
Submitted to:
ITRS 2012

Intersection types for explicit substitution with resource
control

Silvia Ghilezan∗ Jelena Ivetić∗

Faculty of Technical Sciences
University of Novi Sad, Serbia

gsilvia@uns.ac.rs jelenaivetic@uns.ac.rs

Pierre Lescanne
École Normal Supérieure de Lyon

University of Lyon, France
pierre.lescanne@ens-lyon.fr

Silvia Likavec∗

Dipartimento di Informatica
Università di Torino, Italy
likavec@di.unito.it

We propose an intersection type assignment system for a term calculus with explicit substitution and
resource control, which is due to the presence of weakening and contraction operators. The main con-
tribution is the complete characterisation of strong normalisation of reductions using a combination
of well-orders and suitable embeddings of terms as well as head subject expansion.

Introduction

Intersection types are well established means for characterising termination properties of term calculi.
Originally, intersection types were introduced by Coppo and Dezani [5, 6] as an extension of the simply
typed lambda calculus and are proven to completely characterise all strongly normalising lambda terms.

In this paper, we use intersection types in order to characterise strongly normalising terms of λx
r-

calculus, a term calculus of explicit substitution with explicit control of duplication and erasure. The
connection between intersection types and resource control has been suggested first by Boudol, Curien
and Lavatelli [4]. This calculus was proposed in [9] and represents the extension with resource control of
λx-calculus, in which intersection types were introduced in [11]. It could be also considered as extension
with the explicit substitution of λr-calculus from [8], hence the notation used here is along the lines of
[8].

The main novelty of this paper is a syntax directed type assignment system which enables a full
characterisation of strong normalisation in λx

r-calculus. This system assigns strict types to λx
r-terms,

uses context-splitting style due to the presence of explicit resource control operators, and integrates
intersection into the logical rules of the simply typed system thus preserving the syntax-directedness,
which makes the significant difference comparing to the systems from [11]. Moreover, the system is
created in a way that emphasizes three different roles that variables can play in a resource control term
calculus, namely variables as placeholders (the traditional view of λ-calculus), variables to be duplicated
and variables to be erased because they are irrelevant. For each kind of variable, there is a kind of type
associated to it: a strict type for a placeholder, an intersection type for a variable to-be-duplicated, and a
specific type for a variable to-be-erased.

The paper is organized as follows: Section 1 presents the syntax and operational semantics of the
λx
r, the calculus of explicit substitution with resource control. In Section 2, we propose an intersection

∗Partially supported by the Ministry of Education and Science of Serbia, projects III44006 and ON174026

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301903581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Intersection types for explicit substitution with resource control

types assignment system for λx
r. We prove, in Section 3 that typeable terms are strongly normalising,

while in Section 4, we prove that strongly normalising terms are typeable.

1 Explicit substitution with resource control λx
r: Syntax and operational

semantics

The resource control lambda calculus with explicit substitution λx
r, is an extension of the lambda cal-

culus with explicit substitution λx of Bloo and Rose [3] with operators for controlling weakening and
contraction. It corresponds to the λlxr-calculus of Kesner and Lengrand, proposed in [9], and also repre-
sents a vertex of “the prismoid of resources” of [10]. On the other hand, λx

r is an extension of resource
control lambda calculus λr [8] with explicit substitution.

The pre-terms of λx
r are given by the following abstract syntax:

Pre-terms f ::= x |λx. f | f f | f ⟨x := f ⟩ |x⊙ f |x <x1
x2

f

where x ranges over a denumerable set of term variables, λx. f is an abstraction, f f is an application,
f ⟨x := f ⟩ is an explicit substitution, x⊙ f is a weakening and x <x1

x2
f is a contraction. The contraction

operator is assumed to be insensitive to the order of the arguments x1 and x2, i.e. x <x1
x2

f = x <x2
x1

f .
The set of free variables of a pre-term f , denoted by Fv(f), is defined as follows:

Fv(x) = x; Fv(λx. f) = Fv(f)\{x};
Fv(f g) = Fv(f)∪Fv(g); Fv(f ⟨x := g⟩) = (Fv(f)\{x})∪Fv(g)
Fv(x⊙ f) = {x}∪Fv(f); Fv(x <x1

x2
f) = {x}∪Fv(f)\{x1,x2}.

