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Abstract

The paper focuses on the development of a software tool for protein clustering according to their amino acid content. All
known human proteins were clustered according to the relative frequencies of their amino acids starting from the
UniProtKB/Swiss-Prot reference database and making use of hierarchical cluster analysis. Results were compared to those
based on sequence similarities. Results: Proteins display different clustering patterns according to type. Many extracellular
proteins with highly specific and repetitive sequences (keratins, collagens etc.) cluster clearly confirming the accuracy of the
clustering method. In our case clustering by sequence and amino acid content overlaps. Proteins with a more complex
structure with multiple domains (catalytic, extracellular, transmembrane etc.), even if classified very similar according to
sequence similarity and function (aquaporins, cadherins, steroid 5-alpha reductase etc.) showed different clustering
according to amino acid content. Availability of essential amino acids according to local conditions (starvation, low or high
oxygen, cell cycle phase etc.) may be a limiting factor in protein synthesis, whatever the mRNA level. This type of protein
clustering may therefore prove a valuable tool in identifying so far unknown metabolic connections and constraints.
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Introduction

‘‘Epigenetics’’ can be broadly used to describe any aspect other

than a DNA sequence able to alter a phenotype without changing

its genotype. The science of epigenetics – the study of reversible

changes in gene function that occur without a change in the DNA

sequence – is transforming the nature-nurture debate. It has been

speculated that dynamic epigenetic processes, operating at the

interface between the genome (nature) and the environment

(nurture), strongly influence the complexity of living organisms in

health and illness [1]. Cell chemical processes used to regulate

gene expression and specific mRNA synthesis (transcription)

include methylation, phosphorylation, acetylation and are usually

regarded as canonical tools of this regulation. However, the step

from mRNA to protein (translation) also displays absolute

requirements including ribosomal machinery, tRNA, ATP supply

and amino acids (AA) local availability.

To date the effect of AA availability as regulating factor of every

protein synthesis has not been extensively investigated. It is well

known the glutamine requirement for purine bases synthesis [2] or

the leucine effect on mTOR expression [3], but usually protein

synthesis rate is correlated with mRNA amount and not with local

essential AA concentration.

In our research we assume that local AA availability is a limiting

factor for a given any protein synthesis. It is well known that

mRNA has a limited life span and that factors affecting its

expression and stability are powerful modulators of protein

synthesis. In the case of AA scarcity the rate of some tRNA-

aminoacid complexes may become the prevailing limiting factor,

provided the mRNA lifespan is shorter than the time required to

collect all the required AA.

We therefore hypothesize that the relative abundance of

proteins in different cellular setup may also depend on the local

availability of AA. The AA percentage of a protein should mirror

AA local availability. Our clustering tool is intended for

identification of homogeneous groups of proteins whose synthesis

can be regulated by selected AA relative abundance in proper

experimental settings.

The protein sequences of all human genes were extracted from

the reference database UniProtKB/Swiss-Prot and clustered using

agglomerative, or bottom-up, hierarchical cluster analysis. Every

protein initially corresponds to one-point cluster and, in each

subsequent step, the two ‘closest’ clusters were merged until only

one remained. The agglomerative approach offered advantages

such as more exible clustering as well as often producing higher

quality trees.

Materials and Methods

Data
The source of data: the protein sequence in FLAT file format

from UniProtKB/Swiss-Prot protein database, which provides

protein sequences with extensive annotation and cross references.

The database is regularly updated and is a section of UniProtKB

[4]. UniProtKB is organized in two sections:

1) UniProtKB/Swiss-Prot, which is the main database, manu-

ally curated, which means that the information in each entry

is annotated and reviewed by a curator;
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2) UniProtKB/TrEMBL, which is the supplement database of

Swiss-Prot containing computer annotated entries that

undergo a number of checks before their publication in

UniProtKB/Swiss-Prot.

The data stored in one single file containing the FLAT format

records of 20,244 human proteins were obtained from the Expasy

portal which is an extensible and integrative portal to access many

scientific resources, databases and software tools in different areas

of life sciences [5].

We adopted the 1-Letter and 3-Letter standard amino acids

abbreviation codes used in UniProtKB/Swiss-Prot, which is the

standard adopted by the commission on Biochemical Nomencla-

ture of the IUPAC-IUB [6]. Proteins were labelled according to

UniProtKB [4] nomenclature.

