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Abstract

Prostate cancer frequently metastasizes to the bone, and the interaction between cancer cells and bone microenvironment has proven to be cru-
cial in the establishment of new metastases. Bone marrow mesenchymal stem cells (BM-MSCs) secrete various cytokines that can regulate the
behaviour of neighbouring cell. However, little is known about the role of BM-MSCs in influencing the migration and the invasion of prostate
cancer cells. We hypothesize that the stromal cell-derived factor-1a released by BM-MSCs may play a pivotal role in these processes. To study
the interaction between factors secreted by BM-MSCs and prostate cancer cells we established an in vitro model of transwell co-culture of BM-
MSCs and prostate cancer cells DU145. Using this model, we have shown that BM-MSCs produce soluble factors which increase the motility of
prostate cancer cells DU145. Neutralization of stromal cell-derived factor-1a (SDF1a) via a blocking antibody significantly limits the chemoat-
tractive effect of bone marrow MSCs. Moreover, soluble factors produced by BM-MSCs greatly activate prosurvival kinases, namely AKT and
ERK 1/2. We provide further evidence that SDF1a is involved in the interaction between prostate cancer cells and BM-MSCs. Such interaction
may play an important role in the migration and the invasion of prostate cancer cells within bone.
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Introduction

Prostate cancer is the second leading type of cancer in men in indus-
trialized countries. Bone is a common site of metastasis also for pros-
tate cancer, and these metastases represent the main cause of death
for prostate cancer patients: approximately 70% of patients with
prostate cancer have bone metastases at the time of death. The rea-
son for the molecular and cellular predilection for prostate cancers to
metastasize to bone is still the object of numerous studies. It is
known that multiple factors, including the chemotactic responses to
bone-derived factors and the interaction of prostate cancer cells with
the bone microenvironment, are of paramount importance [1].

Bone marrow (BM) is the main source of multipotent mesenchy-
mal stem cells (MSCs) that have been isolated and accurately charac-
terized [2], together4 with the soluble factors they produce during

in vitro culture [3]. Among these, a substantial role is played by the
stromal cell-derived factor-1a (SDF1a, also known as CXC chemokine
ligand 12, or CXCL12) [4], one of the most extensively studied
chemokines endowed with numerous physiological functions, such
as stem cell mobilization and homing [5].

More recently, SDF1a has gained further attention in the field of
cancer biology [6]. SDF1a receptor, CXCR4, is essential for meta-
static spread to organs where SDF1a is expressed. Therefore, it
allows tumour cells to access cellular niches, such as the marrow,
that favour tumour-cell survival and growth. Moreover, SDF1a can
promote tumour angiogenesis by attracting endothelial cells to the
tumour microenvironment and can stimulate survival and growth of
neoplastic cells [7]. CXCR4 overexpression is known in more than 20
human tumour types, including ovarian [8], prostate [9], esophageal
[10], melanoma [11], neuroblastoma [12]. Moreover, several lines of
evidence suggest that the SDF1a/CXCR4 axis is involved in tumour
progression and the development of distant metastases; this aspect
has been highlighted particularly for breast carcinoma [13–15], which
is characterized by the frequent appearance of bone metastasis.
BM-MSCs are reported to interact with cancer cells in the tumour
microenvironment and can be recruited from bone marrow to
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inflamed or damaged tissues by local endocrine signals. Many recent
reports have pointed at tumour-stromal interactions as essential
events for tumour progression [16, 17].

Clearly, MSCs promote tumour growth, invasion and angiogenesis
[18–20], and are implicated in tumour formation of a cancer stem cell
niche [21]. Moreover, they have been shown to promote growth and
metastasis of colon cancer [22].

