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Abstract  

Canine cognitive dysfunction syndrome (CDS)  is a neurodegenerative disorder of aged dogs 

characterized by a progressive decline in cognitive function. In humans and laboratory animals a 

variety of neurotransmitter abnormalities have been described in patients affected by age-related 

dementia. Specifically, the regulatory role of the catecholaminergic, serotonergic and cholinergic 

systems have been outlined. The aim of the present study was to measure blood monoamine levels, 

platelet 2-adrenergic receptors  and lymphocyte muscarinic receptors  in healthy adult and old 

dogs and in dogs affected by canine cognitive dysfunction. Based on clinical and behavioral 

examination, 40 dogs were divided into three groups: healthy adults (n=14), old dogs (n=17), and 

old dogs affected by canine cognitive dysfunction (n=9). A significant reduction in plasma levels of  

norepinephrine and dopamine was observed both in aged (0.16±0.02 ng/mL; P<0.01 and 0.11±02 

P<0.01 respectively) and CDS dogs (0.14±0.03 ng/mL; P<0.05 and 0.10±00.005 P<0.01 

respectively) compared to adults (0.29±0.04 ng/mL and 0.15±0.02 respectively). No  significant 

differences were observed among groups for 2-adrenergic receptor concentrations. Canine 

lymphocytes express two distinct classes of muscarinic receptors, characterized by high (HA) and 

low (LA) affinity for 3H-N-methyl-scopolamine. A significant age-dependent decrease in HA 

muscarinic receptors was observed. However, no differences were found between old (87.65±11.08 

sites/cellx102) and CDS dogs (90.17±6.75 sites/cellx102 ). As far as LA muscarinic receptors are 

concerned, CDS dogs showed a significant increase (393.48±63 sites/cellx102; P<0.05)  with 

respect to adults (188.84±16.50 sites/cellx102 ). Our results suggest that the reduction in HA 

muscarinic receptor binding sites could be representative of the physiological ageing process, 

whereas the increase in lymphocyte LA muscarinic receptor levels could be related to the cognitive 

decline.  
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Introduction 

Ageing represents a complex biological process characterized by a progressive degeneration of  

tissues and cells with a gradual loss of adaptive capacity. In human aging it is generally  associated  

with  a decline  in  a range of cognitive  functions,  including learning,  memory,  visuospatial  

function,  language,  information  processing  speed,  and  executive function (Adams et al., 2000). 

 In  ageing animals a decrease in learning and memory performance can be observed (Milgram et 

al., 1994; Landsberg and Ruehl, 1997; Adams et al., 2000; Chan et al., 2002). A serious impairment 

of  cognitive processes has to be distinguished from a simple and mild decrease of the psychomotor 

activity and may be considered as “pathological ageing” (Adams et al., 2000). As in humans, where 

different levels of ageing and dementia have been classified, various authors have described the so-

called “canine cognitive dysfunction syndrome” (CDS) (Landsberg, 2005; Milgram et al., 1994; 

Cummings et al., 1996a,b). The term canine cognitive dysfunction is used in the veterinary 

literature to describe a progressive neurodegenerative disorder of aged dogs that is characterized by 

a gradual decline in cognitive functions such as learning, memory, perception, and 

awareness (Landsberg, 2005; Milgram et al., 1994; Cummings et al., 1996a,b).  

In humans and laboratory animals a variety of neurotransmitter abnormalities have been 

described in patients affected by age-related dementia (Rehman and Masson, 2001; Buccafusco, 

2006; Hirata-Fukae et al., 2008). Nevertheless, these modifications are often associated with 

specific diseases such as Parkinson’s and Alzheimer’s diseases (AD) and their involvement in the 

pathogenesis of age-related cognitive dysfunctions has not been fully elucidated to date (Rehman 

and Masson, 2001). Ageing has been associated with a decrease in central nervous system 

dopamine (D) and dopamine receptor (DR) levels and, interestingly, in Alzheimer’s disease affected 

patients a decrease in brain 2-adrenoceptors (2-AR) has been documented (Kalaria et al., 1989; 

Kalaria and Andorn, 1991; Meana et al., 1992; Sastre et al., 2001).  



