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Summary

Alzheimer’s disease (AD) is a devastating neurodegenerative
disorder that results in loss of memory and cognitive function,
eventually leading to dementia. A key neuropathological event
in AD is the cerebral accumulation of senile plaques formed by
aggregates of amyloid-b-peptides (Ab). Ab results from two se-
quential endoproteolytic cleavages operated on the amyloid-b
precursor protein (AbPP), an integral membrane protein with a
single-membrane spanning domain, a large extracellular N-ter-
minus and a shorter, cytoplasmic C-terminus. First, b-secretase
(BACE1) cleaves AbPP at the N-terminal end of the Ab
sequence to produce a secreted form of AbPP, named sAbPP,
and a C-terminal membrane-bound 99-aminoacid fragment
(C99). Then, c-secretase cleaves C99 within the transmembrane
domain to release the Ab peptides of different lengths, predomi-
nantly Ab1-40 and Ab1-42. � 2012 IUBMB
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The expression and the enzymatic activity of b-secretase

(BACE1) are increased in the brains of Alzheimer’s disease (AD)

patients. Moreover, age-related stress may increase BACE1 levels

and drive AD pathogenesis. The precise mechanisms of this upregula-

tion are not completely understood; here, we discuss the relevance of

a number of recently identified transcription factors as well as post-

transcriptional modifications and activation of intracellular signaling

molecules for the regulation of BACE1 expression in the brain.

BACE1 STRUCTURE

The BACE1 gene encodes for a protein of 501 amino acids

(1–5) consisting of an N-terminal signal peptide (residues, 1–21),

followed by a prodomain (residues, 22–45), a protease domain

(residues, 46–460) which contains two consensus motif character-

istic of an aspartyl protease active site (DTGS, at residues 93–96,

and DSGT, at residues 289–292), a single transmembrane domain

(residues, 461–477), and a short cytosolic domain (residues, 478–

501).

The crystal structure of BACE1 is complex and the enzyme’s

active site is larger and less hydrophobic than that of other human

aspartic proteases (6), making it a difficult target for designing

inhibitors (7). A distinctive feature of BACE1 is its anchoring in

the membrane through a single-transmembrane domain, which

allows the placement of its catalytic domain in the same orientation

as APP (8). At an optimal pH of 4.0–5.5, BACE1 is expected to

operate in acidic intracellular compartments such as the trans-Golgi

network, endosomes, and lysosomes (2, 3, 5).

BACE1 full maturation involves various post-translational

modifications. Analysis of its primary sequence revealed four

sites of N-glycosylation within the protease domain (Asn residues

153, 172, 223, and 354), as confirmed by site-directed mutagene-

sis experiments (9, 10). BACE1 undergoes cotranslational N-gly-

cosylation in the ER, as demonstrated by treatment with tunica-

mycin, which inhibits the first step of glycoprotein synthesis.

Further complex glycosylation is achieved as BACE1 transits

through the Golgi (11). There is evidence that sulfation can also

occur on the N-glycosylation sites as part of BACE1 maturation

(12). Depending on experimental conditions and individual cell

lines’ glycosylation machinery, the molecular weight of BACE1

has been reported to be between 70 and 75 kDa for the mature

protein (8, 9, 11, 13), and between 60 and 70 kDa for its imma-

ture forms (8, 9, 11, 13). The carbohydrate content of BACE1

accounts for about 30% of its molecular weight, similar to other

endosomal/lysosomal resident proteins.

BACE1 and the Pathogenesis of Sporadic
and Familial AD

The majority of AD cases are sporadic with late onset and

no defined cause. Several reports show increased levels and
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activity of BACE1 protein in the brain of sporadic AD patients,

compared to normal age controls (14–16). Oxidative stress (OS)

is potentially involved in the pathogenesis of sporadic AD as it

is correlated with age as much as AD (17). More causally, OS

and Ab are interconnected to each other as Ab induces OS (18)

and OS in turn increases the production of Ab (19).

