
MNRAS 428, 3151–3163 (2013) doi:10.1093/mnras/sts266

Effects of entropy generation in jet-launching discs
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ABSTRACT
A common approach to interpret the ‘jet phenomenon’ observed in active galactic nuclei and
young stellar objects is via magnetohydrodynamic models of collimated outflows magnetically
driven from quasi-Keplerian accretion discs in the proximity of a central gravitational attractor.
In this study we present a series of time-dependent axisymmetric numerical simulations of
a jet-launching accretion disc, where the outflow and the disc itself are treated consistently.
In particular, the issue of thermal effects due to anomalous transport coefficients is being
addressed. When the radiative losses of the accretion disc cannot perfectly balance Ohmic and
viscous heating, the latter can severely influence the mass loading process. Since the ejection
rates determine to a great extent the dynamics of the outflowing plasma, disc thermodynamics
should not be neglected. We investigate numerically the impact of heating–cooling effects in
both outflow dynamics and accretion disc structure. A relationship is established between heat-
ing and various important parameters of the outflow (magnetic lever arm, ejection efficiency,
mass flux, etc.) that is briefly discussed in connection with observational data.
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1 IN T RO D U C T I O N

Plasma ejection from the surface of rotating stars via magnetohy-
drodynamic (MHD) mechanisms was originally investigated in the
pioneering works of Mestel (1961) and Weber & Davis (1967) on
magnetic stars and stellar winds. A decade later, Lovelace (1976)
and Blandford (1976) showed independently, in the context of the
dynamics of active galactic nuclei (AGN), that a force-free poloidal
field, emerging from a Keplerian disc around a star or a black hole,
can feed energy and angular momentum into a Poynting flux jet.
Then, in a seminal work, Blandford & Payne (1982) calculated how
a poloidal magnetic field, anchored on to a differentially rotating
accretion disc around the core object, can give rise to a toroidal
component, producing super-Alfvénic plasma winds through the
magnetocentrifugal mechanism.

In this general scenario, several semi-analytical MHD studies
have attempted to model the properties of jets and their launch,
adopting different simplifications to derive exact solutions in limit-
ing cases (axial symmetry, stationarity, self similarity, fixed bound-
ary conditions in lieu of disc). Since the basis of self-similarity is
the scaling of one variable with respect to one of the spatial coordi-
nates, there are two distinct families of models: (i) self-similar in the
radial direction (RSS), describing winds from accretion discs as in
Blandford & Payne (1982) (see also Lovelace, Berk & Contopoulos

� E-mail: petros.tzeferacos@ph.unito.it

1991; Contopoulos & Lovelace 1994; Li 1995) and (ii) self-similar
in the meridional direction (MSS), describing stellar outflows
(Tsinganos & Trussoni 1990 in a series of studies). Vlahakis &
Tsinganos (1998) reconstructed the classes of MSS and RSS of
MHD outflows in a systematic way. Recently, Matsakos et al.
(2008, 2009) successfully merged the two approaches numerically
to simulate the stellar-jet/disc-wind interplay. The actual treatment
of the accretion disc region came with the studies of Ferreira &
Pelletier (1995), Ferreira (1997) and Casse & Ferreira (2000a),
who found steady-state outflow solutions linked to accreting slim
discs.

