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Abstract

In a transgenic mice (BALB-neuT) over-expressing ErbB2 receptor, we investigated the adult mouse median nerve in
physiological and pathological conditions. Results showed that, in physiological conditions, the grip function controlled by
the median nerve in BALB-neuT mice was similar to wild-type (BALB/c). Stereological assessment of ErbB2-overexpressing
intact nerves revealed no difference in number and size of myelinated fibers compared to wild-type mice. By contrast, after
a nerve crush injury, the motor recovery was significantly faster in BALB-neuT compared to BALB/c mice. Moreover,
stereological assessment revealed a significant higher number of regenerated myelinated fibers with a thinner axon and
fiber diameter and myelin thickness in BALB-neuT mice. At day-2 post-injury, the level of the mRNAs coding for all the ErbB
receptors and for the transmembrane (type III) Neuregulin 1 (NRG1) isoforms significantly decreased in both BALB/c and
BALB-neuT mice, as shown by quantitative real time PCR. On the other hand, the level of the mRNAs coding for soluble
NRG1 isoforms (type I/II, alpha and beta) increased at the same post-traumatic time point though, intriguingly, this response
was significantly higher in BALB-neuT mice with respect to BALB/c mice. Altogether, these results suggest that constitutive
ErbB2 receptor over-expression does not influence the physiological development of peripheral nerves, while it improves
nerve regeneration following traumatic injury, possibly through the up-regulation of soluble NRG1 isoforms.
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Introduction

Peripheral nerve regeneration after a traumatic injury is

regulated by the combined action of many factors [1]. In-

vestigating the mechanisms underlying posttraumatic nerve re-

generation is of great relevance because it can lead to effective new

regenerative strategies to improve patient outcome after nerve

reconstruction [2]. Over the past years, studies on nerve

regeneration have increasingly employed the use of transgenic

mice, leading to a better comprehension of nerve regenerative

processes after trauma [3,4].

Schwann cells are the key element for the promotion of axonal

regeneration [1,5,6] and thus identifying the signals that control

Schwann cell response to nerve injury is of great biological and

clinical interest. One interesting candidate for the regulation of

Schwann cell proliferation is the tyrosine kinase receptor ErbB2

(also called HER-2 or Neu), which belongs to the epidermal

growth factor (EGF) receptor family [7,8,9,10]. This receptor is

involved in the signal transduction pathways leading to physiologic

processes, such as embryogenesis, cell proliferation, and apoptosis

[11] and in regenerative processes concerning nerve [12], heart

[13], pancreas [14]. However, its deregulation can drive cancer

development and progression in some histotypes; from this point of

view ErbB2 is an oncogene having a role as a negative prognostic

marker [15,16,17] and as a target for antineoplastic therapy

[18,19,20,21]. No ErbB2 ligands have been identified yet.

However, ligand binding to other ErbB family members induces

heterodimerization and activation of ErbB2. Genetic evidence

shows that ErbB2 participates in the transduction of signals

downstream a family of ligands of the EGF family known as

neuregulins [22].

The ligand of the ErbB2/ErbB3 heterodimer is the neuregulin-

1 (NRG1), which has a key role in the development of the

peripheral nervous system. In mammals, there are several isoforms

of NRG1, which can be soluble (type I/II) or transmembrane (type

III), with different spatiotemporal patterns of expression

[23,24,25,26]. It has been shown that juxtacrine and paracrine

signaling mediated by transmembrane and soluble NRG1 isoforms

play different roles during Schwann cell myelination and repair

[27,28,29]; axons lacking NRG1 show a slower rate of re-

generation with impaired remyelination [30].

In the present study, we investigated in the median nerve the

effects of ErbB2 over-expression; median nerves from mice of the

same offspring carrying (BALB-neuT mice) or not (BALB/c mice)

the rat neu/ErbB2 gene under the control of the mouse mammary

tumor virus (MMTV) promoter, were analyzed in both physio-

logical conditions and after crush injury.
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Materials and Methods

Mice and Surgery
6-week old male BALB/c and BALB-neuT mice from the same

offspring were kindly provided by Prof. G. Forni (Molecular

Biotechnology Center, University of Turin). All these mice were

born from the mating of BALB-neuT male mice carrying the rat

ErbB2 transgene under the control of the mouse mammary tumor

virus (MMTV) promoter, in heterozygosis with wild-type BALB/c

females [31]. Following genotyping for rat ErbB2 mice, the

Figure 1. Neuregulin1 primer design.
doi:10.1371/journal.pone.0056282.g001

Table 1. Primers for Real Time PCR (m=Mus musculus; r = Rattus norvegicus).

Mus musculus Rattus norvegicus

primer name primer sequence (59-39) accession number accession number size (bp)

mErbB1-fw GCTGGTGTTGCTGACCGCG NM_207655.2 86

mErbB1-rev GGGTGAGCCTGTTACTTGTGCC NM_207655.2

rErbB2-fw TGACAAGCGCTGTCTGCCG NM_017003 106

rErbB2-rev CTTGTAGTGGGCGCAGGCTG NM_017003

mErbB2-fw GCAAGCACTGTCTGCCATGC NM_001003817 96

mErbB2-rev GGGCACAAGCCTCACACTGG NM_001003817

mrErbB3-fw CGAGATGGGCAACTCTCAGGC NM_010153 NM_017218.2 129

mrErbB3-rev AGGTTACCCATGACCACCTCACAC NM_010153 NM_017218.2

mrErbB4-fw CATGGCCTTCCAACATGACTCTGG NM_010154.1 AY375307.1 108

mrErbB4-rev GGCAGTGATTTTCTGTGGGTCCC NM_010154.1 AY375307.1

mNRG1-I/II-fw CATGTCAGCCTCAACTGAAAGACCC AY648976.1 116

mNRG1-III-fw CCCTGAGGTGAGAACACCCAAGTC NM_178591 104

mNRG1-I/II-III-rev TGGTCCCAGTCGTGGATGTAGATG AY648976.1-NM_178591

mNRG1-alfa/beta-fw GTGCGGAGAAGGAGAAAACTTTC AY648976.1-NM_178591 AF194438–AF194439

