτ . In these new coordinates the
submanifold of constant energy h is given by

Σh =
{

(r, s, z) ∈ R
∗
+ × S × R

2 | 〈Γ−1z, z〉 = 2r2
[

h+ U(re−1/r2s)
]}

. (10)

By taking into account the expression (3) for the potential, we get

r2U(re−1/r2s) := −r2




∑

k 6=j

Γ̃jΓ̃k

4π
(logϕ1(r) + log |sj − sk|)



 .

Moreover 1 := limr→0+ −r2 logϕ1(r) and by this it follows that the stratum Σh meets the collision
manifold r = 0 along the submanifold

Λ :=

{

(0, s, z) ∈ R
∗
+ × S × R

2 | 1
2
〈Γ−1z, z〉 = G

}

,



Dynamics of (4+1)-dihedrally symmetric nearly parallel vortex filaments 5

where G :=
∑

k<j

Γ̃jΓ̃k

2π
. We observe that Λ does not depend on the energy level h. Therefore, all

strata Σh share the same boundary at the collision manifold. We also note that Λ = ∅ if G < 0.
The Hamiltonian system (4) fits into the following



































r′ =
r3

r2 + 2
v

s′ = Γ−1 z − vs

z′ = r2
[

1

r2 + 2
vz +

∂U

∂q
(s)

]

.

(11)

where, in the last equation, we have used the identity re−1/r2∂qU(q) = ∂qU(s).

3 The dihedral problem

Let us recall some basic facts about the dihedral group, seen as a map of R2 into itself. For further
details we shall refer to [FePo08] or [PaPo]. Let R2 ∼= C be endowed with coordinates z ∈ C. For
l ≥ 1, let ζl denote the primitive root of unity ζl = e2πi/l; the dihedral group Dl is the group of
order 2l generated by

ζl : z 7→ ζlz, κ : z 7→ z,

where z is the complex conjugate of z. The non-trivial elements of Dl = 〈ζl, κ〉 are the l − 1
rotations around the l-gonal axis ζjl , j = 1, . . . , l − 1 and the l rotations of angle π around the l

digonal axes orthogonal to the l-gonal axis ζjl κ, j = 1, . . . , l. The action of Dl, restricted on the

fixed subspace
(

R
4l
)Dl ∼= R

2, generates a dihedral configuration of vortices for any given q0 ∈ R
2.

We assume to have 4 vortices with the same circulation (which is a necessary condition in
order to satisfy the symmetry constraint) Γ̃ 2

i = 2π/l and another vortex of circulation γ placed at
the center of vorticity. Then we can express the potential in terms of the coordinates of a single
vortex, in the following way:

U(q0) = −
∑

g∈Dlr{1}

log ‖q0 − gq0‖ −
∑

g∈Dl

γ√
π
log ‖gq0‖, (12)

where, without further loss of generality, we have taken Γ̃ 2
i = 2π/l.

Lemma 5 The angular momentum of any dihedral equivariant orbit is zero.

Proof See Lemma 2.1 in [PaPo] 2

For l = 2, the dihedral group is usually called Klein group. This is an abelian group of order
4. The dihedral potential in this case is given by:

U(q0) = −
∑

g∈D2r{1}

log ‖q0 − gq0‖ −
∑

g∈D2

γ√
π
log ‖gq0‖. (13)

A straightforward computation shows that by setting q = (q1, q2) the potential may be written as

U(q1, q2) = − log(8 q1 q2 ‖q‖)−
4γ√
π
log ‖q‖ = − log(8q1 q2 ‖q‖β+1). (14)

where we have defined β = 4γ/
√
π. In polar coordinates we have the following definition.

Definition 6 We define the (4+1)-dihedral logarithmic potential as :

U(ρ, α) := − log ρβ+3 − log (4 sin(2α)) , (15)

and the (reduced) dihedral logarithmic potential as:

U(α) := − log (4 sin(2α)) . (16)
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Lemma 7 (Planar square) The dihedral problem admits exactly one (up to permutation of the
vortices) central configuration, which is given by the vertices (e(2k+1)πi/4, 0) of a regular square.

In terms of the local parameterization of the unit sphere s(α) = (s1, s2) := (cosα, sinα) as follows

U(s) = − log(8s1 s2) (17)

where we set qj = sj‖q‖ for j ∈ 2. From (10) let us define Ê(h, r, s) := 2r2(h + U(re−1/r2s)).