The serotonergic system seems to be involved in the physiological process of ageing and in 

the pathogenesis of Alzheimer’s disease. In fact, the central nervous system serotonin levels 

decrease with age, and in AD patients a significant decrease of the neurotransmitter and of some of 

its metabolites has been observed in the central nervous system and in the cerebrospinal fluid 

(Baker and Reynolds, 1989; Reinikainen et al., 1990; Tohgi et al., 1992). The change in serotonin 

levels has been associated with modifications of serotonin receptor concentrations (Lai et al., 2002). 

It has been suggested that platelets represent a suitable peripheral marker of central serotonergic 

activity as in AD subjects a significant decrease of central and platelet serotonin concentrations was 

observed (Kumar et al., 1995; Inestrosa et al., 1993). 

According to the “cholinergic hypothesis” of human ageing and Alzheimer’s disease, the 

dysfunction of the cholinergic system contributes to the memory and cognitive decline. The 

hypothesis has been supported by pharmacological and histological evidence (Bartus et al., 1982; 

Dunnet and Fibiger, 1993; Araujo et al., 2005). It has been observed that the administration of the 

muscarinic antagonist scopolamine induces a cognitive impairment in healthy young humans 

(Drachman and Leavitt, 1974; ) and this is increasingly disruptive with advancing age and declining 

cognitive status (Tariot et al., 1996). Similar findings have been observed in primates, rodents and, 

more recently, in dogs (Bartus, 2000; Pilcher et al., 1997; Biggan et al., 1996; Araujo et al., 2004). 

Moreover, in Alzheimer’s disease a remarkable decrease of choline acetyltransferase activity in the 

cerebral cortex and hippocampus has been observed (Davies and Maloney, 1976; Bowen et al., 

1997). A correlation between the loss of cortical synapses and cognitive decline was demonstrated 

as well as a close relationship between this loss and the decrease of high-affinity cholinergic 

receptors (Withehouse et al., 1982; Nordberg et al., 1992; Hellstrom-Lindahal et al., 1999). Several 

papers have reported a decrease in muscarinic receptor concentrations in different areas of the 

central nervous system in both aged humans and rats (Mulugeta et al., 2003; Tayebati et al., 2004; 

Norbury et al., 2005; Karanth et al., 2007). Furthermore, Tayebati et al. (2001) demonstrated that 



AD patients show a decrease in lymphocyte muscarinic receptors3 subtype and an increase in the 

muscarinic receptors4 subtype (Tayebati et al., 2001).  

It  has been suggested that canine ageing is similar to some extent to human ageing and that 

neuropathological changes that occur in dogs are similar to those seen in human aging and in  

Alzheimer’s disease (Studzinski et al., 2005).  Aged dogs, like humans,  naturally develop amyloid-

 deposition and the sequence of the gene encoding for this protein is identical to the human one 

(Azizeh et al., 2000; Head, 2001). Moreover, dogs and humans share similar patterns of cognitive 

decline as a function of age (Adams et al., 2000). As a consequence, the dog model is effective in 

predicting cognitive modifying effects of drugs (Studzinski et al., 2005). Nevertheless, the 

neurotransmitter systems involved in the pathogenesis of canine cognitive syndrome have not been 

fully elucidated to date.  

Based on this background, the aim of the present study was to measure blood monoamine 

levels, platelet 2-adrenergic receptors and lymphocyte muscarinic receptors in healthy adult and 

old dogs, and in dogs affected by canine cognitive syndrome to identify peripheral markers of the 

disease and possible targets for specific pharmacological treatments. Previous studies have 

demonstrated that radioligand binding assays allow the measurement of specific receptor 

concentrations in different organs and tissues of domestic animals (Badino et al., 2004;  Badino et 

al. 2005). 