mrNRG1-alfa-rev TTGCTCCAGTGAATCCAGGTTG NT_039457 AF194439 114

mrNRG1-beta-rev AACGATCACCAGTAAACTCATTTGG AY648976.1-NM_178591 AF194438 117

mHPRT-fw GCCCCAAAATGGTTAAGGTTGCAAG NM_013556 81

mHPRT-rev ATCCAACAAAGTCTGGCCTGTATCC NM_013556

mr18s-fw CGATGGTAGTCGCCGTGCC NR_003278 M11188 84

mr18s-rev CCGTTTCTCAGGCTCCCTCTCC NR_003278 M11188

mMAPK6-fw CAGCTGCTGCCGGGGATC NM_015806.4 74

mMAPK6-rev CGGTCCATGGGGCTGAAAGTC NM_015806.4

mrGAPDH-fw CCACCAACTGCTTAGCCCCC NM_008084 NM_017008 91

mrGAPDH-rev GCAGTGATGGCATGGACTGTGG NM_008084 NM_017008

mUbc-fw CCACCAAGAAGGTCAAACAGG NM_019639.4 93

mUbc-rev CCCATCACACCCAAGAACAAG NM_019639.4

mTBP-fw GATCAAACCCAGAATTGTTCTCC NM_013684.3 106

mTBP-rev GGGGTAGATGTTTTCAAATGCTTC NM_013684.3

doi:10.1371/journal.pone.0056282.t001
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offspring was divided in wild type (BALB/c) mice and transgenic

heterozygous (BALB-neuT) mice, over-expressing ErbB2. Only

male mice were studied since BALB-neuT female mice develop

fast growing mammary carcinomas [31,32]. A total of 32 mice

were used for this study: 4 mice were used for the western blot

analysis, 10 mice were used for the grasping test, morphological

and stereological analysis (5 BALB/c and 5 BALB-neuT) and 18

mice were used for the quantitative real time PCR analysis (9

BALB/c and 9 BALB-neuT).

All mouse experiments were performed with the approval of the

local Institution’s Animal Care and Ethics Committee of the

University of Turin and in accordance with the European

Communities Council Directive of 24 November 1986 (86/609/

EEC). Mice were housed in a temperature and humidity

controlled room with 12–12 h light/dark cycles and fed with

standard chow and water ad libitum. Measures were taken to

minimize pain and discomfort taking into account human

endpoints for animal suffering and distress.

For the surgery, mice were deeply anaesthetized via intraper-

itoneal injection with ketamine (9 mg/100 g-body weight),

xylazine (1.25 mg/100 g-body weight) and atropine (0.025 mg/

100 g-body weight). The median nerve of the left forelimb was

approached from the axillary region to the elbow. Under operative

microscope, the median nerve was carefully exposed and the crush

lesion was performed by compressing the nerve for 30 seconds

with a non-serrated clamp (manufactured by the Institute of

Industrial Electronic and Material Sciences, University of Tech-

nology, Vienna, Austria) [33,34]. The force applied to the nerve

was 61.3 N giving a final pressure of 20.43 Mpa [35]. In order to

prevent interferences with the grasping test, the contra-lateral

median nerve (right arm) was transected at the middle third of the

brachium and its proximal stump was sutured to the pectoralis

major muscle to avoid spontaneous reinnervation. The contro-

lateral uninjured median nerves were collected and used as

control. We therefore obtained four experimental groups: 1)

uninjured BALB/c nerves; 2) uninjured BALB-neuT nerves; 3)

injured BALB/c nerves; 4) injured BALB-neuT nerves.

For quantitative real time PCR analysis three independent

experiments were performed. For each experiment, six mice were

used: three BALB/c and three BALB-neuT mice. To obtain an

adequate amount of RNA, all animals underwent a unilateral

crush lesion on the median, ulnar and radial nerves following the

same protocol described above.

Postoperative Assessment of Functional Recovery
Grasping test was carried out weekly starting from the day

before the surgery until day-28. Grasping test was performed using

the BS-GRIP Grip Meter (2 Biological Instruments, Varese, Italy),

which is represented by a precision dynamometer connected to

a grid. Briefly, the mice were elevated by the tail and allowed to

grasp the grid [36]. The dynamometer records the maximum

weight that the mouse manages to hold up before losing the grip.

The maximal strength monitored by the dynamometer is an

indicator of muscle function. For each time point, each mouse was

tested three times and the average value was recorded.

Immunocytochemistry
Median nerves from uninjured BALB/c and BALB-neuT mice

were fixed in 4% paraformaldehyde for 2 h, washed in a solution

of 0.01 M PBS (pH 7.2) for 30 min, dehydrated, and embedded in

paraffin. Sections were cut 8–10 mm thick, permeabilized, blocked

[0.1% triton X-100, 10% normal goat serum (NGS)/0.02%

NaN3, 1 h] and processed for an immunohistochemical protocol.