More explicitly (see Figure 1) Ê is given by:

Ê(h, r, α, β) := 2
[

h r2 + (β + 3)(1− r2 log r)
]

− 2r2 log(4 sin(2α)). (18)

Therefore the hypersurface corresponding to the energy level h is given by

Σh =
{

(r, α, z) ∈ R
∗
+ × (0, π/2)× R

2 | 〈Γ−1z, z〉 = Ê(h, r, α, β)
}

. (19)

We also observe that Σh meets the boundary r = 0 along a submanifold given by

Λ :=
{

(0, α, z) ∈ R
∗
+ × (0, π/2)× R

2 | 〈Γ−1z, z〉 = 2(β + 3)
}

.

Remark 8 Since the first term defining Λ is a positive definite quadratic form, it implies that for
β < −3 it is empty.

A B C

Fig. 1 Energy hypersurfaces for h = −4,−2, 0, 2, 4 (starting from below). Panel A): β = −2; panel B): β = −3;

panel C): β = −4. The white plane is the surface Ê = 0 that separates the physically meaningful (Ê ≥ 0) from

the physically meaningless (Ê < 0) region of the phase space. Note that all the energy surfaces meet together at a
line on the total collision manifold (the green plane in the figure), which is in the physically meaningless region for
β < −3.

Remark 9 The boundary of the regions where the motion occurs is given by Ê(h, r, α, β) = 0;
more precisely, since the kinetic term 〈Γ−1z, z〉 is a positive definite quadratic form, for any fixed
energy level h the motion is possible where:

Ê(h, r, α, β) ≥ 0.

The shape of the curve Ê(h, r, α, β) = 0 is key in order to understand the dynamics of our problem
(see Figure 2). Note that, if β > −3 then limr→∞ Ê = −∞, and the motion is sandwiched
between the collision manifold r = 0 and the zero-velocity manifold Ê = 0; if β < −3 then
limr→∞ Ê = ∞, and the surface Ê = 0 limits the allowed values of r from below. If β = −3 then
the qualitative shape of the hypersurface definded by the function Ê depends on h. For h > log(4)
the manifold Ê = 0 coincides with r = 0; in this case the motion is allowed for any r > 0. For
h ≤ log(4) the zero-velocity set is given by the union of the surfaces r = 0, α = arcsin(eh/4)/2
and α =

(

π − arcsin(eh/4)
)

/2, and the motion may only happen for 0 < α < arcsin(eh/4)/2 or
(

π − arcsin(eh/4)
)

/2 < α < π.
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Fig. 2 Zero set of the function (r, α) 7→ Ê(0, r, α, β) for several values of the parameter β. For β < −3 the physically

meaningful region Ê > 0 is on the right of the curves (panel A). For β > −3 it is on the left of the curves (panel
B).

Let us introduce a further change of coordinates. In the dihedral problem the shape sphere
reduces to S1, therefore it is natural to use the parametrization α 7→ s(α), where s(α) =
(cosα, sinα). Following [StFo03], we exploit the constraint (19) to parametrize the we also intro-
duce a new local parametrization the momentum coordinates z with an angle ψ in the following
way

z =

√

Ê(h, r, α) (
√
π cosψ,

√
π sinψ). (20)

Note that with the choice of the strength of the circulations made in Section 3, we have Γ−1 =

1/πI. We also use a new time-like variable ζ, define by dτ =
√

Ê dζ. Observing that the (4 + 1)-
dihedral potential is given by:

U(q) = − log(8‖q‖β+1q1q2)

by computing its gradient, we get:

∂qU(q) = −
(

1

q1
+ (β + 1)

q1
‖q‖ ,

1

q2
+ (β + 1)

q2
‖q‖

)

whence it follows ∂qU(s) = −
(

1

s1
+ (β + 1) s1,

1

s2
+ (β + 1)s2

)

. In this case the equations of

motion become:














































dr

dζ
=

1√
π

r3

r2 + 2
Ê(h, r, α, β) cos(ψ − α)

dα

dζ
=

1√
π
Ê(h, r, α, β) sin(ψ − α)

dψ

dζ
=

−r2√
π

[

2 cos(ψ + α)

sin 2α
− (β + 1) sin(ψ − α)

]

.

(21)

The restpoints of (21) correspond to the solutions of the following systems:

{

r = 0
sin(ψ − α) = 0

,

{

r = 0

Ê = 0
,







Ê = 0
2 cos(ψ + α)

sin 2α
= (β + 1) sin(ψ − α)

.