 

 

 Material and methods 

 

Animals   

Dogs were selected on the basis of  history, neurological, cardiology and behavioral examination 

out of over 124  animals referred to the Teaching Hospital of the Faculty of Veterinary Medicine of 

the University of Turin. The study was carried out on 40 dogs (26 males and 14 females; weight  



15 Kg). To fulfill the inclusion criteria, the age ranged from 2 to 8 years for the adult group, 

whereas dogs more than 9 years old were considered as aged. Exclusion criteria were primary organ 

failure and/or neurological signs. To evaluate the physical condition of dogs, standard clinical 

examination and laboratory assessments (complete blood count, basic biochemical profile, 

urinalysis, basic endocrine screening to asses thyroid function) were performed. Moreover,  

neurological and cardiology examinations have been carried out. In order to diagnose canine 

cognitive syndrome, the cognitive status of each dog was checked by the veterinary behaviorist 

filling in a questionnaire (Osella et al., 2007)  on the basis of the owners’ answers and using  

cognitive tests aimed to evaluate the short-term visuo-spatial memory (Ghi et al., 2009). Based on 

clinical and cognitive examinations, dogs were divided into 3 groups: GROUP 1: healthy adults 

(n=14; age range 2-8 years, mean  SE 4.3  0.5 years, median 4.5 years); GROUP 2: healthy old 

dogs (n=17; age range 9-14, mean  SE 10.5  0.4 years, median 11 years), and GROUP 3: old 

dogs affected by canine cognitive dysfunction (n=9; age range 9-15 years, mean  SE 12.0  0.8 

years; median 12 years).  

All the procedures and sample collections were conducted according to ethical guidelines 

laid down by the University of Torino (86/609/EEC). 

 

2.3 Blood sample collection and lymphocyte and platelet separation 

To obtain suitable biological samples minimizing discomfort to dogs, a method of platelet and 

lymphocyte separation from a small volume blood aliquot was developed. Twenty ml blood 

samples were drawn from each dog in tubes containing Na-EDTA. Samples were immediately 

centrifuged at 240 x g for 20 min at room temperature to obtain the platelet rich plasma (PRP) 

fraction. The harvested PRP fractions were then ultra-centrifuged at 35 000 x g for 20 min at 4°C 

and the resulting pellets were re-suspended in a specific assay buffer (50 mM Tris-HCl, 0.5 mM 

MgCl2; pH 7.4) and stored at –80°C until the 2-adrenergic receptor binding assay was run (Pelat et 

al., 2001). 



After removing the platelet rich plasma, the remaining blood was diluted with 2.5 ml of 

Hank’s Balanced Salt Solution (HBSS) and layered into tubes containing 2 ml of Histopaque 1119 

(bottom) and 2 ml of Histopaque 1077 (2 ml of blood and 4 ml of Histopaque). Tubes have been 

centrifuged at 340 x g for 30 min at 4°C and the resulting buffy coats, layered between plasma and 

Histopaque 1077, were centrifuged at 1 660 x g, washed twice with HBSS, re-suspended in saline 

solution (0.9% NaCl; room temperature), counted in a cell counter and stored at –80°C until 

muscarinic receptor binding assay (Re et al., 1999). 

 

Platelet 2-adrenergic receptor binding assay 

Platelet 2-adrenergic receptor concentration was assessed using the method described by Pelat et 

al. (2002), but introducing some minor modifications. Briefly, aliquots of platelet suspension (1.5 

mg of protein/ml) were incubated for 30 min at 25°C with increasing concentrations (0.07-10 nM) 

of 3H-RX821002, a specific ligand for 2-adrenergic receptors. Non-specific binding was 

evaluated by adding 20 M norepinephrine to the incubating mixture. Incubation was stopped by 

adding 2 ml of ice-cold buffered saline solution (154 mM NaCl, 50 mM Tris-HCl; pH 7.4) and the 

incubation mixtures were immediately filtered under vacuum over pre-soaked glass microfiber 

filters. The filters were then washed with buffered saline and solubilized with 4 ml of scintillation 

fluid (PicoFluor 40, Perkin Elmer). The radioactivity was measured by the use of a -counter. 

 

 Lymphocyte muscarinic receptor binding assay 

Measurements of muscarinic receptor were performed as described by Tayebati et al. (1999) with 

some minor modifications. Aliquots of lymphocyte suspension (1 x 106 cells) were incubated for 1 

h at 25°C with increasing concentrations (0.03-4 nM) of 3H-N-methyl-scopolamine. Non-specific 

binding was measured in the presence of an excess of atropine (12 M). At the end of the 



incubation, samples were processed as described for the platelet 2-adrenergic receptor binding 

assay. 