In λx. f , the abstraction binds the variable x in f . In f ⟨x := g⟩, the substitution binds the variable x in
f . In x <x1

x2
f , the contraction binds the variables x1 and x2 in f and introduces a free variable x. The

operator x⊙ f also introduces a free variable x. In order to avoid parentheses, we let the scope of all
binders extend to the right as much as possible.

The set of λx
r-terms, denoted by Λx

r and ranged over by M,N,P,M1, is a subset of the set of
pre-terms, defined by the rules in Figure 1. Informally, a term is a pre-term in which every free variable
occurs exactly once, and every binder binds (exactly one occurrence of) a free variable. The notion of
terms corresponds to the notion of linear terms in [9].

x ∈ Λx
r

f ∈ Λx
r x ∈ Fv(f)

λx. f ∈ Λx
r

f ∈ Λx
r g ∈ Λx

r Fv(f)∩Fv(g) = /0
f g ∈ Λx

r

f ∈ Λx
r g ∈ Λx

r x ∈ Fv(f) (Fv(f)\{x})∩Fv(g) = /0
f ⟨x := g⟩ ∈ Λx

r

f ∈ Λx
r x /∈ Fv(f)

x⊙ f ∈ Λx
r

f ∈ Λx
r x1 ̸= x2, x1,x2 ∈ Fv(f) x /∈ Fv(f)\{x1,x2}

x <x1
x2

f ∈ Λx
r

Figure 1: Λx
r: λx

r-terms

S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec 3

In the sequel, we use the notation X ⊙M for x1⊙ ... xn⊙M and X <Y
Z M for x1 <

y1
z1 ... xn <

yn
zn M, where

X , Y and Z are lists of size n, consisting of all distinct variables x1, ...,xn,y1, ...,yn,z1, ...,zn. If n = 0, i.e.,
if X is the empty list, then X ⊙M = X <Y

Z M = M. Note that due to the equivalence relation defined in
Figure 3, we can use these notations also for sets of variables of the same size.

The λx
r-calculus is defined by reduction rules given in Figure 2, equivalences given in Figure 3

and α-equivalence for all three binders. The reduction rules are divided into five groups. The main
computational step is βx reduction. The group of (σ) reductions are the explicit substitution rules.1 The
group of (γ) reductions perform propagation of contraction into the expression. Similarly, (ω) reductions
extract weakening out of expressions. This discipline allows us to optimize the computation by delaying
duplication of terms on the one hand, and by performing erasure of terms as soon as possible on the
other. Finally, the rules in (γω) group explain the interaction between explicit resource operators that
are of different nature. In what follows we use α-equivalence, a.k.a. Barendregt’s convention [2] for
variables: in the same context a variable cannot be both free and bound. This applies to all three binders,
λx.M which binds x in M, x <x1

x2
M which binds x1 and x2 in M, and also to the explicit substitution

M⟨x := N⟩ which binds x in M.

(βx) (λx.M)N → M⟨x := N⟩

(σ1) x⟨x := N⟩ → N
(σ2) (λy.M)⟨x := N⟩ → λy.M⟨x := N⟩
(σ3) (MP)⟨x := N⟩ → M⟨x := N⟩P, if x /∈ Fv(P)
(σ4) (MP)⟨x := N⟩ → MP⟨x := N⟩, if x /∈ Fv(M)
(σ5) (x⊙M)⟨x := N⟩ → Fv(N)⊙M
(σ6) (y⊙M)⟨x := N⟩ → y⊙M⟨x := N⟩, if x ̸= y
(σ7) (x <x1

x2
M)⟨x := N⟩ → Fv(N)<

Fv(N1)
Fv(N2)

M⟨x1 := N1⟩⟨x2 := N2⟩
(σ8) (M⟨x := N⟩)⟨y := P⟩ → M⟨x := N⟨y := P⟩⟩, if y /∈ Fv(M)\{x}

(γ1) x <x1
x2
(λy.M) → λy.x <x1

x2
M

(γ2) x <x1
x2
(MN) → (x <x1

x2
M)N, if x1,x2 ̸∈ Fv(N)

(γ3) x <x1
x2
(MN) → M(x <x1

x2
N), if x1,x2 ̸∈ Fv(M)