Mouse monoclonal primary antibody against ErbB2 (dilution 1:40,

Oncogene), rabbit polyclonal primary antibody against GFAP

(dilution 1:600, Sigma) and mouse monoclonal primary antibody

against tubulin bIII (dilution 1:1000, Sigma) were applied

overnight at room temperature for single or double staining.

Subsequently, the sections were incubated for 1 hour at room

temperature with goat a-rabbit IgG Cy3 (dilution 1:200 Jackson

ImmunoResearch) and/or goat a-mouse Alexa488 (dilution 1:200,

Molecular Probes). The samples were finally mounted with a Dako

fluorescent mounting medium and analyzed by a LSM 510

confocal laser microscopy system (Zeiss, Jena, Germany).

Resin Embedding, High-resolution Light Microscopy and
Electron Microscopy
Under deep anesthesia, mice were sacrificed at day-28 post-

injury and 5-mm long segment of the median nerve distal to the

site of the crush lesion from both BALB/c and BALB-neuT mice

was removed. A 4/0 stitch was used to mark the proximal stump

of the nerve segment. Nerve samples were fixed and embedded as

previously described [37].

Transversal 2.5 mm cross sections were obtained ,2 to 2.5 mm

distal to the lesion site of the withdrawn median nerve sample

using an Ultracut UCT ultramicrotome (Leica Microsystems,

Wetzlar, Germany) and stained by toluidine blue for high-

resolution light microscopy examination and design-based quan-

titative morphology. Photomicrographs were taken using

a DM4000B microscope equipped with a DFC320 digital camera

(Leica Microsystems, Wetzlar, Germany) and slightly adjusted for

brightness and contrast to obtain uniform plates.

Electron microscopy was performed on the same specimens

used for high-resolution light microscopy. Ultra-thin sections (70-

nm thick) were cut immediately after the series of semithin section

with the same ultramicrotome and double stained with saturated

aqueous solution of uranyl acetate and lead citrate. Ultra-thin

sections were analyzed using a JEM-1010 transmission electron

microscope (JEOL, Tokyo, Japan) equipped with a Mega-View-III

digital camera and a Soft-Imaging-System (SIS, Munster,

Germany).

Design-based Quantitative Morphology of Nerve Fiber
Regeneration
Design-based quantitative morphology was carried out on one

randomly selected toluidine blue stained semi-thin section.

Figure 2. BALB-neuT mice express higher levels of ErbB2
protein in peripheral nerves. A: Western blot analysis showing
ErbB2 expression in mammary gland and in uninjured peripheral
nerves. b-actin was used as a loading control. Mammary gland from
BALB-neuT mice was used as positive control for ErbB2 overexpression.
The ErbB2 level is higher in BALB-neuT mice compared to BALB/c mice.
B–C.
doi:10.1371/journal.pone.0056282.g002

ErbB2 Over-Expression Improves Nerve Regeneration

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56282



Stereological analysis of myelinated nerve fibers was carried out

using a protocol previously described [38,39,40]. On the randomly

selected section, the total cross-sectional area of the nerve was

measured and then an adequate number of fields (6–8) were

selected using a systematic random sampling protocol [38,41].

In each sampling field, the ‘‘edge effect’’ was avoided by

employing a two-dimensional dissector procedure which is based

on sampling the ‘‘tops’’ of fibers [42,43].

Mean fiber density was then calculated by dividing the total

number of nerve fibers within the sampling field (N) by its area (N/

mm2). The total number of fibers was estimated by multiplying the

mean fiber density by the total cross-sectional area of the whole

nerve cross section. In addition, in each fiber, both fiber and axon

area were measured and the fiber (D), axon (d) diameter, myelin

thickness
D{dð Þ
2

h i
and g-ratio d

D

� �� �
were calculated.

Hence, we analyze the g-ratio/axon diameter correlation of

individual fibers by means of scatterplots, evaluating the differ-

ences in linear regression. Furthermore, we deepen that analysis

by means of predictive inference: considering uninjured group g-

ratio/axon diameter scatterplot as reference, we highlight

a graphical area bounded by 95% prediction interval of regression

line and 62 s of axon diameter. Statistically, about 90% of

functional myelinated fibers will fall inside this predictive area.

At the electron microscopic level, the number of Schwann cells

was quantified by counting the nuclear profiles numbers in

a defined area at 80006magnification (12,2616,2 mm2). The

‘‘edge effect’’ was avoided according to the stereological method

previously described [42,43].

Total Protein Extraction and Western Blot Analysis
Total proteins were obtained from uninjured and crushed (2

days post-injury) BALB/c and BALB-neuT mice sacrificed under

deep anesthesia. A 6 mm segment of median, ulnar and radial

nerves just proximal and distal to the crushed site were harvested

for each animal.

Total proteins were extracted in boiling Laemmli buffer (2.5%

SDS, 0.125 M Tris-HCl, pH 6.8), followed by 3 min denaturation

at 100uC. Protein concentration was determined by the BCA

method, and equal amounts of proteins (50 mg) were denaturated

3 min at 100uC in 240 mM beta-mercaptoethanol, 18% glycerol,

Figure 3. ErbB2 transgene is expressed by Schwann cells. Immunohistochemistry analysis showing the localization of ErbB2 protein in BALB-
neuT median merve. A, tubulinbIII staining; B, GFAP staining; C, ErbB2 staining; D: colocalization between GFAP and ErbB2 showing that the ErbB2
protein is expressed by Schwann.Scale bar: 10 mm.
doi:10.1371/journal.pone.0056282.g003
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loaded onto each lane, separated by SDS-PAGE, transferred to

a HybondTM C Extra membrane (Amersham Biosciences,

General Electric Healthcare Europe) and analyzed as previously

described [44]. The western blot was decorated with a polyclonal

primary antibody anti ErbB2 (Neu (C-18) # sc-284, 1:500 w.d.,

Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) and the

horseradish peroxidase-linked donkey anti-rabbit secondary anti-

body (#NA934, 1:10.000 w.d., Amersham Biosciences).