 

 Catecholamine and serotonin blood levels 

Epinephrine, norepinephrine and dopamine plasma levels were measured using a commercial RIA 

kit (TriCat, IBL), whereas serotonin serum concentrations were assessed using a commercial 

ELISA kit (Serotonin ELISA, IBL) (Badino et al., 2009) 

 

 Processing and statistical analysis of data 

The equilibrium dissociation constant (Kd) and the number of binding sites (Bmax), expressed as nM 

and femtomoles of specifically bound ligand/mg of membrane protein (2-adrenergic receptors) or 

sites/cells x 102 (muscarinic receptors), respectively, were calculated by computerized Scatchard 

analysis (GraphPad Prism). Saturation radioligand binding experiments measure specific 

radioligand binding at equilibrium at various concentrations of the radioligand and allow the 

determination of both receptor concentration and radioligand affinity. In the Scatchard plot, the  X-

axis is the specific binding (Bs) and the Y-axis is specific binding divided by free radioligand (F) 

concentration (Bs/F) calculated at each concentration of radioligand.  It is possible to estimate the 

Bmax and Kd from a Scatchard plot (Bmax is the X intercept; Kd  is the negative reciprocal of the 

slope). The Bmax value is the highest concentration of radioligand specifically bound to the receptor 

and represents a measure of receptor concentration.  The Kd value is the concentration of 

radioligand in which a half of receptor is occupied and characterizes the affinity and specificity of 

the ligand for the receptor (Scatchard, 1949). 

Results were expressed as mean values  SEM (mean standard error). Statistical analysis consisted 

of multiple comparisons using Tukey-Kramer adjustments to avoid inflation of Type I error due to 

multiple comparisons (GraphPad Instat). 

 



Results 

Platelet 2-adrenergic receptor concentrations 

Scatchard analysis demonstrated the presence of a single class of binding sites saturated by the 

radioligand concentrations used. Platelet 2-adrenergic receptor levels and Kd values are shown in 

Table 1. No  significant differences were observed among groups both for 2-adrenergic receptor 

concentrations and Kd values.  

 

 Lymphocyte muscarinic receptor concentrations 

Scatchard analysis allowed identifying in all groups of dogs two distinct receptor binding sites of 

lymphocyte muscarinic receptors. They were characterized by significant differences in Kd values 

(Table 2) resulting in high affinity (HA) and low affinity (LA) muscarinic receptors. The 

muscarinic receptor concentrations are reported in Table 3. Statistical analysis showed significant 

differences in HA muscarinic receptor levels between GROUP 1  and GROUP 2  dogs (P<0.01) and 

between GROUP 1 and GROUP 3 dogs (P<0.05). Significant differences were observed in LA 

muscarinic receptor concentrations between GROUP 3 and GROUP 1 dogs (P<0.05). 

 

 Catecholamine and serotonin blood levels 

Table 4 summarizes blood monoamine levels (epinephrine, norepinephrine, dopamine and 

serotonin) in healthy and affected dogs. A significant decrease in norepinephrine and dopamine 

plasma levels was observed between GROUP 1 and GROUP 2  dogs (P<0.01) and between 

GROUP 1 and GROUP 3 dogs (P<0.05 and P=0.01, respectively), whereas no  significant 

difference was found between GROUP 2 and GROUP 3 dogs.  

 

Discussion 

Data reported  in the present study suggest the presence of measurable concentrations of 2-

adrenergic receptors in platelets and muscarinic receptors in lymphocytes of dogs. The binding 



method used in our experiment allowed us to identify two distinct classes of lymphocyte muscarinic 

receptors, characterized by high and low affinity for radioligand. However, the non selective 3H-

N-methyl-scopolamine did not allow us to characterize the different muscarinic receptor subtypes. 

Currently, five muscarinic receptor subtypes have been identified (M1-M5 receptors). While the 

odd-numbered receptors (M1, M3, and M5) activate phospholipase C (PLC) leading to 

phosphatidylinositol 4,5-biphoshonate hydrolysis, agonist activation of even receptors (M2 and M4) 

leads to adenylyl cyclase inhibition (Ishii and Kurachi, 2006). In the brain of human beings affected 

by Alzheimer’s disease, molecular biology analysis revealed a decrease in M1R and M2R and an 

increase in M4 subtypes (Flynn et al., 1995), whereas pharmacological assays demonstrated a 

decrease in M1R-M3R (Rodriguez-Puertas et al., 1997). More recently, Araujo et al., (2011) found 

that scopolamine significantly impairs performance of aged dogs and that senior dogs show a 

decreased density of muscarinic receptors in different brain areas. Nevertheless, few studies 

investigating neurochemical changes and cholinergic dysfunction during canine ageing have been 

published to date (Woodruff-Pak, 2008). Our data suggest that modifications in lymphocyte 

muscarinic receptor concentrations reflect those observed in the central nervous system of old dogs. 