(γ4) x <x1
x2
(M⟨y := N⟩) → M⟨y := x <x1

x2
N⟩, if x1,x2 /∈ Fv(M)\{y}

(ω1) λx.(y⊙M) → y⊙ (λx.M), x ̸= y
(ω2) (x⊙M)N → x⊙ (MN)
(ω3) M(x⊙N) → x⊙ (MN)
(ω4) M⟨y := x⊙N⟩ → x⊙ (M⟨y := N⟩)

(γω1) x <x1
x2
(y⊙M) → y⊙ (x <x1

x2
M), y ̸= x1,x2

(γω2) x <x1
x2
(x1 ⊙M) → M⟨x2 := x⟩

Figure 2: Reduction rules of λx
r-calculus

1In rule (σ7), N1 is N[y1
1/y1, ...,y1

n/yn] and N2 is N[y2
1/y1, ...,y2

n/yn] where Fv(N) = (y1, ...,yn) (resp. Fv(N1) = (y1
1, ...,y

1
n),

resp. Fv(N2) = (y2
1, ...,y

2
n)) is the list of the free variables of N (resp N1, resp. N2) sorted according to their occurrence in N.

4 Intersection types for explicit substitution with resource control

(ε1) x⊙ (y⊙M) ≡λx
r

y⊙ (x⊙M)

(ε2) x <x1
x2

M ≡λx
r

x <x2
x1

M
(ε3) x <y

z (y <u
v M) ≡λx

r
x <y

u (y <z
v M)

(ε4) x <x1
x2
(y <y1

y2 M) ≡λx
r

y <y1
y2 (x <

x1
x2

M), x ̸= y1,y2, y ̸= x1,x2

(ε5) M⟨x := N⟩⟨y := P⟩ ≡λx
r

M⟨y := P⟩⟨x := N⟩, x /∈ Fv(P), y /∈ Fv(N)

(ε6) (y <y1
y2 M)⟨x := N⟩ ≡λx

r
y <y1

y2 M⟨x := N⟩, x ̸= y, y1,y2 /∈ Fv(N)

Figure 3: Equivalences in λx
r-calculus

2 Intersection types for λx
r

In this subsection we introduce an intersection syntax-directed type assignment system which assigns
strict types to λx

r-terms. Strict types were proposed in [1] and used in [7] for characterisation of strong
normalisation in λGtz-calculus.

The syntax of types is defined as follows:

Strict types σ ::= p | α → σ
Types α ::= ∩n

i σi

where p ranges over a denumerable set of type atoms, and ∩n
i σi stands for σ1 ∩ . . .∩σn, n ≥ 0. Particu-

larly, if n = 0, then ∩0
i σi represents the neutral element for the intersection operator, denoted by ⊤.

We denote types with α,β,γ..., strict types with σ,τ,ρ,υ... and the set of all types by Types. We as-
sume that the intersection operator is idempotent, commutative and associative. We also assume that
intersection has priority over the arrow operator. Hence, we will omit parenthesis in expressions like
(∩n

i τi)→ σ.

Definition

(i) A basic type assignment is an expression of the form x : α, where x is a term variable and α is a
type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all term variables are
different and Dom(Γ) = {x1, . . . ,xn}. A basis extension Γ,x : α denotes the set Γ∪{x : α}, where
x ̸∈ Dom(Γ).

(iii) A bases intersection is defined only when Dom(Γ) = Dom(∆) as:

Γ⊓∆ = {x : α∩β | x : α ∈ Γ & x : β ∈ ∆}.

(iv) Γ⊤ = {x : ⊤ | x ∈ Dom(Γ)}.

In what follows we assume that the bases intersection has priority over the basis extension, hence the
parenthesis in Γ,(∆1 ⊓ . . .⊓∆n) will be omitted. It is easy to show that Γ⊤⊓∆ = ∆ for arbitrary bases Γ
and ∆ that can be intersected, hence Γ⊤ can be considered the neutral element for the bases intersection.