Methods

In UniProtKB/Swiss-Prot, each entry in the FLAT file contains

an ID (Identification) line and a SQ (SeQuence header) line with

the length of the sequence and the sequence in amino acid. A Perl

program was implemented in order to process the data concerning

the human proteins contained in the FLAT file format. The output

was a table with protein IDs, and the amino acids relative

Figure 1. A representative group of Keratin associated
proteins. A representative group of keratin associated proteins in
the Cladogram from Main Cluster using TreeGraph2. In the Cladrogram
we can find KRTAPs family type 1, 2, 3, 4, 9, 10, 11-1, 12, 16, 29-1. The
number after HUMAN indicates the length of the protein.
doi:10.1371/journal.pone.0060220.g001

Figure 2. A portion of Cadherins subtree. A portion of cadherin
subtree in the Cladogram from Main Cluster using TreeGraph2. In this
portion of the Cladrogram we can find the Cadherin domains (5)
proteins. The number after HUMAN indicates the length of the protein.
doi:10.1371/journal.pone.0060220.g002
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frequencies, which is available at http://hdl.handle.net/2318/836

(or http://aperto.unito.it/handle/2318/836). The program chose

each entry in the FLAT file and analyzed the SQ line in order to

compute the relative frequencies of each amino acid type in each

proteins. The relative frequency was a five digits floating point

number with three digits after the decimal point. A hierarchical

cluster protein analysis was performed using this table as input for

Fastcluster R package [7]. Clustering is the process of partitioning

a set of objects into subsets, called cluster, so that each subset

contains similar objects, and the objects in separate subsets are

dissimilar [8]. The ability of cluster analysis arises from the fact

that it can divide similar data without any a priori knowledge.

Clustering methods can be divided into two basic types: partitional

and hierarchical. A commonly used partitional clustering method

is K-means, a process to partition an N-dimensional population

into k sets on the basis of a sample [9]. K-means requires that the

choice of the number of clusters is made in advance. Given a set of

points, a hierarchical clustering creates a binary tree of the data

that it successively merges in groups of similar points. Hierarchical

cluster only requires a measure of similarity between groups of

data points and then it can gradually build clusters. There are two

main categories of hierarchical clustering: agglomerative and

divisive. An agglomerative clustering starts with a one-point cluster

and recursively merges two or more most appropriate clusters. A

divisive clustering starts with one cluster of all data points and

recursively splits the most appropriate cluster. Agglomerative

cluster popularity is largely due to its ability to use arbitrary

clustering dissimilarity or distance functions and the conventional

wisdom that it produces higher quality trees than divisive or

incremental approach [10]. We chose to run the hierarchical

cluster analysis for its independence from the choice of the number

of clusters. Hierarchical cluster analysis was performed using the R

package Fastcluster, which implements fast hierarchical, agglom-

erative (bottom-up) clustering based on the seven most widely used

schemes: single, complete, average, weighted, Ward, centroid and

median linkage [7].

Similarity Measure
Protein sequence clustering is a process which aims to identify

sets of homologous proteins in a protein database [11–13]. There

are many ways to compute similarity between two protein

sequences. Generally, the target sequences are aligned depending

on the position of the amino acids and the resulting scores are used

to calculate a measure of similarity [14].

In our case, the relative frequency of the amino acids in protein

sequences was taken as measure of similarity.

The Ward’s method and the Euclidean metric were chosen to

compute the distance between the relative frequencies of amino

acids in the proteins. The resulting vector of distances was

transformed in Newick format using ctc R package [15], in order

to be visualized with the graphical editor TreeGraph2 (http://

treegraph.bioinfweb.info/) and to extract meaningful subtrees that

visualize the distances between clusters.

Results and Discussion

Representation of clusters was given by means of a cladogram.

The distribution of proteins along the cladogram was analysed for

Figure 3. A subset of the Aquaporins. A subset of the Aquaporins
from MIP, Major intrinsic proteins Domain, in the Cladogram from Main
Cluster using TreeGraph2. The number after HUMAN indicates the
length of the protein.
doi:10.1371/journal.pone.0060220.g003

Figure 4. Human steroid 5-alpha reductase, isoform S5A1_HU-
MAN. Enzyme human steroid 5-alpha reductase, isoform S5A1_HUMAN
(SRD5A1 gene) in the Main cluster. The number after HUMAN indicates
the length of the protein.
doi:10.1371/journal.pone.0060220.g004

Figure 5. Human steroid 5-alpha reductase, isoform S5A2_HU-
MAN. Enzyme human steroid 5-alpha reductase, isoform S5A2_HUMAN
(SRD5A2 gene) in the Cladogram from Main Cluster using TreeGraph2.
The number after HUMAN indicates the length of the protein.
doi:10.1371/journal.pone.0060220.g005
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different groups of proteins belonging to the same group according

to sequence similarities. In Figure 1, the cladogram highlights

a portion of the group of keratin associated proteins [16].

TreeGraph2 automatically sets line widths or colours according

to the value of variables that can be assigned to each node or

branch [17]. Keratins are extracellular structural proteins with

a very repetitive structure. In this case more than 90% of our

clustering overlapped with Swissprot classification. Cadherins,

a group of partially extracellular proteins, are another group of

proteins that were also distinct from keratin group in cladogram

(Figure 2). Figure 2 shows a portion of a cadherin subtree, in which

cadherins are mixed with other apparently unrelated proteins.

