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Abstract: We studied the distributions of somatic chromosome rearrangements and copies of three transposable
elements (NLRCth1, CTRT1 and TFB1) in the salivary-gland chromosomes of Chironomus riparius Mg.
larvae. Larvae were collected from four stations (Chaya River and The Farm in Bulgaria, and Pazar foun-
tain and Derincay River in Turkey), whose sediments had different concentrations of several trace metals.
The number of cytogenetic aberrations was higher in larvae from those stations whose sediments had
higher concentrations of trace metals. Through FISH analysis of the cytogenetic localization of the three
transposable elements, we found fixed insertion sites in the centromere regions and many variable inser-
tion sites. NLRCth1, CTRT1, TFB1 insertion sites and locations of somatic-rearrangements occurred sig-
nificantly more often in the proximal than in the distal regions of the polytene chromosomes. In addition,
some common breakpoints of aberrations co-localized with NLRCth1, CTRT1 or TFB1 insertion sites in
the populations of C.riparius samples: from Pazar (for all studied TEs: from 35.7% to 57.1%); Derincay
River (from 38.8% to 69.4%); The Farm (from 34.8% to 50%) and Chaya River (from 23.3% to 50%). We
advance the hypothesis that chromosome instabilities induced by stress agents in the environment could
be related to the position of the TEs in the genome of C. riparius.

Key words: Chironomidae, common breakpoints, FISH, polytene chromosomes, somatic aberrations, TEs-NLRCth1,
CTRTI1, TFBI

Introduction

Transposable elements (TEs) are a major com-
ponent of all genomes and represent from 3%
to 50% of the total genomic DNA, depending
on the species (Capy et al. 2000). They can in-
duce different forms of chromosome rearrange-
ments manifested the chromosome instability
(Lim and SimMMmons 1994; REGNER et al. 1996;
ZELENTSOVA et al. 1999, AULARD et al. 2004, ARGUESO
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et al. 2008, MicHAILOVA et al. 2009a), non-disjunc-
tion and reduced fertility (EvGEN’EV et al. 1997,
ZELENTSOVA et al. 1999, LERMAN et al. 2003) and be
a significant source of genetic disease through their
mutagenic action (HEpGEs and DEININGER 2007). The
capacity of TEs to move and induce mutations in the
genome is considered an important driver in spe-
cies evolution (ZELENTSOVA et al. 1999, GUERREIRO
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2012). In some cases TEs could have high trans-
position rates, which are associated to changes in
the environmental conditions. Different factors have
been proposed as causative agents of TE mobiliza-
tion in a wide range of organisms: biotic, abiotic
stresses, inter-itraspecific crosses, population fac-
tors and etc. (GUERREIRO 2012). For instance, some
genotoxic stress agents in the environment may
contribute to the mobilization of transposable ele-
ments, well seen in cells exposed to gamma radia-
tion, which exhibited increased levels of L1 retro-
transposition (Farkasn et al. 2006) compared to
controls. Several environmental stress factors such
as heat shock (GETz and ScHaIk 1991; LERAMAN et al.
2003, BouveT et al. 2008), chemical agents (SORIANO
et al. 1995, Maumus et al. 2009), some heavy met-
als (KALE et al. 2005, MIcHAILOVA et al. 2009a), ra-
diation (FarkasH et al. 2006, ARGUESO et al. 2008)
are supposed to activate the TEs and destabilize the
genome structure, since different chromosome rear-
rangements can appear. In the human genome, KALE
et al. (2005) demonstrated that DNA damage occurs
through the mobilization of the LINE 1 retrotrans-
poson by some heavy metals. In addition some stud-
ies show that chromosome rearrangements are TEs-
mediated and can occur by ectopic and nonhomolo-
gous recombination between TEs copies (Lim and
SiMMONS 1994; Mieczkowskl et al. 2006; DELPART
et al. 2009). In this aspect many studies have been
performed in Drosophila (ZELENTSOVA et al. 1999,
LADEVEZE et al. 2001, CasaLs et al. 2003, AULARD et
al. 2004; Casats et al. 2005), in Anopheles species
(MathiopoLous et al. 1998), in mammals (DEININGER
et al. 2003, HEpGES and DEININGER 2007) and in yeast
(Mieczkowskl et al. 2006).