We have proposed a sequence of events that link OS,

BACE1 induction, and apoptotic cell death mediated by an

overproduction of Ab1-42. First, we have shown that oxidant

agents and 4-hydroxynonenal significantly increase the expres-

sion, protein levels, and activity of BACE1 in NT2 neurons (20,

21). These events are followed by both an overproduction of

Ab peptides and morphological signs of apoptotic cell death

(22). Then, we have found that OS increases the c-secretase ac-

tivity both in vitro and in vivo, and that the increased BACE1

expression induced by OS is regulated by the c-secretase activ-

ity (23). These results have important implications for the

pathogenesis of sporadic AD. First, they suggest that OS, sec-

ondary to different AD risk factors, can increase the expression

of both secretases, thereby enhancing Ab production. Second,

our data revealed the existence of a positive feedback loop in

which the c-secretase activity regulates BACE1 expression, a

finding confirmed by Jo et al. (24).

A strong inflammatory reaction is present in AD brain, and

long-term nonsteroidal anti-inflammatory drugs (NSAID) use

reduces the risk of AD, suggesting that inflammation may play

an important role in AD pathophysiology (25).

In fact, the BACE1 promoter also bears a binding site for

the transcriptional regulator proliferator-activated receptor c
(PPARc) (26). Activation of PPARca by NSAIDs or PPARc
agonists causes repression of BACE1 gene promoter activity,

whereas proinflammatory cytokines that reduce PPARcc levels

lead to increased BACE1 mRNA (26).

The activity of BACE1 is increased also in the familial early

onset AD (FAD). We showed that PS1 mutations increase

BACE1expression and that this effect is dependent on the pres-

ence of APP and is proportional to the amount of Ab1-42 pro-

duced and secreted in the extracellular milieu (27). This novel

effect of PS1 mutations implies the existence of a positive feed-

back loop from the c- to the BACE1 cleavages of APP in which

Ab1-42 is the APP derivative that influences/modulates BACE1

transcription through the activation of the c-Jun NH2-terminal

kinase (JNK)/AP1 cascade (28). PS1 mutations result in a wide

and heterogeneous clinical phenotype that includes atypical pre-

sentations, such as ataxia, paraparesis, and epilepsy (29–31).

The upregulation of BACE1 determined by PS1 mutations may

contribute to determine FAD phenotype. Indeed, the overexpres-

sion of BACE1 increases the production of N-terminal-truncated

Ab species (32). We and others (33) have shown that the com-

position of soluble Ab reflects the pathological and clinical phe-

notype of Ab amyloidosis and that the prevalence of N-termi-

nal-truncated Ab1-42 peptides correlates with the rate of aggre-

gation and with the degree of toxicity of the mixture of Ab
species (34). Moreover, recent data obtained with different ani-

mal models of Ab amyloidosis support the hypothesis that the

composition of Ab species, indicated as ‘‘Ab strains’’ (35–37),

dictates the conformation of Ab-soluble aggregates, which in

turn produces different pathological phenotypes. The mecha-

nisms of BACE1 upregulation vary from transcriptional, post-

transcriptional, translational, post-translational, and degradation

control.

Transcriptional Control of BACE1

The human BACE1 gene spans approximately 30 kb on

chromosome 11q23.2 and includes nine exons. BACE1 gene

promoter has a complex structure, divided into two distinct pro-

moter regions, carrying several transcription actor-binding sites,

many of which are organized in repeats, typical of an inducible

protein (38).

Different signaling pathways and transcription factors, such

as sp1, NF-jB, JNK/AP-1, hypoxia inducible factor 1 (HIF-1)a,

and p25/cdk55/STAT3 have been suggested to control BACE1

transcription.

Sp1. One of the first studies that provides information about

the molecular mechanism regulating BACE1 gene expression

came from Christensen and collaborators (2004) and showed

that the transcription factor sp1 plays a significant role in this

regulation: sp1 overexpression facilitates BACE1 promoter ac-

tivity, whereas lack of endogenous sp1 protein in sp1-KO cells

markedly reduces the transcriptional activation of BACE1 gene

(39). The relevance of this study was recently confirmed by a

completely different experimental approach. Prenatal lead expo-

sure in rats induces a robust and long-lasting increase in Sp1

expression which results in increased APP mRNA and protein

BACE1 expression and Ab generation (40). Thus, sp1 is

involved in amyloidogenesis by a concurrent activation of APP

and BACE1 expression.

The crucial role of sp1 in regulation of BACE1 was recently

supported by the finding that molecules able to decrease Ab
production interfere with sp1 transcriptional pathway (41).

These findings demonstrate that interference with sp1 transcrip-

tional pathways can lower pathogenic intermediates associated

with AD.

On the other hand, 12/15-lipoxygenase, an enzyme widely

distributed in the central nervous system, increases the amyloi-

dogenic processing of APP through a sp1-mediated transcrip-

tional control of BACE1 levels (42).