The type assignment system λx
r∩ is given in Figure 4. The system is syntax-directed, hence signifi-

cantly different from the one proposed in [11].
Notice that in the syntax of λr there are three kinds of variables according to the way they are intro-

duced, namely as a placeholder, as a result of a contraction or as a result of a weakening. Each kind of a

S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec 5

x : σ ⊢ x : σ (Ax)

Γ,x : α ⊢ M : σ
Γ ⊢ λx.M : α → σ

(→I)
Γ ⊢ M : ∩n

i=1τi → σ ∆0 ⊢ N : τ0 ... ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ MN : σ

(→E)

Γ,x : ∩n
i τi ⊢ M : σ ∆0 ⊢ N : τ0 ... ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ M⟨x := N⟩ : σ

(Subst)

Γ,x : α,y : β ⊢ M : σ
Γ,z : α∩β ⊢ z <x

y M : σ
(Cont) Γ ⊢ M : σ

Γ,x : ⊤ ⊢ x⊙M : σ (Weak)

Figure 4: λx
r∩: λx

r-calculus with intersection types

variable receives a specific type. Variables as placeholders have a strict type, variables resulting from a
contraction have an intersection type and variables resulting from a weakening have a ⊤ type. Moreover,
notice that intersection types occur only in three inference rules. In the rule (Cont) the intersection type
is created, this being the only place where this happens. This is justified because it corresponds to the
duplication of a variable. In other words, the control on the duplication of variables entails the control
on the introduction of intersections in building the type of the term in question. In the rule (→E), inter-
section appears on the right hand side of ⊢ sign which corresponds to the usage of the intersection type
after it has been created by the rule (Cont) or by the rule (Weak) if n = 0. In this inference rule, the role
of ∆0 should be noticed. It is needed only when n = 0 to ensure that N has a type, i.e. that N is strongly
normalizing. Then, in the conclusion of the rule, the types of the free variables of N can be forgotten,
hence all the free variables of N receive the type ⊤. All the free variables of the term must occur in the
environment (see Lemma 1), therefore useless variables occur with the type ⊤. If n is not 0, then ∆0 can
be any of the other environments and the type of N the associated type. Since ∆⊤ is a neutral element
for ⊓, then ∆⊤ disappears in the conclusion of the rule. The case for n = 0 resembles the rules (drop)
and/or (K-cut) in [11] and was used to present the two cases, n = 0 and n ̸= 0 in a uniform way. The rule
(Subst) is constructed in the same manner. In the rule (Weak) the choice of the type of x is ⊤, since this
corresponds to a variable which does not occur anywhere in M. The remaining rules, namely (Ax) and
(→I) are traditional, i.e. they are the same as in the simply typed λ-calculus. Notice however that the
type of the variable in (Ax) is a strict type.

Lemma 1 (Domain Correspondence for λx
r∩). Let Γ ⊢ M : σ be a typing judgment. Then x ∈ Dom(Γ)

if and only if x ∈ Fv(M).

Proposition 2 (Generation lemma for λx
r∩).

(i) Γ ⊢ λx.M : τ iff there exist α and σ such that τ ≡ α → σ and Γ,x : α ⊢ M : σ.
(ii) Γ ⊢ MN : σ iff there exist ∆ j and τ j, j = 0, . . . ,n such that ∆ j ⊢ N : τ j and Γ′ ⊢ M : ∩n

i τi → σ,
moreover Γ = Γ′,∆⊤

0 ⊓∆1 ⊓ . . .⊓∆n.

(iii) Γ ⊢ M⟨x := N⟩ : σ iff there exist a type α = ∩n
j=0τ j, such that for all j ∈ {0, . . . ,n}, ∆ j ⊢ N : τ j

and Γ′,x : ∩n
i τi ⊢ M : σ, moreover Γ = Γ′,x : α,∆⊤

0 ⊓∆1 ⊓ . . .⊓∆n.

(iv) Γ ⊢ z <x
y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β

and Γ′,x : α,y : β ⊢ M : σ.

6 Intersection types for explicit substitution with resource control

(v) Γ ⊢ x⊙M : σ iff Γ = Γ′,x : ⊤ and Γ′ ⊢ M : σ.
The proposed system also satisfies preservation of free variables, bases intersection and subject re-

duction and equivalence.