RNA Extraction and Quantitative Real-time PCR
To obtain suitable amount of material, total RNA was extracted

from pools of median, ulnar and radial nerves of three mice for

each of three independent experiments. Under deep anesthesia,

mice were sacrificed at day-2 post-injury. A 6 mm segment of the

nerves just proximal and distal to the crushed site were harvested

for each animal. Total RNA was isolated using the RNeasy Mini

Kit (Qiagen S.r.l., Milano, Italy) according to the manufacturer’s

protocol.

0.5 mg total RNA were subjected to a reverse transcriptase (RT)

reaction in 25 ml reaction volume containing: 16 RT-Buffer

(Fermentas, Burlington, Canada); 0.1 mg/ml bovine serum albu-

min (BSA, Sigma); 0.05% Triton X-100; 1 mM dNTPs; 7.5 mM
random exanucleotide primers (Fermentas); 1 U/ml RIBOlock

(Fermentas) and 200 U RevertAidTM M-MuLV reverse transcrip-

tase (Fermentas). The reaction was performed for 10 min at 25uC,
90 min at 42uC, 10 min at 90uC.
Quantitative real-time PCR for ErbB1, ErbB2, ErbB3, ErbB4,

NRG1-alpha, NRG1-beta, NRG1-I/II and NRG1-III was

performed using an ABI Prism 7300 (Applied Biosystems, Life

Technologies Europe BV, Monza, Italy) detection system using

SYBR Green chemistry. cDNA was diluted 10 times before

analysis and 5 ml were analyzed in a total volume of 25 ml
containing 16 PowerGREEN Master Mix (Applied Biosystems),

and 300 nM of each primer. The reactions were carried out in 40

cycles (primer annealing temperature: 60uC). For each cDNA

sample, three technical replicates were averaged and dissociation

curves were routinely performed to check for the presence of

a single peak corresponding to the required amplicon. Normalized

reporter fluorescence (Rn) for each cycle was obtained by

normalizing SYBRGreen to ROX signal.

The data from the real-time PCR experiments were analyzed

using the DDCt method for the relative quantification. The

threshold cycle number (Ct) values of both the calibrator and the

samples of interest were normalized to the geometric average of six

endogenous housekeeping genes: Ubiquitin C (UbC), TATA box

binding protein (TBP), 18S ribosomal RNA (18S rRNA),

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxan-

thine phosphoribosyltransferase 1 (HPRT1) and the signaling

molecule mitogen-activated protein kinase 6 (MAPK6). As

calibrator we used the RNA obtained from a pool of uninjured

nerves.

Primers were designed using Annhyb software (http://www.

bioinformatics.org/annhyb/) and synthesized by Invitrogen (Life

Technologies Europe BV, Monza, Italy). Primers sequences are

reported in Table 1. Neuregulin1 primers design was made as

summarized in Figure 1.

Statistical Analysis
Statistical analysis was performed using PASW statistics 18

(SPSS Inc., Chicago, IL, USA). For the values taken from the

different time-point assessments of the grasping test, one-way

repeated measures analysis of variance (RM-ANOVA) test

followed by post hoc multiple pair-wise comparisons using the

Student–Neuman–Keuls (SNK) test was used. For both stereolog-

ical and grasping test data, the N size used in the statistical

calculations was the number of animals (n = 5 for each experi-

mental group). Differences in predictive area fitting are evaluated

by Chi-Square test considering the number of fibers falling inside

the area versus those falling outside.

For quantitative real time PCR data, statistical analysis was

performed using the one-way ANOVA test followed by Bonferroni

post-hoc multiple comparison test. The interaction between the

effect of injury and ErbB2 over-expression was investigated by

two-way ANOVA test.

Results

BALB-neuT Mice Express Higher Levels of ErbB2 Protein
in the Peripheral Nervous System
To study the role of ErbB2 overexpression in physiological

conditions and after crush injury of peripheral nerves, we

performed a preliminary analysis to evaluate protein expression

in BALB-neuT mice carrying the rat neu/ErbB2 gene under the

control of the mouse mammary tumor virus (MMTV) promoter.

We detected a higher level of ErbB2 protein in the median, ulnar

and radial nerves of BALB-neuT compared with BALB/c mice

(Fig. 2A).

Figure 3 shows immune-labeling for tubulinbIII (A), GFAP (B)

and ErbB2 (C). Double labeling with GFAP and ErbB2 protein (D)

shows the co-localization between the two markers in Schwann

cells (Fig. 3D).

ErbB2 Over-expression has No Effects on Mice Median
Nerve in Physiological Conditions
Although BALB-neuT mice weighted significantly (p,0.05) less

(23.22 g 61.38 g at the day of the sacrifice) than the BALB/c

(26.92 g 60.38 g at the day of the sacrifice), they showed no

evident behavioral abnormalities. In particular, no signs of motor

and sensory impairment were detectable in BALB-neuT compared

to BALB/c mice. Motor function was tested by means of the

grasping test the day before the injury (Fig. 4, day-1) and no

deficits were recorded in transgenic mice.