In some Chironomidae species, several TEs
have been found: MEC (BLivov et al. 1991), TEC
(Wogus et al. 1990), NLRCthl (BLNov et al. 1993),
NLRCth2 (BLmvov et al. 1997), CTRT1 (GRuUHL et al.
2000), TFB1 (HaNkELN and ScHMIDT 1990). Little is
known about the environmental factors that can influ-
ence TEs activity in this group of insects (Bovero et
al. 2002, ILkova et al. 2007; MicHAILOVA et al. 2007;
ZAMPICININI et al. 2011) but BovEiro et al. (2002) and
MicHAILOVA et al. (2009a) noticed that chromosome
breaks occur more frequently in genomic sites con-
taining blocks of repetitive DNA, composed by sat-
ellite DNA or/and copies of transposable elements.

The purpose of the present study is threefold: 1)
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To analyze the distribution and frequency of somatic
rearrangements in salivary gland chromosomes of a
widely distributed model Chironomid species — C.
riparius, whose larvae were collected from some
trace-metal polluted Bulgarian and Turkish stations;
2) To locate the insertion sites of three transposable
elements — NLRCth1, CTRT1 and TFB1- along the
polytene chromosomes of C. riparius larvae collect-
ed from these stations; 3) To test the hypothesis of
co-localization between insertion sites of the above
mentioned TEs and the breakpoints of aberrations
raised under stress agents in the environment.

Material and Methods

Material

We used [V stage (VI-VII phase) larvae of C. riparius
collected from two polluted water basins in Bulgaria
(Chaya River, Asenovgrad, 2009, and The Farm, a wa-
ter pool near Plovdiv, 2009) and in Turkey (Derincay
River, near Corum, 2009, and a fountain in Pazar,
2010).The egg masses, collected from the Pazar foun-
tain were reared under standard laboratory conditions
(constant aeration and temperature of 18-20°C, 16h
light &8h dark; feeding 2 times a week) and a trace
metal polluted sediment (Table 1). All the sediments
contained concentrations of trace metals higher than
those of reference data for fossil sediment (FORSTNER
and Saromons 1980) (Table 1). Detailed analysis of
trace metal concentrations in the sediment has been
performed by MicHAILOVA et al. (2009b; 2012).

Methods

Cytogenetic methods

The conventional acetic-orcein method for prepar-
ing salivary gland polytene chromosome preparation
was applied (MicHAILOvA 1989). Larvae of C. ripar-
ius were identified by the species-specific cytogenetic
markers of the polytene chromosomes (MICHAILOVA
1989; KikNADZE et al. 1991). The standard chromo-
some maps done by HAGELE (1970) and KIKNADZE et
al. (1991) were used for detailed cytogenetic map-
ping of chromosome aberrations and TE-insertion-
site locations. Frequencies of somatic chromosome
aberrations were estimated as percentage both over
the total number of studied larvae and analyzed cells
of a given population.
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Table 1. Trace metals concentration (ug/g) in the sediments of the lab. culture from Pazar, the three field stations ac-
cording to MicHAILOVA et al. (2012) and fossil sediment according to FORSTNER and SorLomons (1980).

Cr Cu Mn Pb Cd
Fossil sediment (lake) 59 25 406 16 0.2
Pazar fountain 0.111+0.001 49.63+0.67 44.51+0.72 57.2+0.41 0.21+0.01
Derincay River 191+1.4 56.1£2.1 725.6+6.2 16.5+£0.11 0.19+0.01
The Farm, Plovdiv 1302+15.6 86.42+1.7 73.76+1.05 339+1.51 4.73+£0.08
Chaya River, Asenovgrad 70.4+0.97 314.3£2.2 434.7+£3.2 585.9£1.6 7.30+0.09

Chromosome aberrations are considered so-
matic when they affected one cell or a clonal cell
lineage of the salivary gland of a larva (SELLA ef al.
2004). A breakpoint occurring in more than one in-
dividual was considered a chromosomal locus more
prone to breakage than others and defined as a “com-
mon” breakpoint (BovEro ef al. 2002). In this study
“common” breakpoints have been recorded after
comparison of the breakpoints of somatic rearrange-
ments found here and those previously described
for C. riparius from other polluted regions (PETROvVA
et al. 2004; SELLA et al. 2004; ILkova et al. 2007,
MicHatLova et al. 2009a, 2012). Following Bovero
et al. (2002), we divided the chromosomes AB, CD
and EF in two regions: proximal and distal to the
centromere. Chromosome G is very short and could
not be divided into a proximal and distal part. The
number of individuals and cells analyzed cytogeneti-
cally is shown in Table 2.