However, it is readily seen that the second system has no solutions, as the conditions Ê = 0 and
r = 0 are incompatible. With straightforward calculations we obtain the following result.
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Fig. 3 Eigenvalues of the rest points on the curve P3 for four distinct values of the parameter β. Panel A:
eigenvalue corresponding to the eigenvector transverse to the surface Ê = 0. Panel B: eigenvalues corresponding
to the eigenvector tangent to the surface Ê = 0, but transverse to the curve P3. Note the the third eigenvalue,
namely that corresponding to the eigenvector tangent to the curve P3 is identically zero.

Lemma 10 The equilibria of the vector field given in (21) consists of four curves, two belonging to
the collision manifold and the other two on the zero-velocity manifold. In the coordinates (r, α, ψ),
the curves on the collision manifold are given by

(i) P1 ≡ (0, α, α);
(ii) P2 ≡ (0, α, α+ π)

The curves on the zero-velocity manifold are given by

(iii) P3 is the closure of the set P ≡ {
(

R(α), α, arctanm(α, β)
)

| δ(α, β) > 0, α ∈ (0, π/2)} ∪
{
(

R(α), α, arctanm(α, β) + π
)

| δ(α, β) < 0, α ∈ (0, π/2)} where

m(α, β) :=
cosα

[

(β + 1) sin2 α+ 1
]

sinα [(β + 1) cos2 α+ 1]

δ(α, β) := (β+1) cos2 α+1, and the function R is implicitely defined by the equation Ê(h, r, α, β) =
0, which may be written as

log(4 sin 2α) = h+ (β + 3)(r−2 − log r);

(iv) P4 ≡ {(r, α, ψ + π) | (r, α, ψ) ∈ P3}.
Note that for β = 1 the ebove expressions for P3 and P4 become much simpler, namely P3 =
(R(α), α, π/2− α) and P4 = (R(α), α, 3π/2− α).

The spectrum and the eigenvectors of the Jacobian matrix of (21), evaluated at a rest point,
give useful information on the local dynamics close to the curves P1, P2, P3, P4. The logic of
the calculation is elementary, but the computations become too large to be easily manageable.
With the help of a computer algebra system (Maxima 5.21.1) we find the following results.

Lemma 11 The curves of equilibria P1 and P2 (on the collision manifold) given in Lemma 10
are degenerate. More precisely:

1. at each point of the curve P1 the spectrum is given by s(P1) = {λ1, λ2} where λ1 = (2β +
6)/

√
π and λ2 = 0. Furthermore the algebraic multiplicity of λ1 is h(λ1) = 1 and the algebraic

multiplicity of λ2 is h(λ2) = 2. The eigenvectors are

v1 = (0, 1, 0) v2 = (1, 0, 0) v3 = (0, 1, 1)

where v1 is associated to λ1 and v2, v3 are associated to λ2. The vector v3 is tangent to P1.
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d
im
W

s

d
im
W

u

d
im
W

0

At P1 1 – 2

At P2 – 1 2

At P3 1 1 1

At P4 1 1 1

Table 1 Dimensions of the invariant manifolds for the equilibria belonging to the curves P1, P2, P3, P4 in the
case γ > −3/2.

2. At each point of the curve P2 the spectrum is given by s(P2) = {λ1, λ2} where λ1 = −(2β +
6)/

√
π and λ2 = 0. The multiplicities and the eigenvectors are the same as for P1.

Lemma 12 For β 6= −3 the curves of equilibria P3 and P4 (on the zero velocity manifold) given
in Lemma 10 are degenerate. More precisely:

1. at each point of the curve P3 the spectrum is given by three distinct simple eigenvalues, namely
s(P3) = {µ1, µ2, µ3} where

µ1 = 0

µ2 = − 1√
π(β + 1)

[

128 cos(2α) cos(ψ + α)r8e2(β log(r)− β+3

r2
−h) + 2(β + 1)(β + 3) cos(ψ − α)r2

]

µ3 =
1√
π

[

8 sin(ψ + α)r5eβ log(r)− β+3

r2
−h + (β + 1) cos(ψ − α)r2

]

,

and, for β = −1

µ2 = − 1√
π

[

e
2

r2
+h + 16 cos2(2α)r4e−

2

r2
−h

]

Here, of course, the coordinates are not independent, but (r, α, ψ) ∈ P3. The eigenvector
associated to µ3 is u3 = (0, 0, 1), which lies on the invariant manifold Ê(0, r, α, β) = 0. The
explicit expressions of the eigenvectors u1 and u2 associated to µ1 and to µ2 are not short, and
we omit them. However, u1 is tangent to the curve P3 and u2 is transverse to Ê(h, r, α, β) = 0.
For β > −3 at all points in P3 we have µ2 < 0 and µ3 > 0. For β < −3 we have µ2 > 0 and
µ3 < 0.