NF-jB. Another transcription factor that plays a role in AD

pathogenesis by regulating BACE1 levels is NF-jB. The sup-

pressor role of NF-jB is supported indirectly by the evidence

that the lipid peroxidation product 4-hydroxynonenal inhibits

both constitutive and inducible NF-jB activities (43) and

increases BACE1 expression (20, 22).

Moreover, in addition to suppress BACE1 expression, the

NF-jB signaling pathway is one of the major neuroprotective
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pathways in AD (44). Treatment of neuronal cells with low,

nontoxic Ab peptide concentrations induces NF-jB activation

(45) and leads to neuroprotection against subsequent treatment

with toxically high Ab peptide concentrations (46). Vice versa,

the IjB kinase inhibitor, BMS345541, that completely blocks

NF-jB transcriptional activity, fully reverses the Ab1-42-

induced increase of BACE1 promoter transactivation (47).

We recently demonstrated a novel pathogenetic mechanism

involving the advanced glycated end-products (AGEs), which

contributes to Ab accumulation (48). In streptozotocin diabetic

rats, as well as in SK-N-BE-differentiated neuroblastoma cells,

two different AGEs, pentosidine and glyceraldehyde-derived

pyridinium, were able to upregulate BACE1 expression through

their binding with the receptor of advanced glucation products

(RAGE). The binding was followed by a strong production of

reactive oxygen species (ROS) and by an activation of the NF-

jB pathway, which is known to be activated by RAGE (49). In

this context, it has been recently reported that minocycline, a

potential neuroprotective tetracycline derivative (50), downregu-

lates BACE1 expression and thus Ab accumulation in the hip-

pocampus of diabetic mice inhibiting NF-jB pathway activation

(51).

Moreover, other different compounds lower BACE1 activity

through the inhibition of NF-jB pathway, as described recently

(52, 53), suggesting that this pathway could be a useful thera-

peutic target.

Altogether, these data indicate that NF-jB regulation of

BACE1 transcription may be altered in AD owing to chronic

stress. The failure in the transcriptional regulation by NF-jB of

BACE1 may in part account for increased BACE1 transcription

and subsequent amyloidogenic APP processing in a cell type-

specific manner. The functional NF-jB site in the BACE1 pro-

moter is stimulatory in activated astrocytes and Ab-exposed

neuronal cells and repressive in neuronal and quiescent astro-

cytic cells.

Finally, it has been recently found that NF-jB differentially

regulates Ab production at physiological and supraphysiological

Ab concentrations by modulating transactivation of bAPP and

secretase promoters. Thus, under physiological conditions, NF-

jB regulates Ab homeostasis, whereas it contributes in increas-

ing Ab production in the pathological context (54).

It is thus possible that BACE1, given its complex promoter

structure and its relationships with heterogeneous signaling

pathways (38, 47, 55), can be part of a pool of enzymes that

respond to cellular stress or homeostasis modifications. As in

the case of glucose lowering signals, where insulin and metfor-

min have opposite effects on amyloidogenesis and BACE1 reg-

ulation (56), in some pathways the same endpoint can result in

opposite outcomes on BACE1 activation. This may be owing to

the fact that BACE1 is working together with still undefined

partners to fulfill a cellular response.

HIF-1a. Although AD is classified as a neurodegenerative de-

mentia, there is epidemiologic and pathologic evidence of an

association with vascular risk factors and vascular disease (57)

with which AD could share pathogenetic mechanisms. Cerebral

hypoperfusion and hypoxia trigger hypometabolic, cognitive,

and degenerative changes in the brain and contributes to the

pathologic process of AD (58).

Indeed, hypoxia increases the expression and activity of

BACE1, as shown in vitro as well as in AD transgenic model

(59, 60). One proposed mechanism of the effect of hypoxia on

BACE1 upregulation is that the activation of hypoxia inducible

factor 1 (HIF-1), a transcription factor that regulates oxygen ho-

meostasis, binds to BACE1 promoter, and regulates its gene

expression (60). We more recently extended these findings,

showing both in vivo and in vitro that hypoxia upregulate

BACE1 mRNA expression in a biphasic manner, through two

distinct mechanisms: 1) an early release of ROS from mitochon-

dria and 2) a late activation of HIF-1a (61).