As a consequence, circulating lymphocytes could represent a marker of central cholinergic activity 

thus allowing in vivo studying  of cholinergic function in dogs (Bany et al., 1999; Tayebati et al., 

1999; Kawashima and Fujii, 2004). In human beings several studies reported that in cognitive 

dysfunctions, such as Alzheimer’s disease or Parkinson’s disease, lymphocyte muscarinic receptor 

concentrations decrease (Ferrero et al., 1991; Rabey et al., 1991). More specifically, AD patients 

show a decrease in the lymphocyte M3R and an increase in the M4R subtypes (Tayebati et al. 

2001). To the best of our knowledge, studies concerning the fluctuation of lymphocyte muscarinic 

receptors in canine cognitive dysfunction are lacking. 

In our study a significant age-dependent decrease in high affinity muscarinic receptors has 

been observed, however no differences were found between old and CDS dogs. The latter showed a 

significant increase in low affinity muscarinic receptor concentrations when compared with adult. 



These findings suggest that the reduction in high affinity binding sites could be representative of the 

physiological ageing process, whereas the increase in lymphocyte LA muscarinic receptor levels 

could be related to the cognitive decline.  

In human medicine several studies have been performed  to evaluate the involvement of the 

adrenergic system in Alzheimer’s disease. Despite the fact that some results seem to be 

controversial, some authors observed a decrease in brain 2-adrenergic receptor concentrations in 

AD patients (Kalaria et al., 1989; Kalaria and Andorn, 1991; Meana et al., 1992; Sastre et al., 

2001). By contrast, Pfeifer et al. (1984) suggested that there is no correlation between age and the 

number of platelet 2-adrenergic receptors and between plasma levels of catecholamines and 

platelet 2-adrenergic receptors.  Present data seem to suggest that neither ageing nor cognitive 

impairment alter platelet 2-adrenergic receptor concentrations in dogs.  

A variety of neurotransmitter abnormalities have been described in patients affected by age-

related dementia. Despite the fact that the most studied neuronal system dysfunction is represented 

by the cholinergic system, evidences support the involvement of  the adrenergic and the 

serotonergic systems too (Hermann et al., 2004).  

The locus ceruleus is the major nucleus of origin of noradrenergic neurons in the 

mammalian brain (Lanari et. al, 2006). This brainstem nucleus is probably involved in sleep, 

attention, memory, and vigilance. Several studies have demonstrated greater locus ceruleus neuron 

loss in subjects with Alzheimer’s disease (Hoogendijk et al., 1999; Storga et al., 1996; Matthews et 

al., 2002) and similar findings have been observed in dogs with cognitive impairment (Insua et al., 

2010). These changes in the locus ceruleus may account for a deficiency in the noradrenergic 

system in the pathogenesis of Alzheimer’s disease. Central norepinephrine levels have also been 

found to have an inverse relationship with cognitive impairment (Matthews et al., 2002). Data 

obtained in the present study demonstrated a significant reduction in norepinephrine plasma levels 

in both aged dogs and dogs affected by canine cognitive dysfunction compared to controls. This 



finding is only partially in agreement with data reported in the literature, as we did not observe 

differences between old and CDS dogs.  