We questioned whether factors produced by BM-MSCs influence
prostate cancer cells. In particular, we suggested that BM-MSCs pro-
duction of soluble factors and SDF1a/CXCR4 interaction are crucial
for attracting prostate tumour cells to the bone marrow niche. To ver-
ify this hypothesis, we examined the migration of the human prostate
cancer cell line DU145 in an in vitro cell co-culture model with MSCs.
We used transwell to study (i) how the medium released by MSCs
can affect cell migration and (ii) the functional role of the SDF1a/
CXCR4 interaction in this migration. Moreover, we verified whether
soluble factors produced by MSCs can up-regulate kinases, namely
ERK 1/2 and AKT, typically involved in SDF1a/CXCR4 interaction in
other cell systems.

In this study, we demonstrate that BM-MSCs can attract prostate
cancer cells, and that SDF1a is one of the molecules responsible of
chemo-attraction. Our data confirm a role of SDF1a/CXCR4 in meta-
static cascades of prostatic carcinomas and are consistent with an
important role of MSCs in modifying cancer cells behaviour in the
immediate cancer metastasis microenvironment.

Materials and methods

Materials

Reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA)

unless otherwise stated. Tissue culture plasticware was from Falcon

(Franklin Lakes, NJ, USA).

Cell culture

Human androgen independent DU145 prostate cancer cells were pur-
chased from ATCC (Rockville, MD, USA).

Cells were maintained at 37°C in a humidified 5% CO2 atmosphere in

RPMI 1640 containing 10 ml/l penicillin and streptomycin solution,

NaHCO3 2 g/l (7.5% w/v), 10% Foetal Bovine Serum (FBS).

Bone marrow mesenchymal stem cells isolation
and production of conditioned medium

Bone marrow cells were harvested from femurs of adult rats (body weight

450–550 g). The rats were housed in identical cages and were allowed
access to water and a standard rodent diet ad libitum. The animals

received care in accordance with Italian law (DL-116, 27 January 1992),

which complies with the Guide for the Care and Use of Laboratory Ani-

mals by the US National Research Council. The animals were anaesthe-
tized with urethane (1 g/kg i.p.) and killed. Femurs were removed and

cleaned from soft tissue. Marrow cells were obtained by inserting a 21-
gauge needle into the upper end of the femur and flushing into the shaft

5 ml of complete a-modified Eagle’s medium (aMEM) containing 20%

FBS, 2 mM L-glutamine, 100 U/ml penicillin and 100 lg/ml streptomycin.

Cell suspensions (10 ml of final volume from each rat) were dripped from
the lower end of both femurs into a 50-ml sterile tube containing 40 ml of

complete medium. The cells were then filtered through a 70 lm nylon fil-

ter (Falcon) and plated into one 75-cm2 flask. They were grown in com-
plete aMEM containing 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin

and 100 lg /ml streptomycin at 37°C and 5% CO2 for 3 days. The med-

ium was then replaced with fresh medium and the adherent cells were

grown to 90% confluence to obtain samples defined here as mesenchy-
mal stem cells (MSCs) at passage zero (P0). The P0 MSCs were washed

with PBS and detached by incubation with 0.25% trypsin and 0.1% EDTA

for 5–10 min. at 37°C. Complete medium was added to inactivate the

trypsin. The cells were centrifuged at 450 r.p.m. for 10 min., resuspended
in 10 ml complete medium, counted manually in duplicate using a

B€urker’s chamber and plated as P1 on 58-cm2 plates at densities of 2000

cells/cm2. Complete medium was replaced every 3–4 days over the 18–
24-day period of culture.

We previously demonstrated that BM-MSCs isolated with this proce-

dure in our laboratories are CD90 positive and CD34/CD45 negative and

that under opportune stimuli they can differentiate into adipocytes, mus-
cle and osteoblast [23–25]. The BM-MSCs were therefore included in

this study and used accordingly to the protocols described below.

Conditioned medium was collected after 3 day of culture, centrifuged

at 4000 r.p.m. for 5 min. at 4°C to eliminate cells and cellular debris,
and freshly used for migration assays or cell culture, or frozen.