The early posthypoxic upregulation of BACE1 recapitulates

the cascade of events induced by oxidant agents: an increase of

BACE1 expression and activity, whereas chronic hypoxia trig-

gers the second mechanism of BACE1 upregulation, HIF-1a
activation.

HIF-1a seems to be the pathway link between cerebrovascu-

lar dysfunctions and AD. It has been recently observed that, in

rat brain capillary endothelial cells, oxygen glucose deprivation

treatment elicits a strong production of Ab1-42 peptide through

a mechanism that involves the HIF-1-mediated BACE1 upregu-

lation (62). The inhibition of the HIF-1a pathway could provide

a new insight into prevention and treatment of AD. It is worth

noting that salidroside, a compound extracted from the root of

Rhodiola rosea, which has been used in traditional Tibetan

medicine since long ago, is able to attenuate abnormal process-

ing of amyloid precursor protein induced by hypoxia in SH-

SY5Y cells, decreasing BACE1 expression and protein levels of

HIF-1a (63).

AP1/JNK. The upregulation of BACE1, induced by OS,

requires the activation of JNK-AP1 pathway (22). This pathway

is activated in AD brain (64–66), to respond to cell stress and

to mediate apoptosis (67–70). Moreover, JNK activation is asso-

ciated with age-dependent amyloid plaque deposition, tau phos-

phorylation, and the loss of synaptophysin in a Tg2576/PS1

double transgenic mice (71–73). We and others have also dis-

covered that BACE1 activation is regulated by the c-secretase

activity, and requires the activation of JNK-AP1 pathway (23,

25). Then, we have found that Ab1-42 is the product of the c-
secretase cleavage that upregulates BACE1 expression (23, 27)

and that Ab1-42 increases BACE1 gene transcription through

the activation of JNK/c-jun signaling pathway (28). Although

the mechanisms of JNK activation by Ab1-42 remain unclear, it

is likely that JNK is activated by Ab1-42 indirectly, perhaps by

the interaction of Ab1-42 with yet unidentified receptors.

Indeed, different proteins, such as APP itself, NMDA, TrkA,

and LRP family of receptors, interact with Ab peptides (74,

75). This could lead not only to BACE1 regulation but also to
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the control of a pool of genes involved in a specific cellular

function. The knowledge of the genes activated by Ab may be

determinant to understanding the precise series of events, lead-

ing to neuronal dysfunction and degeneration in AD.

Post-transcriptional Control of BACE1

Additional nontranscriptional mechanisms have been

hypothesized to account for increased BACE1 protein levels

and activity.

BACE-1 translation is regulated at multiple stages, consistent

with the presence of a long and highly conserved transcript

leader (76, 77). In particular, the 50-UTR represses the rate of

BACE1 translation (78), and alternative splicing of the tran-

script leader can influence the rate of translation in a tissue-de-

pendent manner (76). A detailed mutagenesis analysis suggested

that the GC-rich region of the 50-UTR acts as a ‘‘translation bar-

rier’’ (78). The presence of several upstream ATGs also

strongly reduces the translation of the main open reading frame,

which implies that BACE1 translation might increase in condi-

tions that favor phosphorylation of the translation eukaryotic

initiation factor-2a (eIF2a) (76). More recent studies have

shown that cellular energy deprivation (glucose deprivation in

cell culture) produces a post-transcriptional increase in BACE1

levels, which is indeed mediated through increased eIF2a phos-

phorylation (78). These observations in vitro correlated with in

vivo studies in AD transgenic (Tg2576) mice, in which chronic

energy inhibition with 2-deoxyglucose or 3-nitropropionic acid

was shown to increase eIF2a phosphorylation, BACE1 levels,

and amyloidogenesis (79). A BACE1 protein stability can also

be influenced by the lysosomal pathway (80). Tesco and col-

leagues (81) have demonstrated that lysosomal but not proteoso-

mal inhibitors lead to the accumulation of both endogenous and

ectopically expressed BACE1 in a variety of cell types includ-

ing primary cortical neurons. Moreover, it has been shown that

BACE1 accumulates in late endosomes/lysosomes after inhibi-

tion of lysosomal hydrolases, indicating that BACE1 is trans-

ported in late endosomes/lysosomes where it can be degraded

via the lysosomal pathway.