Figure 4. 14 days after the injury, grasping strength is greater
in BALB-neuT than in BALB/c mice. Graph showing the perfor-
mance of the mice in the grasping test after normalizing the recorded
values with the animal body weights. Data are reported as means 6
SEM (*BALB/c vs BALB-neuT; # regenerating vs pre-injury wild-type,
p,0.05).
doi:10.1371/journal.pone.0056282.g004
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Figure 5. Morphological and stereological analysis of uninjured median nerves do not show detectable differences. A, B:
representative light micrographs of transverse sections of median nerves stained with toluidine blue of BALB/c and BALB-neuT mice respectively. In
both groups myelinated axons have a normal morphological appearance. Bar = 10 mm. C, D, E, F: histograms showing the results of

ErbB2 Over-Expression Improves Nerve Regeneration
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To determine if any peripheral structural parameter correlates

with the over-expression of ErbB2, we compared semi-thin

sections stained with toluidine blue from the median nerve of

BALB/c (Fig. 5A) and BALB-neuT (Fig. 5B) mice. No significant

morphological differences were detected between the two groups.

Stereological analysis showed that the cross sectional area (Fig. 5C),

the number of total myelinated fibers (Fig. 5D) and the myelinated

fiber density (Fig. 5E) were not significantly different between

BALB/c and BALB-neuT mice. Also the parameters related to the

fiber size (axon diameter, fiber diameter and myelin thickness)

were not significantly different between BALB/c and BALB-neuT

mice (Fig. 5F). This result was further confirmed by g-ratio

measurement (expressed as scatterplots) of median nerve fibers

from BALB/c (0.6960.01) and BALB-neuT mice (0.7160.02)

(Fig. 5G).

We also evaluated the number of Schwann cell nuclei by

electron microscopy analysis. No difference was seen in the

number and/or morphology of Schwann cells between uninjured

BALB/c and uninjured BALB-neuT mice (Fig. 6), as demonstrat-

ed by electron microscopy and cell counting.

ErbB2 Over-expression Improves the Regeneration after
Median Nerve Crush Injury
To investigate whether ErbB2 over-expression exerts any effect

on axonal regeneration after a median nerve crush injury, we

compared nerve injury responses between BALB/c and BALB-

neuT mice. Motor functional recovery after the injury was assessed

every 7 days until day-28 beginning from the day just after the

injury. Results are presented as the ratio between grip strength and

animal weight (Fig. 4). From day-1 to day-7 post-injury the fingers

of all the mice were in complete extension, but the values did not

fall to zero because the weight of the mouse paw was revealed by

the balance.

Statistical analysis showed that, at day-14 post-injury, ratio was

significantly higher in BALB-neuT mice in comparison to BALB/c

supporting thus the view that the progression of functional

recovery is faster in relation to ErbB2 over-expression.

Moreover, BALB-neuT mice reached values not significantly

different from the pre-injury value already at day-14, while, at this

time point, BALB/c group was still statistically different compared

to the pre-injury value. At day-21 also BALB/c group reached

values not statistically different from the pre-injury condition.

Semi-thin sections stained with toluidine blue from regenerated

median nerve showed that 28 days after the crush injury in both

BALB/c and BALB-neuT mice the regeneration was adequate,

with the presence of many regrowing fibers organized in

microfascicles (Fig. 7A–B). They appeared to be smaller and

more numerous compared to uninjured nerves (Fig. 7A–B).

Moreover, the amount of connective tissue was greater in both

groups compared with the relative uninjured nerves.

Stereological analysis confirmed the morphological observa-

tions. After the regenerative process, the cross sectional area of

both BALB/c and BALB-neuT median nerve was significantly

bigger (p,0.05) than the uninjured groups (Fig. 7C). The total

number of myelinated fibers was significantly higher (p,0.001)

after crush lesion only in the BALB-neuT group. (Fig. 7D). On the

other hand, the fiber density decreased in both groups (Fig. 7E),

probably due to a larger amount of connective tissue.

As regards axon and fiber size, a significant (p,0.001)

difference in comparison to controls was seen only in the BALB-

neuT group: mean axon diameter was 21% smaller in regenerated

compared to uninjured nerves (2.2060.10 compared to

2.8060.22), whereas mean fiber diameter was 26% smaller

(2.9060.15 compared to 3.9360.35). In addition, the mean

myelin thickness significantly decreased in both BALB/c and

BALB-neuT groups in comparison to controls: mean myelin

thickness of the regenerated fibers in BALB/c mice was

0.4460.04, in comparison with 0.6160.03 of uninjured nerves,

whereas in BALB-neuT group the difference between regenerated

and uninjured myelin thickness was 0.3560.04 vs 0.5660.08

(Fig. 7F). The same was true for mean g-ratio that showed

a significant (p,0.05) difference for both regenerated BALB/c

(0.7460.04) and BALB-neuT (0.7460.02) mice compared to

relative uninjured nerves (respectively 0.6960.01 and 0.7160.02)

(Fig. 7G–H).

histomorphometric evaluations. No significant differences are detectable for all analyzed parameters. Values in the graphics are expressed as
mean+SEM. G: Scatterplots displaying g-ratios of individual fibers in relation to respective axon diameter (obtained from more than 250 myelinated
axons per group, 5 mice per genotype) are not different in BALB/c and BALB-neuT mice.
doi:10.1371/journal.pone.0056282.g005