Western blotting

Cells were seeded in 10 cm-diameter Petri dishes, cultured as described

until sub-confluence, when medium was replaced with conditioned med-

ium or with fresh aMEM, both additioned with 2% FBS. Following 8 hrs
incubation, the medium was removed and the cell monolayer was first

washed with PBS, then covered with ice-cold PBS and incubated for

5 min. to facilitate detachment. Subsequently, adherent cells were

gently scraped (TPP scraper, Trasadingen, CH), collected and centri-
fuged at 2500 r.p.m. for 5 min. at 4°C. The pellet was then resus-

pended in 50 ll of RIPA buffer (Sodium chloride 150 mM, 1% Triton

X-100, 0.5% Sodium deoxycholate, 0.1% SDS, Tris 50 mM with addi-
tion of 10 ll/ml protease inhibitor, 1.54 mM Sodium orthovanadate and

10 mM Sodium fluoride), placed in ice for 1 hr and gently shuffled

every 20 min. to facilitate the membrane breakup. The mixture was then

centrifuged at 13,200 r.p.m. for 30 min. at 4°C, the supernatant col-
lected and protein content quantified with the Bradford assay (1 ll RIPA
suspension/999 ll Bradford solution 1:5, Bio-Rad, Hercules, CA, USA):

samples were read with a spectrophotometer (Beckman DU� 640 Spec-

trophotometer, Brea, CA, USA) at 595 nm wavelength. Fifty-eighty micro
grams of proteins were resolved in the Invitrogen system (Carlsbad,

CA, USA) by SDS-PAGE gels at 10% of polyacrylamide SDS gels in

denaturing conditions, then transferred onto polyvinylidene difluoride

membranes (GE Healthcare, Buckinghamshire, UK), and immunoblotted
according to Penna et al. [26].

Blots were probed with primary polyclonal antibody suspended in TBS

Tween 0.1%: anti-AKT (developed in mouse, 1:800), anti-pAKT (Ser473)
(developed in rabbit, 1:500), anti-ERK1/2 (developed in mouse, 1:800),

anti-pERK1/2 (developed in mouse, 1:500), anti-Vinculin (developed in

rabbit, Sigma-Aldrich 1:1000). Vinculin was used as an internal control.

288 ª 2013 The Authors

Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



Secondary antibodies were suspended in TBS Tween 0.025% and
used at the following concentrations: HRP- conjugated anti-Mouse

1:6000 (Amersham-GE Healtcare, Buckinghamshire, UK) and anti-Rabbit

1:8000 (Santa Cruz Biotechnology, Santa Cruz, CA, USA).

After first and secondary antibody incubation, the membranes were
treated with chemiluminescent substrate and enhancer (Immun-StarTM

HRP Chemioluminescent Kit – Bio-Rad, Hercules, CA, USA), followed by

exposure to X-ray film (Kodak BioMax light film, Sigma-Aldrich) and
finally developed and fixed in Kodak GBX developer and Kodak GBX

fixer respectively.

The molecular weight ladder PageRulerTM Plus Prestained Protein

Ladder (Fermentas, Vilnius, Lithuania) was used in each experiment.
Bands were quantified using the ImageJ software.

Phosphorylation levels of AKT and ERK were expressed as ratio

pAKT/AKT and pERK/ERK. All data were expressed as modification rela-

tive to baseline (control conditions).

Assessment of cell morphology

DU-145 morphology was considered after exposure to MSC conditioned

medium for 6 hrs.

Cells were grown in complete medium with 10% FBS in adequate

chambers mounted on plastic microscope slides (Lab-Tek Chamber
Slide w/cover – swell – Permanox slide sterile – NY, USA – NuncTM); in

each chamber 2000 cells/200 ll medium were seeded and allowed to

adhere overnight. The following morning, the culture medium was

replaced with MSC conditioned medium or with an adequate control
medium; at the end of incubation cells were fixed in glutaraldehyde 2%,

allowed to dry and stained in crystal violet 0.1%.