3 Termination of typeable terms

Now we prove the strong normalisation (termination of reduction) of terms typeable in the λx
r∩. In the

sequel, we denote by Λx
r the set of λx

r-terms, and by Λx
r∩ the set of λx

r-terms typeable in the system
λx
r∩. Resource control lambda calculus with intersection types λr∩ is proven to completely characterise

strong normalisation of λr in [8]. Our proof relays on the strong normalisation property of λr∩.
We prove the termination by showing that the reduction on the set Λx

r∩ of the typeable λx
r-terms

is included in a particular well-founded relation, which we define as the lexicographic product of three
well-founded component relations. The first one is based on the mapping of λx

r-terms into λr-terms.
We show that this mapping preserves types and that every λx

r-reduction can be simulated either by a
λr-reduction or by an equality and each λx

r-equivalence can be simulated by an λr-equivalence. The
other two well-founded orders are based on the introduction of quantities designed to decrease a global
measure associated with specific λx

r-terms during the computation.

Definition The mapping ⌈ ⌉ : Λx
r → Λr is defined in the following way:

⌈x⌉ = x ⌈M⟨x := N⟩⌉ = ⌈M⌉[⌈N⌉/x]
⌈λx.M⌉ = λx.⌈M⌉ ⌈x⊙M⌉ = x⊙⌈M⌉
⌈MN⌉ = ⌈M⌉⌈N⌉ ⌈x <y

z M⌉ = x <y
z ⌈M⌉

Lemma 3. Fv(M) = Fv(⌈M⌉), for M ∈ Λx
r.2

Proof. The proof is an easy induction on the structure of the term M. All the cases are straightforward,
we only present the case of explicit substitution.
Fv(M⟨x := N⟩) = (Fv(M)\{x})∪Fv(N) = Fv(⌈M⌉)\{x})∪Fv(⌈N⌉) =
Fv((λx.⌈M⌉)⌈N⌉) = Fv(⌈M⌉[⌈N⌉/x]) = Fv(⌈M⟨x := N⟩⌉)

We prove that the mapping ⌈ ⌉ preserves types. Typeability in Λx
r∩ is denoted by the symbol ⊢λx

r
whereas typeability in Λr∩ is denoted by the symbol ⊢λr (see [8]).
Proposition 4 (Type preservation by ⌈ ⌉). If Γ ⊢λx

r
M : σ, then Γ ⊢λr ⌈M⌉ : σ.

Proof. The proposition is proved by induction on derivations. We distinguish cases according to the last
typing rule used. Cases (Ax), (→I), (→E), (Weak) and (Cont) are trivial, because the intersection type
assignment system of λr has exactly the same rules. The only interesting case is the rule (Subst). In that
case, the derivation ends with the rule

Γ,x : ∩n
i τi ⊢λx

r
M : σ ∆0 ⊢λx

r
N : τ0 ... ∆n ⊢λx

r
N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢λx

r
M⟨x := N⟩ : σ

(Subst)

By IH we have that Γ,x : ∩n
i τi ⊢λr ⌈M⌉ : σ and for all j ∈ {0, . . . ,n}, ∆ j ⊢λr ⌈N⌉ : τ j. Now we can apply

substitution lemma for the λr yielding Γ,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n ⊢λr ⌈M⌉[⌈N⌉/x] : σ. Since ⌈M⌉[⌈N⌉/x] =

⌈M⟨x := N⟩⌉, the proof is done.
2Notice that in [9] Fv(B(t)) ⊆ Fv(t) holds, where B is the mapping from λx

r-calculus to ordinary λ-calculus without
resources and that is why free variables disappear there. Instead, our mapping ⌈ ⌉ maps λx

r-terms to λr-terms.

S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec 7

We now show that each λx
r-reduction step can be simulated through the encoding ⌈ ⌉, by a λr-

reduction or an equality.

Theorem 5 (Simulation of λx
r-reduction and equivalence by λr-reduction and equivalence).

(i) If a λx
r-term M → M′, then ⌈M⌉ →λr ⌈M′⌉ or ⌈M⌉= ⌈M′⌉.

(ii) If a λx
r-term M ≡λx

r
M′, then ⌈M⌉ ≡λr ⌈M′⌉ or ⌈M⌉= ⌈M′⌉.

The proof of this proposition shows that each λx
r-reduction step is interpreted either by a λr-

reduction or by an equality. More precisely: βx,γ1,γ2,γ3, ω1,ω2,ω3, γω1 and γω2 reductions are in-
terpreted by λr-reductions, σ1 − σ8 reductions are interpreted by identities, while γ4 and ω4 reductions
are interpreted either by λr-reductions or by λr-equivalencies, depending on the structure of the term.
In order to define a lexicografic product of orders that forbid infinite decreasing chains of λx

r-reductions,
we use two measures defined on the set Λx

r, namely term complexity T C (M) and interpretation I (M)
(based on multiplicity M (M)), proposed in [9] and already used for proving the strong normalisation of
the simply typed λlxr-calculus. We give their definitions here.