In the central nervous system serotonin is synthesized and stored in the presynaptic neurons 

located in nine groups of cell isolated from the pons and midbrain. The raphe nuclei represent the 

major nuclei with both ascending serotonergic fibres projecting to the forebrain and descending 

fibres that extend to the medulla and spinal cord. Serotonin has been linked to different central 

nervous system functions such as mood, behavior, sleep cycle, and appetite (Mohammad-Zadeh et 

al., 2008). Neurochemical and neuropathological disruptions in the serotonergic system such as 

decreased concentrations of both serotonin and its major metabolite (5-hydroxyindoleacetic acid) in 

the temporal cortex (Zubenko et al., 1991; Lanctot et al., 2001) have been recognized in the 

Alzheimer’s disease.  Studies concerning platelet serotonin concentrations in AD patients yielded 

controversial results as increased, decreased or unaltered levels have been observed (Kumar et al., 

1995; Meszaros et al., 1998; Mimica et al., 2005). However, according to Muck-Seler et al. (2009) 

differences in peripheral serotonin levels depend on the severity and/or clinical progress of 

Alzheimer’s disease and no significant correlation exists between age and platelet serotonin 

concentration. As such, the lack of statistically significant differences in blood serotonin levels 

between adult and CDS dogs observed in our study could be ascribed to the limited number of 

pathological animals that did not allow a further subdivision according to the severity of cognitive 

impairment. 

To conclude, results of the present study represent the first direct evidence of the 

involvement of the cholinergic system in canine physiological and pathological ageing. This 

supports the use of the aged dog as a natural model for examining pathogenetic hypotheses in the 

development of Alzheimer's disease. Furthermore, our data demonstrate that muscarinic receptors 

are possible targets for specific drug treatment in dogs affected by cognitive dysfunction.  
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Table 1. 2-AR (2 adrenergic receptors) concentrations (fmol/mg of protein) and Kd values (nM)  

 2-AR 
fmol/mg of protein 

Kd 
nM 

Group 1 230  24 0.4  0.05 
Group 2 287  28 0.3  0.04 
Group 3 290  36 0.4  0.05 

 
Group 1: adult dogs (n=14); Group 2: old dogs (n= 17); Group 3: CDS old dogs ( n=9). 
Results are expressed as mean values  SEM. 
 
 

Table 2. Kd values (nM) of MR (muscarinic receptors)  

 Kd MRHA 
nM 

Kd MRLA 
nM 

P values 
 

Group 1 0.09  0.02 0.8  0.19 < 0.05 
Group 2 0.06  0.01 1.0  0.20 < 0.001 
Group 3 0.09  0.02 0.9  0.15 < 0.05 

 
Group 1: adult dogs (n=14); Group 2: old dogs (n= 17); Group 3: CDS old dogs ( n=9). MRHA: 
high affinity binding sites; MRLA: low affinity binding sites. Results are expressed as mean values 
 SEM. 
 
 
 
Table 3. MR (muscarinic receptors) concentrations (sites/cell x 102)  

 Group 1 
sites/cellx102 

Group 2 
sites/cellx102 

Group 3 
sites/cellx102 

Group 2 vs 
Group1 
P values 

Group 3 vs 
Group1 
P values 

Group 2vs 
Group 3 
P values 

MRHA 134.81  7.53 87.65 11.08 90.17  6.75 < 0.01 < 0.05 n.s 
MRLA 188.8416.50 274.38 27.53 392.48 63.47 n.s <0.05 n.s. 

 
Group 1: adult dogs (n=14); Group 2: old dogs (n= 17); Group 3: CDS old dogs ( n=9). MRHA: 
high affinity binding sites; MRLA: low affinity binding sites. Results are expressed as mean values 
 SEM. 
 
 
 
 
 
 
 
 
 
 
 



 
Table 4. Catecholamines (epinephrine, norepinephrine, and dopamine) and serotonin blood levels 
(ng/ml).  
 

 Group 1 
ng/mL 

Group 2 
ng/mL 

Group 3 
ng/mL 

Group 2 
vs 
Group1 
P values 

Group 3 
vs 
Group1 
P values 

Group 3 
vs 
Group2 
P values 

Epinephrine 0.25  0.04 0.20  0.06 0.20  0.05 n.s. n.s. n.s. 
Norepinephrine 0.29  0.04 0.16  0.02 0.14  0.03 < 0.01 < 0.05 n.s. 
Dopamine 0.15  0.02 0.11  0.002 0.10  0.005 < 0.01 < 0.01 n.s. 
Serotonin 332.17  49.92 300.32  34.14 251.51  44.55 n.s. n.s. n.s. 

 
Group 1: adult dogs (n=14); Group 2: old dogs (n= 17); Group 3: CDS old dogs ( n=9). Results are 
expressed as mean values  SEM.  
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