Each field was photographed under optical microscope (Leica DC 100)
at 1009 magnification using the BRESSER� MikroCam 3 Mpx camera.

3D migration assay

The transwell migration assay was used to measure the three-dimen-

sional movement of the cells as described in Gambarotta et al. [27].

Migration assays were performed in transwells (BD FalconTM cell culture

inserts incorporating polyethylene terephthalate – PET – track-etched
membranes with 8.0 lm pores at the density of 6 � 2 9 104/cm2).

Cells (105) resuspended in 200 ll of culture medium containing 2%

FBS were seeded in the upper chamber of a Transwell (cell culture insert,
no. 353097, BD Biosciences, Franklin Lakes, NJ, USA) on a porous trans-

parent polyethylene terephthalate membrane (8.0-lm pore size, 1 9 105

pores/cm2). The lower chamber (a 12-well plate) was filled with culture

medium containing 2% FBS or with conditioned medium containing
2% FBS.

When migration test was performed in the presence of SDF1a,
20 ng/ml [28] of this factor (Immunotools, Friesoythe, Germany) were

added to the medium in the lower chamber. When migration test was
performed in presence of a specific inhibitor of CXCR4, cells were

preincubated for 30 min at 37°C gently shaking with 100 nM AMD3100

[29] (Sigma-Aldrich) before seeding in the transwell.
The 12-well plates containing cell culture inserts were incubated at

37°C in a 5% CO2 atmosphere saturated with H2O.

After 6 hrs of incubation, cells attached to the upper side of the

membrane were mechanically removed using a cotton-tipped applicator.
Cells that migrated to the lower side of the membrane were rinsed with

PBS Ca/Mg (Na2HPO4 8 mM, NaCl 0.14 M, CaCl2•2H2O 1 mM,
MgCl2•6H2O 1 mM, KCl 2.7 mM, KH2PO4 1.5 mM), fixed with 2% glu-

taraldehyde in PBS for 20 min. at room temperature, washed five times

with water, stained with 0.1% crystal violet and 20% methanol for

20 min. at room temperature, washed five times with water, air-dried
and photographed using the BRESSER� MikroCam 3 Mpx camera, with

an optical microscope (Leica DC 100) at 1009 magnification. Five pic-

tures were randomly chosen per well, and used to count the migrated
cells with ImageJ software using cell-counter plug-in. Results from dif-

ferent experiments (performed at least three times in duplicate) were

expressed as mean � SD.

Statistics

Statistical analyses were performed by one-way or two-way ANOVA, and

P < 0.05 was considered significant. If not differently specified, data
are expressed as the mean percentage � SD percentage referred to

control as baseline.

Results

DU-145 migration and morphology

Conditioned medium significantly increased the rate of migration of
DU145 (+76.42% � 4.37, P = 0.006) compared with control
(Fig. 1). On the other hand, DU-145 did not show evident morpholog-
ical changes when exposed for 6 hrs to conditioned medium (Fig. 2).

A C

B D

Fig. 1 DU145 underwent migration test in basal conditions (control med-

ium) or under chemotactic stimulus represented by medium conditioned

by 3 days culture of bone marrow-mesenchymal stem cells. Complete
and detailed transwell view: control medium (A and B) and MSC condi-

tioned media (C and D). (A and C, stereoscopic microscope at 409 mag-

nification; B and D, light microscope at 1009 magnification).
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AKT and ERK activation

Eight hours incubation in MSC conditioned medium provoked in DU-
145 an increase in pAKT/AKT ratio of 71.2% � 6.4 versus control
(P = 0.014; Fig. 3).

pERK/ERK ratio increased of 38.6%, compared with control.

Influence of SDf1a in DU145 migration

Addition of SDF1a to control medium significantly stimulated DU145
migration, whereas blocking its receptor with AMD3100 significantly
inhibited migration (Fig. 4).

Addition of AMD3100 greatly decreased the attractive effect of
conditioned medium (Fig. 4); this result suggests the presence of
SDF1a in MSC conditioned medium and its important role for migra-
tion in these conditions.