Figure 6. The number of Schwann cells is comparable between BALB/c and BALB-neuT mice. A, histognams showing the number of
Schwann cells counted at electron microscopy. B, C representative electron images of transverse sections of uninjured median nerves of BALB/c and
BALB-neuT mice respectively. Magnification: 100006.
doi:10.1371/journal.pone.0056282.g006
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In order to explain the enhanced function recovery seen in

BALB-neuT group, we have evaluated the percentage of

myelinated fibers falling inside a g-ratio/axon diameter predictive

area in which fibers are considered as functional. By the

superposition of uninjured BALB-neuT and uninjured BALB/c

scatterplots, we have found that the 92.95% of BALB-neuT fibers

Figure 7. Morphological and stereological analysis of the regenerated median nerves show significant differences. A, B:
representative light micrographs of transverse sections of median nerves stained with toluidine blue of BALB/c and BALB-neuT mice, respectively.
Bar = 10 mm. C, D, E, F: histograms showing the results of histomorphometric evaluations of nerve regeneration. After the regenerative process, BALB-
neuT nerves show more and smaller myelinated fibers compared to uninjured ones. Histograms are represented as percentage variation of
regenerated nerves with respect to relative uninjured nerves; values in the graphics are expressed as mean+SEM). G, H: scatterplots displaying g-
ratios of individual fibers in relation to respective axon diameter (obtained from more than 250 myelinated axons per group, 5 mice per genotype)
show that in both BALB/c (G) and BALB-neuT (H) mice g-ratio is higher after injury. Statistical significance: *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0056282.g007
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reside into the BALB/c predictive area (Fig. 8A) that is consistent

with the absence of morphological and functional differences

between the two groups.

On the other hand, injured BALB/c fibers fit only for the

54.66% (Fig. 8B), while injured BALB-neuT for the 73.71%

(Fig. 8C) within respective uninjured predictive areas. Despite the

number of fibers outside the areas are highly significant (both

P,0.001), injured BALB-neuT fits significantly better than injured

BALB/c group (P,0.001), that is consistent with the enhanced

function recovery seen for this group by means of grasping test.

Finally, we evaluated the number of Schwann cell nuclei by

electron microscopy analysis. Results showed that the number of

Schwann cells was significantly higher in transgenic animals

compared to wild type (Fig. 9).

In Response to Peripheral Nerve Injury, the Increase in
mRNA for Soluble-NRG1 is Higher in BALB-neuT Mice
To determine whether the over-expression of ErbB2 has effects

on the NRG1/ErbB system, we compared the pattern of

expression of ErbB receptors (ErbB1, ErbB2, ErbB3 and ErbB4)

and of different isoforms of NRG1 (NRG1-alpha, NRG1-beta,

soluble NRG1-I/II and transmembrane NRG1-III) by quantita-

tive real time PCR during the early phases following the nerve

injury, in BALB/c and BALB-neuT mice.

For BALB-neuT mice, two different primer pairs were designed

and validated for their specificity to amplify only the exogenous rat

ErbB2, or only the endogenous murine ErbB2. As expected, we

detected a high level of rat-ErbB2 in the median, ulnar and radial

nerves of BALB-neuT but not in BALB/c mice (data not shown).

The expression of all the ErbB receptors was similar between

uninjured BALB/c and BALB-neuT mice. Two days after the

crush lesion, the mRNA level of the ErbB receptors significantly

decreased, both in BALB/c and BALB-neuT mice (Fig. 10A–D).

Since the degree of reduction in mRNA levels was similar, we

suggest that exogenous ErbB2 over-expression – that we appre-

ciated also in injured animals (Fig. 11) – does not influence the

regulation of endogenous ErbB receptor expression before and

after the injury.

Statistical analysis performed with two-way ANOVA of all

ErbBs showed highly significant main effects of treatment, while

the over-expression of rat ErbB2 and the interaction between

treatment and ErbB2 over-expression was not significant (Table 2).

On the other hand, NRG1-alpha, NRG1-beta and NRG1-I/II

mRNA expression was similar in mice not undergoing the crush

lesion for both groups (Fig. 12A–C). After the injury, the

expression of these NRG1 isoforms increased in both BALB/c

and BALB-neuT mice. Interestingly, after injury, BALB-neuT

mice showed a significantly higher level of NRG1-alpha, NRG1-

beta and NRG1-I/II mRNA expression in comparison to BALB/c

mice after injury. On the contrary, NRG1-III mRNA expression

significantly decreased after the injury only in the BALB-neuT

mice (Fig. 12D).

Statistical analysis performed with two-way ANOVA showed

highly significant main effects of treatment for all NRG1 isoforms

analyzed; the effect of the ErbB2 over-expression and the

interaction between treatment and over-expression of rat ErbB2

were highly significant only for NRG1 alpha, beta, type I/II

(Table 2).

Figure 8. BALB-neuT regenerated fibers have a better fitting
than those of BALB/c in their uninjured predictive area.
Comparison of BALB-neuT with BALB/c uninjured fibers (A) and
respective injured versus uninjured condition (B, BALB/c; C, BALB-
neuT). Yellow fields correspond to the predictive area of reference
condition (A-B, BALB/c uninjured; C, BALB-neuT uninjured) bounded by
95% prediction interval of regression line and 62s (2 standard

deviations –95% of cases) of axon diameter. Percentages represent
the fiber amount of considered group fitting the predictive area.
doi:10.1371/journal.pone.0056282.g008
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Figure 9. The number of Schwann cells is higher in BALB-neuT mice after regeneration. A, histognams showing the number of Schwann
cells counted at electron microscopy. B, C representative electron images of transverse sections of regenerated median nerves of BALB/c and BALB-
neuT mice respectively. Magnification: 100006. Statistical significance: *p,0.05.
doi:10.1371/journal.pone.0056282.g009