Intriguingly, GGA (Golgi-localized c-ear-containing ARF-

binding proteins) 1, 2, and 3, involved in the transport from the

Golgi complex to the endosomes of proteins containing the

DXXLL signal have been shown to bind the BACE1 acidic

dileucine motif (82). Moreover, phosphorylation of serine 498

in BACE1 increases their binding (83). Also, the downregula-

tion of GGAs significantly increases the levels of BACE1 in

endosomes and GGAs may be necessary for BACE1 transport

back to trans Golgi (84).

More recently, it has been shown that GGA3, unexpectedly,

regulates levels and activity of BACE1 by interaction with

ubiquitin and not via di-leucine motif (85), thus a GGA3 mutant

with reduced ability to bind ubiquitin is unable to regulate

BACE1 levels and activity. These findings are in agreement

with increasing evidence, showing that GGAs bind ubiquitin

and traffic both synthetic and endosomal ubiquitinated proteins

to lysosomes (86, 87). As levels of BACE1 are elevated in AD

brains and they are inversely correlated with GGA3 levels (85),

these studies suggest that therapies able to increase GGA3

expression in the brain may represent a potential treatment for

AD.

In addition to GGAs, reticulons, a novel gene family that

were shown to participate in all apoptosis signaling pathways,

may be novel players in AD pathogenesis (88).

Thus, the reticulon/Nogo has been shown to interact with

BACE1 and regulate its activity (89). Moreover, the overexpres-

sion of reticulon 3 (RTN3) also results in the retention of

BACE1 in the endoplasmic reticulum and the reduction of Ab
production both in vivo and in vitro (90).

Additional post-transcriptional mechanisms have been sug-

gested to lead to increased BACE1 protein levels and activity.

It has been found that the expression of BACE1 antisense tran-

scripts, which respond to cellular stresses and to Ab itself, sta-

bilizes BACE1 mRNA (91); moreover, alternative splicing of

BACE1 pre-mRNA acts as a control system as well (92).

Ab1-42 Modulates BACE1 Levels Through Both
Transcriptional and Post-transcriptional Mechanisms

It has been suggested that Ab might play a role not just as a

toxic peptide, but also as a functional signaling molecule. The

most convincing evidence was obtained from the study of

Kamenetz et al. (93), showing that Ab is the player of a nega-

tive feedback loop that controls the synaptic activity. These

data agree with the finding that Ab production is proportional

to the level of brain activity, as demonstrated in the recovery

from severe cranial trauma (94).

Gatta et al. (95) performed a microarray assay, showing that

exposure of neuroblastoma cells to an Ab1-42-aluminum com-

plex is followed by a selective change in gene expression; the

activated genes are involved in the modulation of calcium ho-

meostasis, glutamatergic transmission, OS, inflammation, and

apoptosis (95).

We showed an induction of BACE1 occurring at low con-

centrations of monomeric preparations of Ab1-42 and starting

within minutes of treatment (96). Although this may seem a

short time interval, specific gene transcription can occur within

minutes for certain cellular processes (97). It is likely that

BACE1 is part of a cellular response aimed at fast adaptation to

extracellular stimuli.

We have also found that Ab1-42 downregulates the activity

of ubiquitin C-terminal hydrolase L1 (Uch-L1), through the

activation of NF-jB pathway, and that this event is associated

to an upregulation of BACE1 (Fig. 1) (98).

Uch-L1 is an abundant neuronal enzyme, representing 1–2%

of total soluble brain proteins (99). Uch-L1 has two enzymatic

activities. The first one, known as hydrolase, removes and

recycles ubiquitin molecules from the degraded proteins. This

recycling action is crucial for the degradation process as it gen-
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erates free monomeric ubiquitin which can be reused for further

reactions of ubiquitination (100). The second one, called ubiqui-

tin ligase, links ubiquitin molecules, thus generating polyubiqui-

tine chains that tag proteins for disposal. To play this activity,

the enzyme has to be dimerized in vitro and remains unclear

whether this activity also occurs in vivo (100). Several lines of

evidence suggest a possible link between Uch-L1 activity and

AD: the activity of Uch-L1 is downregulated in AD brain (101,

102) and its levels are inversely proportional to the number of

neurofibrillary tangles in the brains of sporadic AD patients

(102).

Moreover, Ab increases in spontaneous neurological mutant

with axonal dystrophy in the gracile tract of the medulla oblon-

gata and spinal cord of mice lacking Uch-L1 expression (103).