Aquaporins, a set of membrane protein involved in water

transport in almost all tissues, see Figure 3, are far apart in the

cladogram. This difference means that molecules with a relatively

small active site are free to evolve according to the local

environment in the moiety less strictly related to the function.

Apparently structural proteins have a highly homogenous amino

acid composition while catalytic proteins combine highly con-

served sites with variable regions that allow clustering according to

factors up to now unexplored. When clusterizing only the

aquaporins, similarities where observed for those aquaporins on

the same chromosome. On the contrary, those on different

chromosomes were more distant and they did not clusterize very

well. A similar behaviour can be expected for most enzymes that

exist in different isoforms. An example of catalytic protein is the

enzyme human steroid 5-alpha reductase, that exists in 3 isoforms:

S5A1_HUMAN (SRD5A1 gene), S5A2_HUMAN (SRD5A2

gene) and PORED_HUMAN (SRD5A3 gene). They are located

on different chromosomes and in our cluster they are not so close,

while they are very close to proteins with different functions but

similar tissue expression. We analyzed the cluster members of the

three isoforms. S5A1_HUMAN, Figure 4, is very close to

GP173_HUMAN, CAHM1_HUMAN, FZD9_HUMAN in the

cluster. S5A1_HUMAN gene is expressed in foetal brain and

ovary, GP173_HUMAN is a super conserved receptor expressed

in brain, CAHM1_HUMAN is predominantly expressed in adult

brain, FZD9_HUMAN is expressed predominantly in adult and

Figure 6. Human steroid 5-alpha reductase, isoform PORED_-
HUMAN. Enzyme human steroid 5-alphareductase, isoform PORED_-
HUMAN (SRD5A3 gene) in the Cladogram from Main Cluster using
TreeGraph2. The number after HUMAN indicates the length of the
protein.
doi:10.1371/journal.pone.0060220.g006

Figure 7. Circadian locomoter output cycles protein kaput and NAD-dependent protein deacetylase sirtuin-1 amino acids relative
frequencies. The graph compare the relative frequencies of the Circadian locomoter output cycles protein kaput (CLOCK gene) and NAD-
dependent protein deacetylase sirtuin-1 (SIRT1) highlighting the different level of glutamate and glutamine. CLOCK means high glutamine and bases
synthesis and switch on DNA synthesis. SIRT1 means low glutamine and high glutamate and acetylCoA and switch off DNA synthesis.
doi:10.1371/journal.pone.0060220.g007
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foetal brain. This confirms the closeness in the cluster from the

point of view of the tissue. S5A2_HUMAN, Figure 5, is very close

to TM212_HUMAN. S5A2_HUMAN is expressed in high levels

in the prostate and many other androgen-sensitive tissues, while

TM212_HUMAN is a multi-pass membrane protein expressed in

the lung. PORED_HUMAN, Figure 6, is very close to

CCBP2_HUMAN, DOPP1_HUMAN, CLN6_HUMAN. POR-

ED_HUMAN is expressed in eye, CCBP2_HUMAN in placenta,

foetal liver and lung, DOPP1_HUMAN in lung, cerebellum and

brain, CLN6_HUMAN in lung and urinary bladder. The

apparently inconsistent expression of DOLPP1 in cerebellum

and brain may depends on its expression in the glial cells which

have a metabolic behaviour more similar to a foetal liver or a lung

than to a neuron. This could be a possible explanation for its

closeness to CCB2 in the cluster.

Conclusions
Proteins with a repetitive structure and with highly specific AA

patterns such as keratins and collagens cluster quite well

demonstrating the correctness of the mathematical approach,

but their clustering added no information to existing knowledge.

Proteins that clusterize on the basis of AA percentage but perform

quite different functions or similar functions in different tissues or

microenvironments (glial cells and neurons in the same area have

a completely different glutamate/glutamine) disclose new ap-

proaches to the description of complex biological systems.

Polymorphic proteins performing similar functions in different

tissues (e.g. highly oxygenated/hypoxic) have different AA

percentages which allow more efficient protein synthesis, and so

on. The cell cycle is a cyclic process alternating DNA and protein

synthesis. DNA synthesis requires a high amount of glutamine.

While protein synthesis relies on the presence of all AA. Clock and

SIRT1 proteins [18], (Figure 7), are widely accepted as regulator

check point of cell cycle. Considering the glutamine content,

CLOCK should be higher during DNA synthesis while SIRT1

during protein synthesis. This has been well known for years,

merely on the basis of experimental data. Now we can understand

why: protein AA content depends on local AA content and

becomes a ‘‘signal’’ that activates the proper metabolic pathway.

AA percentage becomes a relevant part of the ‘‘information

content’’ of the protein.

In conclusion, this method makes it possible to gather so far

unexplored information on proteins, linking their coordinated

expression to chromosome or tissue locations, cell cycle phase,

starvation and other metabolic constraints. It is potentially very

useful for predictive analysis before passing on to expensive and

time-consuming laboratory tests.
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