Figure 10. ErbB expression decreases following lesion, and is not influenced by rat ErbB2 over-expression. The relative quantification
of different ErbB receptors was obtained by quantitative real-time RT-PCR: data were normalized to the geometric mean of six endogenous
housekeeping genes (TBP, UbC, 18S, GAPDH, HPRT1 and MAPK6) and expressed as percentage. Values in the graphics are expressed as mean+SEM.
Statistical analysis demonstrates that ErbB1, ErbB2, ErbB3 and ErbB4 expression level significantly decreased two days after the crush lesion
(**p,0.01, ***p,0.001). No significant differences were observed between BALB/c and BALB-neuT mice both before and after the injury.
doi:10.1371/journal.pone.0056282.g010
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Discussion

The availability of transgenic and knockout mouse models has

opened exciting perspective in the study of peripheral nerve repair

and regeneration [3,4]. ErbB/NRG signaling is involved in several

important aspects in the development and regeneration of

peripheral nerves [45]. ErbB2 null mutant mice die at midgesta-

tion because of heart malformation [46] but important alterations

of nervous system occur (marked reduction of Schwann cell

precursors, which accompany the spinal nerves at the embryo

stage E10.5, and severe hypoplasia of cranial sensory and

sympathetic ganglia) [47]. Experiments with conditional ablation

of ErbB2 in late Schwann cell development show a lack of

Schwann cells and poorly fasciculated and disorganized nerves

[47]. Moreover, Morris and co-workers [48] demonstrated that

Schwann cell precursors are present and are proliferative in the

dorsal root ganglia of transgenic mice lacking ErbB2/ErbB3, but

they fail to migrate to the periphery.

Using inducible Krox20-Cre to ablate ErbB2 in immature

Schwann cells, it has been shown that the thickness of the myelin

sheath is reduced and contains fewer myelin wraps compared with

wild-type mice [9]. When the ablation of ErbB2 gene occurs in

adult Schwann cells, no apparent effect on the maintenance of

already established myelinated peripheral nerves is seen after

ErbB2 gene reduction [45]. Moreover, after a peripheral nerve

injury in Krox20-Cre ErbB2 mice, there is an increased Schwann

cell proliferation and cell death compared to controls. In contrast,

ablating ErbB2 exclusively in adult Schwann cells has no

detectable effect on survival and cell division after injury. Thus,

Schwann cell responses to axotomy depend on the timing of

ErbB2 ablation [45].

While the effects of ErbB2 deletion in the peripheral nervous

system have already been analyzed, the consequences of its over-

expression have not been investigated to date. To fill this gap, we

examined the effect of the over-expression of ErbB2 on healthy

nerve and its role on nerve regeneration after a crush injury of the

median nerve.

We examined the peripheral nerves of healthy adult mice and

we did not detect morphological and stereological differences

between mice of the same offspring over-expressing (BALB-neuT

mice) or not (BALB/c mice) the neu/ErbB2 gene; indeed, nerve

cross sectional area, number of myelinated fibers and fiber density,

as well as myelinated fibers size, myelin thickness and g-ratio were

comparable. These data suggest that ErbB2 over-expression does

not influence murine peripheral nerve phenotype. By contrast, the

over-expression of ErbB2 appeared to speed up nerve regeneration

after damage, as shown by a faster functional motor recovery

assessed with the grasping test. Yet, stereological analysis showed

that regenerated myelinated fibers analyzed at light microscopy on

semithin sections are, on average, more numerous, smaller and

with thinner myelin sheath in BALB-neuT mice, suggesting that

ErbB2 over-expression induces a richer posttraumatic axonal

sprouting. We also tried to count unmyelinated fibers at electron

microscopy. However, in regenerated nerves it was not possible to

recognize the single small axons within the Remak bundles. Thus,

we cannot exclude the hypothesis that the observed higher number

of myelinated axons is due to a shift between unmyelinated to

myelinated axons.

Figure 11. 2 days after the crush injury, BALB-neuT mice
express higher levels of ErbB2 protein. Western blot analysis
showing ErbB2 expression in crushed nerves 2-days after injury. b-actin
was used as a loading control. The ErbB2 expression is higher in BALB-
neuT mice compared to BALB/c mice.
doi:10.1371/journal.pone.0056282.g011

Table 2. Two-way ANOVA statistical analysis.