In situ hybridization (FISH)

We used the probes of three transposable ele-
ments: NLRCthl, CTRT1 and TFB1. NLRCthl
belongs to the LINE (Long Interspersed Nuclear
Elements) family of retroelements. It contains
two open reading frames, ORF1 and ORF2. The
NLRCthl probe is a 502 bp long amplicon ob-
tained using the following primers: NLR3790-F
(5- AGCAGCTACAGGCCAATAAGTCTAC-3)
and NLR4291-R (5°-
GATACAGTGCTGTATCATCTGCGAA-3’).
CTRTI1 is a SINE transposable element (Short
Interspersed Nuclear Element). We obtained the
CTRT1 310 bp long probe by using the follow-
ing primers: CTRT18-F (5’-ATCCCAGGCCAT-
GTCTAATTTTC-3") and CTRT327-R (5’-GAATC-
TATTGTACCACACCCTTTAGACC-3").  TFBI1
is a fold-back transposable element. The TFBI
326 bp probe was obtained by using the follow-

ing primers: TFBI311-F (5’-GCAACGACTAT-
TCCTACCTTGCC-3’) and TFB1636-R (5°-
TCACACCGTTTTCACGTGTGAATCT-3").

Amplicons corresponding to the three probes
were first obtained by amplifying approximately 50
ng of genomic DNA with the above listed primer
pairs according to the following conditions: 1x Taq
buffer, 1.5 mM MgCl,, 0.2 mM each dNTP; 0.5 uM
each primer; and 1 u Taqg DNA polymerase (Fisher)
in a final volume of 30 pL. The amplification profile
was: 3’ at 95°C followed by 30 cycles of 30 sec at
94°, of 30 sec at 52° and of 45 sec at 72°. A 1/1000
aliquot was re-amplified and labeled as above, ex-
cept that 0.15 mM TTP plus 0.05 mM Digoxigenin-
11-dUTP were used instead of TTP.

The locations of the copies of the TEs along
the salivary gland chromosomes were determined by
FISH, following the methods of ScamipT (1992) and
HaNKELN et al. (1993). This included several steps:
rehydratation of chromosome preparations in etha-
nol, heat stabilization at 70°C, and denaturation in
SSC solutions. The hybridization was carried out at
54°C overnight in a wet chamber. The hybridization
signals were detected by the anti-digoxigenin anti-
body (Roche).

The numbers of individuals and cells analyzed
by FISH are shown in Table 2. The hybridization
signals were considered fixed when they were found
in all the salivary gland cells of all the studied in-
dividuals of a sample. The signals were considered
variable when they were found in all or nearly all the
salivary gland cells (either in the homozygous or the
heterozygous state) of one or more than one individ-
ual but not in all sampled individuals (MiCHAILOVA et
al. 2009a).

Statistical analysis

By means of the G-test (SokaL and RoHLF 1995), we
checked whether the somatic breakpoints and TE in-
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Table 2. Number of studied individuals and cells of C. riparius by different methods

Pazar fountain, Derincay River, . . .
Turkey Turkey The Farm, Bulgaria | Chaya River, Bulgaria
Individuals | cells | Individuals | cells | Individuals | cells Individuals cells
Cytogenetic method 14 288 18 378 15 439 20 526
FISH with NLRCthl 5 19 5 28 1 12 4 80
probe
FISH with CTRT1 ) 9 ) 17 ) 23 3 53
probe
FISH with TFBI 2 24 3 67 2 25 3 66
probe

sertion-sites along the chromosomes were randomly
distributed or occurred significantly more often in
the proximal chromosomal regions than in the distal
ones. Correlations between frequencies of common
breakpoints and frequencies of the sites of transpos-
able elements in proximal and distal regions were es-
timated using the Spearman correlation coefficient,
rs (SokaL and RoHLF 1995).