In a mouse model of AD, the double transgenic mouse overex-

pressing APP together with mutant presenilin 1 (APP/PS1

mice), the Uch-L1 protein expression, and activity in brain are

also decreased (104). Downregulation of Uch-L1 seems to be at

least in part responsible for the impairment of long-term poten-

tiation (LTP) (105). The effect of Ab on LTP is mediated by

the inhibition of phosphorylation of the cAMP response ele-

ment-binding protein (CREB), a transcription factor activated

by cAMP-dependent protein kinase A (PKA) (106). The inhibi-

tion of Uch-L1 activity would lead to impairment of the degra-

dation of the PKA regulatory subunit, a decrease in its activity,

and subsequently downregulation of CREB-dependent transcrip-

tion (104).

The correlation between the inhibition of Uch-L1 and the up-

regulation of BACE1 was previously reported by Zhang et al.

(107), who showed that inhibition of Uch-L1 significantly

increases BACE1 protein levels in a time-dependent manner.

Moreover, overexpression of Uch-L1 decreased APP c-terminal

fragment C99 and Ab in the Uch-L1-null AD mice (107).

We extended these findings, showing that the decrease of

Uch-L1 activity is related with the Ab1-42-mediated activation

of NF-jB pathway (98). Recently, the Uch-L1 gene promoter

region was cloned and functionally identified, and a NF-jB-

binding element within its promoter region identified. NF-jB

signaling downregulates Uch-L1 expression and mediates the

inhibitory effect of lipopolysaccharide and tumor necrosis fac-

tor-a (TNF-a) on Uch-L1 expression (108).

We next demonstrated that these effects were not only con-

comitant but also that the decrease in Uch-L1 rebounded on

BACE1 degradation (98).

Thus, our data indicate that BACE1 is transported in the late

endosomal/lysosomal compartment where it is degraded via the

lysosomal pathway (81), and not in the proteosome.

The involvement of lysosomal pathway in BACE1 degrada-

tion was confirmed by three findings. 1) Treatment of cells with

lysosomal inhibitors was followed by a significant accumulation

of BACE1. 2) Confocal laser scanner microscopy demonstrated

that BACE1 colocalizes with the lysosome marker LAMP-1. 3)

We have determined that BACE1 is Lys-63-linked ubiquiti-

nated. Kang et al. (85) previously reported a lys-63-linked ubiq-

uitination of BACE1, showing that GGA3 regulates the BACE1

degradation via the interaction with ubiquitin. In this scenario,

loss of functional Uch-L1 could lead to inadequate ubiquitina-

tion of BACE1 mediated by a decrease in free ubiquitin.

Finally, we found that the Uch-L1 inhibitor LDN-57444 as

well as Ab1-42 impairs the activity of cathepsin D, considered

a marker of lysosomal activity (98).

Lysosomal dysfunction has been linked to a spectrum of de-

generative diseases (109), many of which involve the CNS

(110). Alterations of the endosome/lysosome system have also

been previously described in AD (111). It has been shown that

BACE1 and Ab are enriched in lysosome-related autophagic

vesicles in APP transgenic mouse models (112). The autophagic

vesicles accumulate also in dystrophic neuritis in AD brains

(113).

Thus, our findings described a transcriptional role of Ab1-42

that mediates the inhibition of Uch-L1 and the upregulation of

BACE1 mediated by NF-jB pathway activation and a post-tran-

scriptional mechanism that impairs BACE1 lysosomal degrada-

tion (98).

CONCLUSIONS

To summarize, protein BACE1, the levels of which are ele-

vated in the brain of sporadic AD patients, is controlled both

transcriptionally and post-transcriptionally by molecules which

have been recently identified. Different signaling pathways and

transcription factors, such as sp1, NF-jB, JNK/AP-1, and p25/

cdk55/, HIF-1a 50-UTR, and p25/cdk55/STAT3 STAT3 influ-

ence the rate of BACE1 translation, whereas several upstream

Figure 1. Pathogenetic hypothesis in which Ab1-42 mediates a

BACE1 increase and a parallel Uch-L1 decrease through the

activation of NF-jB pathway. The Uch-L1 decrease then further

fosters BACE1 activity interfering with its lysosomal degrada-

tion through a post-transcriptional mechanism.
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ATGs, eIF2a phosphorylation, GGA3, reticulon/Nogo, and Uch-

L1 play a role in post-transcriptional control. All these regula-

tory molecules represent potential targets for the development

of compounds that can interfere with BACE1 expression/activ-

ity, to be introduced in the clinic as drugs in the therapy of AD.
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