2. At each point of the curve P4 the spectrum is s(P3) = {µ1,−µ2,−µ3}. The eigenvectors are
the same as for P3.

The dimension of all the stable, unstable and central manifolds associated to each rest point
are shown in Table 1:

Remark 13 The above results show that for β 6= −3 the stability properties of the equilibria do
not depend on the value of the total energy h. In other words, changing the parameter h does not
lead to bifurcations.

4 Heteroclinic connections, homothetic orbits and colliding trajectories

At each rest point let us denote by W s, Wu respectively the (linearly) stable and unstable mani-
folds, and by W 0 the center manifold.

The existence of heteroclinic connections on and between the invariant manifolds helps us to
develop a global understanding of the flow. For the proof of these results we shall refer to [PaPo].
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Fig. 4 Total collision manifold and equilibrium curves.

Lemma 14 The flow on the total collision manifold is totally degenerate. That is:

(i) Wu(P1) ≡W s(P2);
(ii) Wu(P2) ≡W s(P1);

where P1 ∈ P1 and P2 ∈ P2 are chosen in such a way that the second coordinate of the two
points is the same.

Remark 15 By taking into account the identification of the opposite edges of the rectangle (α, ψ)
with the same orientation, the curves of equilibria can be identified with two closed curves on the
torus and the heteroclinics are represented by arcs joining one point on a unstable (red) closed
curve with the corresponding point on the stable (blue) curve as shown in Figure (4).

Next we describe the flow on the zero velocity manifold Ê(h, r, α, β) = 0, where the equation of
motions reduce to

dr

dζ
= 0,

dα

dζ
= 0,

dψ

dζ
= − r2√

π

[

2 cos(ψ + α)

sin 2α
− (β + 1) sin(ψ − α)

]

. (22)

Lemma 16 The flow on the total collision manifold is totally degenerate. More precisely

(i) Wu(P3) ≡W s(P4);
(ii) Wu(P4) ≡W s(P3);

where P3 ∈ P3 and P4 ∈ P4 are chosen in such a way the first two coordinates agree.

By choosing (α, ψ) = (π/4, π + π/4) or (α, ψ) = (π/4, π/4) the last two equations in (21) are
identically zero. This means that the constant pair (α, ψ) = (π/4, π + π/4) is a constant solution
of the subsystem obtained by projecting the system of ode’s onto the (α, ψ)-plane. By summing
up, the following result holds.

Proposition 17 There exist two heteroclinic orbits connecting the total collision and zero velocity
manifold. More precisely

1. The curve η13(ζ) =
(

r(ζ), π/4, π/4
)

is an heteroclinic joining P1 and P3 for r solution of

dr

dζ
=

1√
π

r3

r2 + 2
Ê(h, r, π/4, β).

2. the curve η24(ζ) =
(

r(ζ), π/4, π + π/4
)

is an heteroclinic joining P4 and P2 for r solution of

dr

dζ
= − 1√

π

r3

r2 + 2
Ê(h, r, π/4, β).

where Ê(h, r, π/4, β) = 2
[

h r2 + (β + 3)(1− r2 log r)
]

− 2r2 log(4).
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Fig. 5 Heteroclinic connections among the points (0, π/4, π/4), (0, π/4, π + π/4), (r̄, π/4, π/4), (r̄, π/4, π + π/4)

where r̄ is such that Ê(h, r̄, π/4) = 0. The shaded plane is the collision manifold r = 0. The shaded curved surface

is the collision manifold Ê = 0. Only the fundamental domain is shown. The figure was drawn for β = 0, and it is
representative of all cases with β > −3.

Remark 18 Although mathematically the heteroclinics of Proposition 17 exist for any value of β,
we should recall that the region of small values of r is physically reachable only for β ≥ −3 owing
to the constraint of Remark 8.

Figure 5 shows graphically the heteroclinic connections between the invariant manifolds r = 0
and Ê = 0.

5 Global dynamics in McGehee coordinates

Definition 19 We say that a solution γ(ζ) := (r(ζ), α(ζ), ψ(ζ)) of the system (21) is unbounded
if

lim
ζ→+∞

r(ζ) = +∞

If an orbit is not unbounded, then it is a rest point or it asymptotically approaches either a
rest point or a collision.