Results

Cytogenetic characteristics of the larvae of the
C. riparius populations

The karyotype of salivary gland cells of all the larvae
studied did not differ from the standard karyotype

of the 1V instar larvae of C. riparius. This species
belongs to the “thummi” cytocomplex (KevyL 1962).
The chromosome set is 2n=8 with chromosome
arm combinations: AB, CD, EF and G. In chro-
mosome G 3 Balbiani Rings (BRa, BRb and BRc)
and one Nucleolar organizer (NOR) are located.
Chromosomes AB and CD are metacentric, chromo-
some EF is submetacentric, and chromosome G is
acrocentric (Figs. 1 a, b, ¢, d).

1. Somatic chromosome rearrangements

(a) Pazar fountain (Turkey)

The types and frequencies of the observed somatic
chromosome rearrangements can be seen in Table
3. Heterozygous pericentric inversions, six hetero-

Fig. 1. Polytene chromosomes of Chironomus riparius: standard karyotype
(a) chromosome AB, (b) chromosome CD, (c¢) chromosome EF, (d) chromosomes G with Balbiani rings (BRb, BRc)

and Nucleolar organizer (NOR). — centromere region. Bar: 100 pm
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zygous paracentric and one deletion were found.
Most (70%) of the chromosome inversions were
concentrated in the CD chromosome.

Altogether, 14 “common” breakpoints (58.33%
of all breakpoints) of aberrations were found. They
were significantly more frequent in the proximal
part of the CD chromosome than in the distal part
(G=7.01 df=1; P<0.01). Only one aberration was
found in chromosome G, no aberrations were found
in arm B and EF chromosome (Table 3).

(b) Derincay River (Turkey)

The types and the frequencies of the observed so-
matic chromosome rearrangements found in the sali-
vary gland chromosomes of C. riparius larvae from
this station can be seen in Table 3. Altogether, 42 dif-
ferent types of heterozygous paracentric inversions
were found as well as few types of heterozygous
pericentric inversions. They were located in chromo-
somes AB, CD and EF (Fig. 2a). Two deletions were
detected in chromosome G only and they affected
BRc or both BRc and BRb (Fig. 2b).

The total number of common breakpoints of so-
matic aberrations was 49 (66.2% of all breakpoints).
Common breakpoints were localized significantly
more often in proximal than in distal parts of chromo-
some AB (G=14.59 df=1; P<0.001), while in chro-
mosomes CD (G=3.54 df=1; P<0.1) and EF (G=3.67
df=1; P<0.1) they were randomly distributed.

(¢) The Farm (Bulgaria)

The type and frequencies of the observed somatic
chromosome alterations are given in Table 3. Almost
95% of the aberrations were heterozygous inver-
sions (33) localized in chromosome arms A, B, C,
D, F and G. Heterozygous pericentric inversions af-

a

fected chromosomes AB, CD and EF. Two deletions
of chromosome G were detected in BRc or in both
BRc and BRb.

Forty-six (70.8%) out of 65 breakpoints were
common breakpoints. They were significantly lo-
calized in the proximal parts of chromosome AB
(G=11.78 df=1; P<0,001) and CD (G=23.16 df=1;
P<0.001) rather than in the distal parts. In chromo-
some EF they were randomly distributed.

(d) Chaya River (Bulgaria)
The frequency and location of the somatic chromo-
some rearrangements established in this locality are
presented in Table 3. The majority of them (78%)
was heterozygous paracentric inversions and affect-
ed all chromosomes (total number is 39), while the
heterozygous pericentric inversions were detected in
chromosome AB, CD and EF. Three deletions and
three deficiencies were established in chromosome
G with low frequency (Table 3). Two amplifications
were found in arm F.

The common breakpoints estimated were 60,
i.e. 70.6% of all the observed breakpoints. They were
concentrated significantly more often in the proximal
part of the chromosomes AB (G=4.87 df=1; P<0.05)
and CD (G=12.06 df=1; P<0.001) than in the distal
parts, while in the chromosome EF they were ran-
domly distributed.