Discussion

With a transwell co-culture system [30], we demonstrate that BM-
MSCs produce soluble factors, including SDF1a, which can influence

the behaviour of prostate cancer cells, namely their motility and their
intracellular prosurvival kinases. These factors induce pro-survival
kinase activation and may contribute to the homing and survival of
cancer cells within the bone.

Metastasis is regulated by several signalling pathways in the can-
cer cells as well as in the microenvironment. Prostate cancers prefer-
entially metastasize to the skeleton, and considerable research effort
has been devoted to understanding the unique interaction between
prostate cancer epithelial cells and the bone microenvironment.
Human prostate cancer metastases home within the haematopoietic
stem cell niche and colocalize with haematopoietic stem cells in the
bone marrow [31].

Among the factors produced in vitro by BM-MSC, a good candi-
date in promoting migration is SDF1a, whose role in cancer biology
has widely been described, to such an extent that it also gained a
place of paramount importance in clinical settings [6, 32, 33].

DU145 express SDF1a receptor CXCR4 [32, 34] whose role in
promoting cellular migration and invasion in vitro has already been
tested [35]. In different cell types, activated CXCR4 exerts its biologi-
cal effect [7, 36] initiating the downstream protein kinase B (AKT)/
mitogen-activated protein kinases (MAPK) signalling pathway, leading
to alteration of gene expression, actin polymerization, cell skeleton
rearrangement and cell migration. These data are in line with our find-
ings in prostate cancer cells. In fact, when DU145 were grown in the
presence of BM-MSC conditioned medium for 8 hrs, AKT and ERK
phosphorylation rates increased significantly.

Moreover, while supplementation of standard culture medium
with SDF1a significantly increases cell migration, adding AMD3100-
CXCR4-specific blocker to BM-MSC conditioned medium decreases
cell migration. By blocking such SDF1a -CXCR4 axis, through
AMD3100, we have shown that this axis covers a pivotal role in pros-
tate cancer cell migration and that it is probably crucial in MSC condi-
tioned medium attractive effect.

Nevertheless, SDF1a probably is not the only factor responsible
for the cell migration in these conditions, because despite blocking its
effect, cells still have a migration rate 55% higher than control.

A B

Fig. 2Morphological analysis of DU145 exposed for 6 hrs to control

medium (A) or to MSC- conditioned medium ((B), optical microscope at

4009 magnification). One representative image.

Fig. 3 Activation of AKT and ERK following 8 hrs culture in control (first

lane) or conditioned medium (second lane). Vinculin as internal control.

Fig. 4 DU145 migration in control (aMEM) or conditioned (CM) med-

ium, with or without SDF1a and CXCR4 blocker AMD3100. *signifi-
cantly different from control conditions, considered as baseline.
�significantly different from each other (each significance reported in

graph has P < 0.05).
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Methodological considerations: We have cultured a human cell
line in a conditioned medium obtained from MSC belonging to a
different species, but this system has already been validated [30] as
several authors have already done [37–39]. Furthermore, the
homology degree is high between human and rat SDF1a. A rapid
‘BLAST Protein’ alignment pointed out high identity value (92%), no
gaps and a very significant E-value (5e�43). Crystallography and
functionality studies showed that the most important SDF1a portion
is represented by two amino acids responsible for activating its
receptor CXCR4: Lys-1 and Pro-2 [40]. No difference in any region
of interest responsible for binding CXCR4 exists between human
and rat protein. About the only substitution present (65Asp ?
65Ser), it is not reported as possible vitiating bond with the
receptor.

In conclusion, our work underlines the importance of factors
produced by BM-MSCs in modifying the invasive behaviour of
prostate cancer cells. We provide elements that one of these
factors is SDF1a. These data therefore further support the
exploitation of the SDF1a/CXCR4 axis as a therapeutic target for
prostate cancer.
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