The total collision of all five vortices may be only be achieved when β > −3, and by orbits
that approach the heteroclinic orbit η24. The latter statement is the consequence of a recent result
[BaFeTe08] that generalizes to a large class of potentials (including logarithmic ones) the classic
theorem by Sundman [Sun09], valid for Newtonian gravitational potentials, which states that total
collisions may only be reached by approaching a central configuration. For more information on
this issue, please refer to [PaPo].

The rest points on P3 and P4 are saddles. Only the orbits belonging to their stable manifold
may asymptotically reach them. Therefore, the typical orbit is either unbounded, or it experiences
a binary collision, defined as follows.
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Definition 20 In a dihedrally equivariant system, a binary collision is the simultaneous, pairwise
collision of all vortices whose position is different from the center of mass of the system.

We have the following boundedness result.

Theorem 21 Unbounded collisionless orbit do not exist if β > −3.

Proof ** TODO ** 2

For β < −3 or β = −3 and h > log(4), unbounded, collisionless orbits are possible. The simplest
examples are the orbits generated by the equation that for β > −3 defines the heteroclinics η13
(see Proposition 17). However, we conjecture that these are not generic, in the following sense.

Conjecture 22 For β < −3 or β = −3 and h > log(4) the set of initial conditions that generates
unbounded, collisionless orbits has zero Lebesgue measure.

The ubiquity of binary collisions motivates us to use the regularization techniques introduced in
[CaTe] and further discussed in [PaPo], in order to introduce generalized solutions, which, roughly
speaking, are suitable continuations of the solutions after a binary collision.

In physical coordinates, let us consider, in place of the singular potential (12), the non-singular
one given by

U(q0; ε) = −
∑

g∈Dlr{1}

log

(

√

‖q0 − gq0‖2 + ε2
)

−
∑

g∈Dl

γ

2
log

√

‖gq0‖+ ε2, (23)

that substitutes (12) in the equations of motion (5). For the Klein group D2 the above expression
reduces to

U(q1, q2; ε) =
1

2
log

(

(4q21 + ε2)(4q22 + ε2)(4 ‖q0‖2 + ε2)4(‖q0‖2 + ε2)γ/2
)

. (24)

It can be shown [CaTe,PaPo] that, in the limit ε → 0, the solutions generated by the non-
singular potential (23), at least in a finite time interval, become transmission solutions, which are
continuous curves that locally obey the odd symmetry q0(tc + t) = −q0(tc − t), where tc is an
instant of binary collision.

The non-singular potential (24) will be used below in order to compute numerical approxima-
tions to the generalized solutions.

For β = 0, is it possible to show [PaPo] that there are no unbounded generalized orbits. This
result generalizes immediately to the case β > 0, and it is false in the case β < −3. We speculate
that there is a regime in which both the collision manifold and infinity are dynamically accessible.

Conjecture 23 There exists a constant −3 < β∗ < 0 such that for β < β∗ there exist unbounded
generalized solutions.

6 Numerical Simulations

From now own, when we refer to solutions we mean generalized solutions that may go through bi-
nary collisions. The transformations linking the physical coordinates (q1, q2) and momenta (p1, p2)
to the McGehee coordinates (r, α, ψ), for a given value of the total energy h, are

{

q1 = r e−1/r2 cosα

q2 = r e−1/r2 sinα
(25)

{

p1 = z1/r =
√

Ê π/r cosψ

p2 = z2/r =
√

Ê π/r sinψ
(26)



Dynamics of (4+1)-dihedrally symmetric nearly parallel vortex filaments 13

	0.75 	0.50 	0.25 0.00 0.25 0.50 0.75
q1

	0.50

	0.25

0.00

0.25

0.50
q 2

A


0.005 0.000 0.005

0.005

0.005

0.25 0.50 0.75 1.00 1.25 1.50
r

0

�/4

�/2

3�/4

�

5�/4

3�/2

�

B

0 �/4 �/2 3�/4 � 5�/4 3�/2


0

�/2

�

3�/2

2�

�

C

0.25 0.50 0.75 1.00 1.25 1.50
r

0

�/2

�

3�/2

2�

�

D

Fig. 6 A near-ejection orbit starting at (r, α, ψ) = (0.3, π/4 + 10−2, π/4) with h = 0. The initial conditions are
transformed to physical coordinates using equations (25) and (26), then a numerical integration of the equations
(5) with the potential (24) and ǫ = 10−6 generates the orbit. Panel A): the orbit in physical coordinates, projected
on the (q1, q2) plane. The inset magnifies the region close to the origin (corresponding to the total collapse). Panels
B), C), D): the orbit transformed back to McGehee coordinates, projected respectively on the r, α, α, ψ, and r, ψ
planes. After each binary collision the orbit is extended with continuity into the adjacent domain. The circle shows
the position of the initial condition. The yellow lines at α = 0, π, · · · correspond to binary collisions at q1 = 0, those
at α = π/2, 3π/2, · · · to binary collisions at q2 = 0. The grey lines in panel B) are the points with Ê = 0.