2. Distribution of the transposable elements

a) Pazar fountain (Turkey)

The total number of the TE clusters in all the chro-
mosomes as well as the number of fixed and variable
signals can be seen in Table 4. For the three TEs, the
number of all insertion sites in the whole genome
was significantly higher in the proximal than in the

Fig. 2. Somatic chromosome aberrations in C. riparius (Derincay River)
(a) pericentric heterozygous inversion in chromosome AB —; (b) deletion of BRc in chromosome G —

Bar: 100 pm
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Table 4. Number (N) of TEs signals in C. riparius

Stations Pazar fountain Derincay River The Farm (Plovdiv) Chaya River
(Asenovgrad)
Total \I:Lroit: Nof | Total I\L;): Nof | Total vNarOit: Nof | Total \I:L;): N of
TE N of fixed | Nof | " fixed | Nof fixed | Nof fixed
ignal able ignals | signal able ignals | signal able ignals | signal able ignal
SIEna’s signals SIENATS | SIENas signals SIENA’S | SIEnals signals SIENAIS | SIgna’s signals SIEna’s
NLRCthl 70 53 17 105 88 17 58 41 17 191 174 17
CTRT1 62 45 17 101 84 17 148 131 17 84 67 17
TFB1 88 74 14 210 196 14 152 135 17 107 94 13

distal regions of the chromosomes (for NLRCthl,
G=9.79; df=1; P < 0.01; for CTRT1, G=21.9; df=1;
P <0.001; for TFB1, G=6.74; df=1; P < 0.01).

The fixed locations of hybridization signals
of the three TEs appeared only in the proximal part
of the chromosomes AB, CD and EF (Table 5). No
fixed signals were found in chromosome G. Variable
insertion sites were TFB1 seen in both the proximal
and the distal parts of the chromosomes but never
in the centromere regions. NLRCth1 variable signals
were 75.7% of all detected signals; CTRT1 were
75.6% and 83% for TFBI.

b) Derincay River (Turkey)
Table 4 shows the total number of insertion sites
of the three TEs as well as the number of the fixed
and variable signals. NLRCthl signals were ran-
domly distributed in the proximal and distal regions
of chromosomes (G=2.81; df=1; P<0.1) while the
CTRT1 and TFB1 signals occurred with a signifi-
cantly higher frequency in the proximal than the dis-
tal part of all the chromosomes (CTRT1 G=15.38;
df=1; P<0.001; TFB1 G=8.11; df=1; P<0.01).
The fixed signals of the TEs occurred in proxi-
mal regions of chromosomes AB, CD, EF and never
in distal regions (Table 5). Variable insertion sites
were seen both in the proximal and the distal parts
of the chromosomes but never in the centromere re-
gions. 83% of NLRCthl and CTRT!1 insertions and
93% of TFB1 insertions were variable. Some of the
variable signals of TFB1 occurred either in the ho-
mozygous or in the heterozygous state in cells of
the same individual (i.e. signals in arm A at the sites
Ala, Ada, C2h, C4a; in arm B at the sites F4i, Gla;
in arm D at the sites C61, F20; in arm E: Ala; in arm
F at the site B3Db).

¢) The Farm (Bulgaria)
The number of the fixed and variable signals of the
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TEs can be seen in Table 4. The NLRCthl copies
appeared to be significantly more abundant in the
proximal parts of all three chromosomes than in the
distal parts (G=15.9; df=1; P<0.001). CTRT1 and
TFB1 copies were localized randomly in all chro-
mosomes (CTRT1, G=542; df=1; P<0.02; TFBI,
G=3.7; df=1; P<0.1).

The fixed insertion sites of the three TEs were
concentrated in the proximal part of the chromo-
somes AB, CD and EF (Table 5). No fixed signals
were found in chromosome G. Variable insertion
sites were seen both in the proximal and the distal
parts of the chromosomes but never in the centro-
mere regions. The variable insertions of NLRCth1
were 70.7% of all the insertions; of CTRT1 88.5%
and of TFB1 89 %.

d) Chaya River (Bulgaria)

The fixed, variable and total numbers of insertion
sites of the three TEs are shown in Table 4. No sig-
nificant differences were found in the distribution
of NLRCthl insertion sites in proximal and distal
parts of the chromosomes (G=0.81; df=1; P>0.1).
In contrast CTRT1 and TFB1 signals were concen-
trated significantly more often in the proximal parts
of the chromosomes than in the distal parts (CTRT1
G=5.02; df=1; P<0.05 and TFB1 G=10.93; df=1;
P<0.001).