Multiplicity [9] Given a free variable x in a λx
r-term M, the multiplicity of x in M, written Mx(M), is

defined by induction on terms as follows, supposing that x ̸= y, x ̸= z, x ̸= w:
Mx(x) = 1 Mx(x⊙M) = 1

Mx(λy.M) = Mx(M) Mx(y⊙M) = Mx(M)
Mx(MN) = Mx(M) if x ∈ Fv(M) Mx(x <

y
z M) = My(M)+Mz(M)+1

Mx(MN) = Mx(N) if x ∈ Fv(N) Mx(w <y
z M) = Mx(M)

Mx(M⟨y := N⟩) = Mx(M) if x ∈ Fv(M)\{y}
Mx(M⟨y := N⟩) = My(M) · (Mx(N)+1) if x ∈ Fv(N)

Term complexity [9] The notion of term complexity T C (−) is defined by induction on terms as fol-
lows:

T C (x) = 1 T C (M⟨x := N⟩) = T C (M)+Mx(M) ·T C (N)
T C (λx.M) = T C (M) T C (x⊙M) = T C (M)

T C (MN) = T C (M)+T C (N) T C (x <y
z M) = T C (M)

Interpretation [9] The notion of interpretation I (−) : Λx
r → N is defined as follows:

I (x) = 2 I (M⟨x := N⟩) = I (M) · (I (N)+1)
I (λx.M) = 2I (M)+2 I (x⊙M) = I (M)+1

I (MN) = 2(I (M)+ I (N))+2 I (x <y
z M) = 2I (M)

Definition We define the following strict orders and equivalencies on Λx
r∩:

(i) M >λr M′ iff ⌈M⌉ →+
λr

⌈M′⌉; M =λr M′ iff ⌈M⌉ ≡λr ⌈M′⌉ or ⌈M⌉= ⌈M′⌉;

(ii) M >T C M′ iff T C (M)> T C (M′); M =T C M′ iff T C (M) = T C (M′);

(iii) M >I M′ iff I (M)> I (M′); M =I M′ iff I (M) = I (M′);

Definition We define the relation ≫x on Λx
r as the lexicographic product:

≫x = >λr ×lex >T C ×lex >I .

The following proposition proves that the reduction relation on the set of typed λx
r-terms, Λx

r∩, is
included in the given lexicographic product ≫x.

8 Intersection types for explicit substitution with resource control

Proposition 6. For each M ∈ Λx
r: if M → M′, then M ≫x M′.

Proof. The proof is by case analysis on the kind of reduction and the structure of ≫x.
If M → M′ by βx, γ1, γ2, γ3, ω1, ω2, ω3, γω1 or γω2, reduction, then M >λr M′ by Theorem 5.
If M → M′ by σ1, σ5, σ7 or σ8 then M =λr M′ by Theorem 5, and M >T C M′ by ([9], Lemma 3).
Finally, if M →M′ by σ2, σ3, σ4, σ6, γ4 or ω4, then M =λr M′ by Theorem 5 and its following comments,
M =T C M′ by ([9], Lemma 3) and M >I M′ by ([9], Lemma 4).

Strong normalisation of → is another terminology for the well-foundness of the relation → and it is
well-known that a relation included in a well-founded relation is well-founded and that the lexicographic
product of well-founded relations is well-founded.

Theorem 7 (Strong normalization of λx
r∩). Each term in Λx

r∩ is SN.

Proof. The reduction → is well-founded on Λx
r∩ as it is included (Proposition 6) in the relation ≫x

which is well-founded as the lexicographic product of the well-founded relations >λr , >T C and >I .
The relation >λr is based on the interpretation ⌈ ⌉ : Λx

r → Λr. By Proposition 4 typeability is preserved
by the interpretation ⌈ ⌉ and →λr is strongly normalising (i.e., well-founded) on Λr∩ [8], hence >λr
is well-founded on Λx

r∩. Similarly, >T C and >I are well-founded, as they are based on interpretations
into the well-founded relation > on the set N of natural numbers.