factor TREATMENT ErbB2 over-expression TREATMENT vs

(CTR vs LES) (WT vs ErbB2) ErbB2 over-expression

F df, E P F df, E P F df, E P

ErbB1 249.377 1, 8 0.000 6.078 1, 8 0.059 0.725 1, 8 0.419

ErbB2 242.377 1, 8 0.000 3.348 1, 8 0.105 0.009 1, 8 0.927

ErbB3 73.720 1, 8 0.000 1.115 1, 8 0.322 0.145 1, 8 0.954

ErbB4 756.713 1, 8 0.000 0.158 1, 8 0.702 0.026 1, 8 0.876

NRG1-I/II 101.274 1, 8 0.000 12.432 1, 8 0.008 13.925 1, 8 0.006

NRG1-III 28.303 1, 8 0.001 3.903 1, 8 0.084 1.351 1, 8 0.279

NRG1-alpha 261.214 1, 8 0.000 29.631 1, 8 0.001 22.450 1, 8 0.001

NRG1-beta 133.593 1, 8 0.000 24.080 1, 8 0.001 19.388 1, 8 0.002

For quantitative real time PCR data, the effect of treatment (CTR versus LES), the effect of ErbB2 over-expression (BALB/c versus BALB-neuT) and the interaction between
the two factors (treatment and ErbB2 over-expression) were analyzed by two-way ANOVA test. Analysis of all ErbBs showed highly significant main effects of treatment
(CTR versus LES) while the effect of ErbB2 over-expression (BALB/c versus BALB-neuT) and the interaction between the two factors (treatment and ErbB2 over-
expression) was not significant. Analysis of NRG1 showed highly significant main effects of treatment (CTR versus LES) for all NRG1 isoforms analyzed; the effect of ErbB2
over-expression (BALB/c versus BALB-neuT) and the interaction between the two factors (treatment and ErbB2 over-expression) were highly significant only for NRG1
alpha, beta, type I/II. (df = degrees of freedom, E = error, P = P-value).
doi:10.1371/journal.pone.0056282.t002
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Since it has been shown that NRG1 stimulates the growth of

Schwann cells through the activation of ErbB2/ErbB3 hetero-

dimers [49,50], we hypothesize that the constitutive over-

expression of ErbB2 receptor makes Schwann cells more sensitive

to NRG1, which is significantly up-regulated already in wild type

mice. Up-regulated soluble NRG1 activates ErbB2/ErbB3 and,

through a positive feedback loop (helped by ErbB2 overexpres-

sion), augments its expression stimulating Schwann cell pro-

liferation [51,52,53,54]. Higher Schwann cell proliferation,

confirmed by electron microscopy quantification, could be at the

basis of the changes that we observed during posttraumatic nerve

regeneration. Nevertheless, we can’t exclude the possibility that

some of the effects observed in the transgenic mice are due to

enhanced ErbB2 signaling also in the axons.

To analyze the expression level of all ErbB family members and

of the different NRG1 isoforms, we performed relative quantifi-

cation using real time qPCR analysis. Peripheral nerve injury

interferes with the expression of many genes: the identification of

the optimal reference gene (whose expression level is constant in

both control and injured samples) is therefore an important issue

to deal with. Taking inspiration from the literature about accurate

normalization [55,56] we identified six good candidate house-

keeping genes whose expression is expected to be stable even after

nerve injury and we normalized the gene expression of ErbB and

NRG1 genes to the geometric average of these six housekeeping

genes.

We observed a strong significant decrease of mRNA expression

of all ErbB receptors in lesioned mice, both in BALB/c and

BALB-neuT mice.

The down-regulation of ErbB receptors is in contrast with data

of other authors [57]. However, this discrepancy can be explained

since our injury model and our analysis conditions are different:

they performed a surgical transection, while we carried out a crush

lesion; they observe a protein increase 5 days after axotomy, while

we are analyzing transcript expression 2 days after the crush

injury. The stability of protein and transcript can be different and

a decrease in mRNA at 2 days is not incompatible with an increase

of protein at 5 days.

We observed also down-regulation of transmembrane-type III

NRG1 in transgenic mice. Anyway, the expression level of this

isoform in our samples was already really low, as suggested by the

high threshold cycle of this isoform achieved in the qPCR

Figure 12. Soluble NRG1 expression increases following lesion, and its expression is positively influenced by ErbB2 over-
expression. The relative quantification of different NRG1 isoforms was obtained by quantitative real-time RT-PCR. Results were normalized to the
geometric mean of six endogenous housekeeping genes (TBP, UbC, 18S, GAPDH, HPRT1 and MAPK6) and expressed as percentage. Values in the
graphics are expressed as mean+SEM. Statistical analysis demonstrates that NRG1-alpha, NRG1-beta and NRG1-I/II mRNA expression significantly
increased two days after the crush lesion (*p,0.05, **p,0.01, ***p,0.001) both in BALB/c and BALB-neuT animals. Interestingly, in the BALB-neuT
mice there was a significantly higher increase of mRNA expression compared to BALB/c animals. NRG1-III mRNA decreases after the crush injury, but
only in the BALB-neuT mice.
doi:10.1371/journal.pone.0056282.g012
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reaction; indeed, the transmembrane isoform is axonal and when

we extract RNA from the nerve, the majority derives from

Schwann cells. In its place, a strong significant up-regulation of

mRNA coding for soluble-type I/II NRG1 and for the alpha and

beta isoforms (that can be associated with both soluble and

transmembrane NRG1 isoforms) can be observed in lesioned

animals. Intriguingly, we found that in BALB-neuT mice the

soluble NRG1 up-regulation, both alpha and beta, is significantly

higher than in BALB/c mice. We verified that BALB-neuT mice

injured nerves overexpress ErbB2 protein and we hypothesize that

soluble NRG1 (whose amount increases following nerve lesion), by

binding overexpressed ErbB2/ErbB3, activates a positive feed-

back loop, that could lead to the higher level of NRG1 expression

observed in BALB-neuT mice [51,52,53,54]. Anyway, we cannot

exclude the possibility that upregulation of the soluble isoform of

NRG1 is responsible also of the thinner myelin sheath observed in

BALB-neuT versus BALB/c mice after injury (27).

Further studies are required to explain in more detail the role

played by NRG1 in nerve regeneration in over-expressing ErbB2

mice. However, our data support the view that the stimulation of

Schwann cells by soluble NRG1 is responsible for the faster

recovery observed in transgenic mice following nerve injury. This

might open interesting perspectives for innovative pharmacolog-

ical strategies for improving the clinical outcome of peripheral

nerve lesions.
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