The three TEs had fixed insertion sites concen-
trated in the proximal part of the chromosomes AB,
CD and EF (Table 5, Figs. 3 and 4). No fixed signals
were established in chromosome G. The variable
insertions were distributed along the chromosome
arms but never in the centromere regions (Table 5,
Fig. 4). For NLRCthl the variable insertions were
91%, for CTRT1 79.7% and for TFB1 87.8%.

Some of the variable insertion sites of NLRCth1
appeared both in the homozygous and the hetero-
zygous state in the cells of one and the same individ-
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Fig. 3. Signals of CTRT]1 in the polytene chromosomes AB, CD, EF and G of C. riparius from Chaya River (Asen-

ovgrad); variable signals —>
fixed signals —
Bar: 10 pm

Fig. 4. Signals of TFBI1 in the polytene chromosomes AB,
CD, EF and G of C. riparius from Chaya River (Asen-
ovgrad); variable signals —>

fixed signals —

Bar 10 ym

uals (in arm A at the site D1d and G2a; in arm D at
the site C4e; in arm F at the site B2q) (Figs. 5a, b).

3. Association between TEs insertion sites and
chromosome aberration breakpoints

a) Pazar fountain (Turkey)

Ten out of the 14 common breakpoints (71.4%) co-
localized with NLRCth1, CTRT1 or TFB1 insertions.
Five out of the 14 common breakpoints (35.7%) were

Fig. 5. Signals of NLRCthl in chromosome EF of
C. riparius; Bar: 10 pm

(a) strong fixed signals and a strong variable signal in
proximal part of arm E (B1r) and a variable homozygous
signal in arm F (B2q) — *;

(b) strong fixed signals in proximal part of chromosome
EF, a strong variable signal in proximal part of arm E
(Blr); variable signals along arms E and F;

a variable heterozygous signal in arm F (B2q) — *
variable signals —>

fixed signals —

found to have NLRCth1 insertions (they were local-
ized in CD chromosome). However, no significant
correlation between cytological locations of common
breakpoints and of NLRCthlinsertion sites was es-
tablished (rs=0.45; df=10; P>0.05). Similarly eight
out of the 14 common breakpoints (57.1%) coincided
with CTRT1 insertion sites, but the correlation was
not significant (rs=0.34; df=10; P>0.05). In contrast,
six out of 14 (42.8%) common breakpoints coincided
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with TFB1 insertion sites and the correlation was sig-
nificant (rs=0.79; d £=10; P<0.01).

The co-localizations between the insertions
of copies of all three transposable elements and the
breakpoints of aberrations were present mainly in
arm C and in arm D (Table 5).

(b) Derincay River (Turkey)

Nineteen out of 49 common breakpoints (38.8%)
coincided with NLRCthl insertion sites. Twenty-
two (44.9%) of the common breakpoints coincided
with CTRT1 insertion sites and thirty-four (69.39%)
coincided with TFB1 insertion sites. The correlation
between cytological locations of common break-
points and those of the CTRT1 and TFB1 were sig-
nificant (CTRT1, rs=0.59; df=10; P<0.05); TFBI,
rs=0.64; df=10; P<0.05) while there was no signifi-
cant correlation (rs=0.29; df=10; P>0.1) between the
location of common breakpoints and the location of
NLRCth1 copies.

Co-localizations between the insertions of cop-
ies of all three transposable elements and the break-
points of aberrations were detected in all the chro-
mosomes (Table 5).

¢) The Farm (Bulgaria)
Sixteen (34.8%) of the common breakpoints coin-
cided with NLRCthl insertion sites; twenty-three
(50%) co-localized with CTRT1 sites and twenty-
two (47.8%) with TFBI sites (Table 5). Correlations
between frequency of common breakpoints and fre-
quency of insertion sites of the three TEs were sig-
nificant (NLRCthl1 rs=0.52; df=10; P<0.05; CTRT1
rs=0.54; df=10; P<0.05 and TFBI rs=0.53; df=10;
P<0.05).

The co-localization between some common
breakpoints and insertion sites of all three TEs were
detected in chromosomes AB, CD and EF (Table 5).

d) Chaya River (Bulgaria)

Thirty (50%) common breakpoints coincided with
NLRCthl locations. The correlation between the
frequency of common breakpoints and the fre-
quency of NLRCthl insertion sites was not signifi-
cant (rs=0.43, df =10; P <0.1). In contrast, fourteen
(23.3%) common breakpoints significantly co-local-
ized with CTRT1 insertion sites (rs=0.55, df=10; P
<0.05) and eighteen (30% of them) common break-
points coincided significantly with TFB1 insertion
sites (rs=0.85, df=10; P <0.01). The co-localizations
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between common break points and copies of all
three TEs were detected in chromosome AB and CD
(Table 5).