We recall that the various time scalings introduced along calculations have the effect that both
the invariant manifold corresponding to the total collapse and that corresponding to zero velocity
are reached asymptotically as the rescaled time goes to infinity.

We further observe that not all the restpoints on the total collision manifold have a physical
meaning. Only the points (r, α, ψ) = (0, π/4, π/4) and (r, α, ψ) = (0, π/4, 5π/4) are physically
relevant. They correspond to central configurations in which each vortex lies on the vertex of a
square, having the barycenter at the origin and the vertices on the bisectrices of the coordinate
axis. Thus the two heteroclinic connections of proposition 17 joining the total collision manifold
and the zero velocity manifold correspond, respectively to the homographic ejection orbit from
total collapse to the zero velocity manifolds and to the homographic collision from the zero velocity
to the total collapse manifolds.

This is illustrated in Figure 6 by a numerical solution of the equations of motions in physical
coordinates using the non-singular potential (24) for an initial condition close to the ejection
heterocline. Initially the solution follows closely the heteroclinic cycle shown in figure 5. Eventually,
the solution leaves the collision heterocline before reaching the total collapse (which is a saddle
point) and it is subject to a sequence of two binary collisions close to total collapse.

Summarizing we have

Theorem 24 The only homothetic ejection/collision orbit from/to total collapse is that homoth-
etic to the planar central configuration, which is bounded.

Theorem 25 Each solution different from the homothetic central configuration experiences a bi-
nary collision in finite time. Moreover, any solution starting arbitrarily close to the homothetic
ejection solution has an orbit that may not reach the upper bound of the homothetic orbit before
experiencing a binary collision.
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Fig. 7 A sequence of binary collisions moving along the positive q1 semi-axis with a turning point. The orbit starts
at (r, α, ψ) = (2.05, 0.01, π/4) with h = 0. Details of the numerical solution and panel description as in figure 6.

Proof This is a direct consequence of the theorem ??. 2

When the four vortices are arranged at the vertex of a rectangle with a large ratio of side
lengths, then there are solutions in which the pairs of vortices undergo repeated binary collisions
along the same axis. In particular, for some of these solutions the sequence of collisions initially
moves away from the origin of the Cartesian axes. However, unbounded solutions are not possible,
and eventually the sequence reaches a turning point and returns towards the origin. An example
of this dynamical behavior is shown in figure 7. When seen in the McGehee coordinates, these
are solutions advancing (up to a turning point) into the narrow funnel between the zero velocity
manifolds of adjacent domains. In figure 8 we show a numerical solution where a sequence of binary
collisions approaching the origin from the right undergoes a single binary collision along the q2 axis
and the continues moving leftward on the negative q1 semi-axis, although with a markedly different
amplitude. Eventually, this it will reach a turning point, and return towards the origin. Solutions
that oscillate along an axis bouncing back and forth between turning points of opposite sign are
not uncommon. However, we were unable to maintain the oscillations, which are aperiodic, for
arbitrarily long times. Eventually the orbit spends some time winding closely around the origin at
distances corresponding to values of r such that Ê(h, r, α) > 0 for any α. After these complicated
and chaotic-looking transients the orbit may resume its oscillations along one (not necessarily the
same) axis.

We may formalize these findings as follows.

Theorem 26 If the initial configuration is a rectangle with large enough aspect ratio, the config-
uration evolves by passing through an arbitrary number of simultaneous binary collisions between
the pairs of closest vortices.

Theorem 27 The projection of any solution in the configuration space is bounded.

Proof This is a direct consequence of theorem 21. 2

Theorem 28 The set of initial conditions leading to total collapse or leading in an infinite amount
of time to the outermost boundary region where the motion is allowed has zero Lebesgue measure.
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Fig. 8 A sequence of binary collisions moving from the positive to the negative q1 semi-axis. The orbit starts at
(r, α, ψ) = (2.05, 0.01, 3π/4) with h = 0. Details of the numerical solution and panel description as in figure 6.
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