4 Characterisation of termination

We finally prove that if a λx
r-term is SN, then it is typeable in the system λx

r∩. Due to the definition
of the λx

r-terms given in Figure 1, particularly M⟨x := N⟩ where x ∈ Fv(M) is required, as well as to
the reductions (σ1 −σ8), the set of λx

r-normal forms coincide with the set of λr-normal forms. This,
combined with the fact that λx

r∩ is an extension of λr∩, has as a consequence the following proposition.

Proposition 8. λx
r-normal forms are typeable in the system λx

r∩.

Proposition 9 (Head subject expansion). For every λx
r-term M: if M → M′, M is a contracted redex and

Γ ⊢ M′ : σ , then Γ ⊢ M : σ, provided that if M ≡ (λx.N)P →βx
N⟨x := P⟩ ≡ M′.

Proof. By the case study according to the applied reduction.

Theorem 10 (SN ⇒ typeability). All strongly normalising λx
r-terms are typeable in the λx

r∩ system.

Now we can give a complete characterisation of strong normalisation in λx
r-calculus.

Theorem 11. In λx
r-calculus, the term M is strongly normalising if and only if it is typeable in λx

r∩.

Proof. Immediate consequence of Theorems 7 and 10.

5 Conclusion

In this paper, we have introduced intersection types into explicit substitution with resource control oper-
ators. The interesting property of the proposed system is the very simple management of the intersection
connective, which makes our type system syntax directed. As expected, we have proved that this sys-
tem enjoys the strong normalisation property. The power of intersection types strikes again and we have

S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec 9

showed that all strongly normalising terms are typeable in the proposed system, hence it completely char-
acterizes the set of all strongly normalising λx

r-terms. The next step along this line of research would
be the generalisation of the proposed approach in order to characterise strong normalisation of resource
control in different settings of λ-calculus: natural deduction and sequent style, as well as implicit and
explicit substitution.

Acknowledgements: We would like to thank the anonymous referees for careful reading and valu-
able comments, which helped us improve the final version of the paper.

References
[1] S. van Bakel (1992): Complete Restrictions of the Intersection Type Discipline. Theoretical Computer Sci-

ence 102(1), pp. 135–163.
[2] H. P. Barendregt (1984): The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam,

revised edition.
[3] R. Bloo & K. H. Rose (1995): Preservation of Strong Normalisation in Named Lambda Calculi with Ex-

plicit Substitution and Garbage Collection. In: Computer Science in the Netherlands, CSN ’95, pp. 62–72.
Available at ftp:// ftp. diku. dk/ diku/ semantics/ papers/ D-246. ps .

[4] G. Boudol, P.-L. Curien & C. Lavatelli (1999): A semantics for lambda calculi with resources. Mathemat-
ical Structures in Computer Science 9(4), pp. 437–482. Available at http:// journals. cambridge. org/
action/ displayAbstract? aid=44845 .

[5] M. Coppo & M. Dezani-Ciancaglini (1978): A new type-assignment for lambda terms. Archiv für Mathema-
tische Logik 19, pp. 139–156.

[6] M. Coppo & M. Dezani-Ciancaglini (1980): An extension of the basic functionality theory for the λ-calculus.
Notre Dame Journal of Formal Logic 21(4), pp. 685–693.

[7] J. Espı́rito Santo, J. Ivetić & S. Likavec (2011): Characterising strongly normalising intuitionistic terms.
Fundamenta Informaticae To appear.

[8] S. Ghilezan, J. Ivetić, P. Lescanne & S. Likavec (2011): Intersection Types for the Resource Control Lambda
Calculi. In: A. Cerone & P. Pihlajasaari, editors: 8th International Colloquium on Theoretical Aspects of
Computing, ICTAC ’11, Lecture Notes in Computer Science 6916, pp. 116–134.

[9] D. Kesner & S. Lengrand (2007): Resource operators for lambda-calculus. Information and Computation
205(4), pp. 419–473.

[10] D. Kesner & F. Renaud (2009): The Prismoid of Resources. In: R. Královič & D. Niwiński, editors: 34th
International Symposium on Mathematical Foundations of Computer Science, MFCS ’09, Lecture Notes in
Computer Science 5734, pp. 464–476.

[11] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini & S. van Bakel (2004): Intersection types
for explicit substitutions. Information and Computation 189(1), pp. 17–42.