Discussion

In all the salivary gland chromosomes of the C. ripar-
ius larvae collected from heavy metal polluted sedi-
ments of Derincay River, The Farm (Plovdiv) and
Chaya River (Asenovgrad), there was a large range
of somatic chromosome rearrangements (hetero-
zygous paracentric and pericentric inversions, defi-
ciency, deletions). In contrast, the number of somatic
rearrangements in the sample from the Pazar fountain
was 4-6 times lower than that in the samples from
the other stations. In addition, the sediment on which
Pazar larvae were reared contained trace metals in
concentrations lower than those of the other stations.
These data support the hypothesis of an overall posi-
tive relationship between the frequencies of the dif-
ferent types of somatic aberrations and values of the
various concentrations of the trace metals we ana-
lyzed (SELLA et al. 2004, MicHAILOVA ef al. 2011).

Our results showed also that this species has a
number of sites of the salivary gland chromosomes
that are particularly sensitive to chromosome break-
ages and are associated with sites of TEs. We ad-
vanced the hypothesis that these sites are “hot spots”
for chromosome breakages and that mobile elements
located in such sites are directly related to the for-
mation of inversion break points. The same relation-
ship has been observed in some Drosophila species
(ZELENTSOVA et al. 1999). Support to this hypothesis
is provided by the frequently observed significant
associations between the sites of breakpoints and the
insertion sites of TEs.

In all the studied localities a significant accu-
mulation of chromosome breaks and TE copies in the
proximal parts of the chromosomes was found where
the constitutive heterochromatin is localized. In fact
heterochromatic regions contain multiple families of
transposable elements (DmviTrl 1977; PIMPINELLI et
al. 1995; Divitri and Junakovic 1999; Bovero et al.
2002; DiMITRI et al. 2003; 2009) and in C. riparius
they are occupied also by clusters of repetitive DNA
elements A/u and Hinf (ILkova et al. 2007). On oth-
er hand, some studies in Drosophila demonstrated
that the recombination rate in the heterochromatic
regions is greatly suppressed or reduced (CasaLs et
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al. 2006). Also, TEs are expected to be more abun-
dant in regions of low recombination as inversions
or inversion breakpoints (GUERREIRO ef al. 2008). All
these data may explain the accumulation of TEs in
the proximal heterochromatic regions of the chro-
mosomes. So, the drastic reduction of recombination
rate in these regions might be the major factor for the
fixed localization of the studied TEs in the polytene
chromosomes of C. riparius. The fixed insertions of
the three TEs were found only in the proximal part of
the large chromosomes of C. riparius from all four
localities. Also in a formerly studied population of C.
riparius (ILkova et al. 2007, MicHAILOVA et al. 2007)
fixed signals of NLRCth1 were observed only in the
centromere and pericentromeric regions of AB, CD
and EF chromosomes.

Together with the fixed copies of NLRCthl,
CTRT1 and TFBI1 a high number of variable signals
were observed along the chromosome arms of C.
riparius. Similar polymorphisms have been report-
ed for NLRCth1 (ILkova et al. 2007, MICHAILOVA et
al. 2007) and TEC (WoBus et al. 1990) in other C.
riparius populations and for NLRCth1 and CTRT1
in the C. piger genome (MicHAILOVA et al. 2009a).
Our results showed a significant correlation between
common breakpoints of aberrations and sites of lo-
calization of NLRCth1 (the Farm), CTRT (Derincay
River, the Farm, Chaya River) or TFB1 (Pazar, the
Farm, Chaya River). In the polytene chromosomes of
individuals from Derincay River 77,55% of common
breakpoints occurred in sites where repetitive DNA
elements are located (NLRCth1, CTRT, TFB1, and/
or Alu/Hinf clusters); in the Pazar sample 71,43%
common breakpoints coincided with repetitive DNA
elements; in the Farm sample 78,26% and in Chaya
River sample 61,67%. Most of these breakpoints
occur at or very close to the sites of TEs. Similar
data of co-localization has been observed in other
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