A different paradigm in jet-launching mechanisms places the
origin of the outflow at the innermost radii of the accretion
disc, where the accreted matter interplays with the star’s mag-
netosphere. In the case of X-winds (Shu et al. 1994 in a series
of studies, see also Shang et al. 2002 and references therein),
the outflow is magnetocentrifugally accelerated from a small re-
gion beyond the co-rotation point where the angular velocity of the
star matches that of the accretion disc. From similar launching radii,
Romanova et al. (2009) modelled two-component outflows which
consist of a fast axial jet that propagates along the stelar magnetic
field lines and magnetically driven (as in Lovelace et al. 1991) con-
ical winds from the X-region, both for slowly and rapidly rotating
stars (propeller regime). More recently, this study was extended to
investigate the ejection and collimation properties of the outflows
for stars with large accretion rates (Königl, Romanova & Lovelace
2011; Lii, Romanova & Lovelace 2012) as in FU Orionis systems.
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The first attempt to tackle the magnetized disc–jet configura-
tion in a non-linear time-dependent numerical model was made by
Shibata & Uchida (1985) and Uchida & Shibata (1985), simulating
the relaxation of a magnetic twist. Along the same lines, simula-
tions were carried out by Stone & Norman (1994) and Kato, Kudoh
& Shibata (2002), referring to the whole disc–jet system but for
very short time-scales, starting from non-equilibrium conditions.
Another approach has been to treat the accretion disc as a bound-
ary condition and let the system converge to a stationary solution.
Romanova et al. (1997) and Ouyed & Pudritz (1997) independently
reported stationary solutions obtained from time-dependent simu-
lations. The latter also treated the effects of mass loading (Ouyed
& Pudritz 1999) and performed a three-dimensional stability anal-
ysis (Ouyed, Clarke & Pudritz 1997). A self-consistent numerical
description of the disc–jet system came with the pioneering work
of Casse & Keppens (2002). Those simulations made it clear that
stationary (or quasi-stationary) solutions could be obtained con-
sistently using some realistic initial conditions for the disc and its
atmosphere.

In many of the above-mentioned studies, the disc thermodynam-
ics and, to a great extent, the disc itself have been neglected. The
few semi-analytical works, in which thermal effects were taken
into account, managed to successfully cross the fast magnetosonic
critical point (Vlahakis et al. 2000; Ferreira & Casse 2004), as
well as to reproduce jet velocities in young stellar objects (YSO;
Casse & Ferreira 2000b; Ferreira, Dougados & Cabrit 2006). Nu-
merical disc–jet models, on the other hand, have been including
the energy equation in their calculations but they customarily bal-
ance disc heating (�) with a specified cooling function (�) that
emulates cooling processes, such as radiative losses or turbulent
energy transport. With an entropy surplus of Q = � − � �
0, the outflows produced are characterized as ‘cold’, exhibiting
large magnetic lever arms and high terminal velocities, compatible
with the solutions found by Ferreira (1997) (albeit moderated by nu-
merical diffusion effects; Zanni et al. 2007; Tzeferacos et al. 2009;
Murphy, Ferreira & Zanni 2010). Only Casse & Keppens (2004)
and Meliani, Casse & Sauty (2006) have studied cases with � = 0,
although the influence of disc heating � was limited due to small
values of diffusivity.

In this study we examine, from a numerical point of view, how
thermal effects in the disc region affect the jet launch and the out-
flow dynamics. By varying the amount of energy dissipated inside
the disc, due to viscous and Ohmic heating, we can (i) mimic radia-
tive inefficient discs as in the advection-dominated accretion flow
(ADAF) scenario proposed by Narayan & Yi (1995). Such opti-
cally thin and geometrically thick regimes have been suggested
also for YSO (Combet & Ferreira 2008), microquasars (Mirabel
et al. 1998; Petrucci et al. 2010) and AGN (Di Matteo et al. 2000,
2003). Moreover, we can (ii) obtain superficial heating due to local
turbulent dissipation or external illumination as in Casse & Ferreira
(2000b), Casse & Keppens (2004) or Ferreira et al. (2006). This
allows us to overcome the usual caveat of an adiabatic expansion
and study ‘warm’ outflow solutions, which are necessary to ex-
plain T Tauri jet speeds (Garcia et al. 2001; Pesenti et al. 2004)
and are also a possible source of the external Compton component,
postulated by Donnarumma et al. (2009) and Vercellone et al. (2011)
for blazars.

The plan of the paper is the following. In Section 2 we define the
setup of the numerical code for our simulations and the basic phys-
ical parameters. Section 3 describes the ‘warm’ outflow solutions
and Section 4 the back-reaction on discs. Section 5 discusses the
results in connection with possible astrophysical applications.

2 SE T U P

To follow the temporal evolution of our disc–jet model we solve
numerically the equations of resistive and viscous MHD, under the
single-fluid approximation on a cylindrical coordinate system. The
form adopted in our numerical calculations is

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ ·

[
ρuu +

(
P + B · B

2

)
I − B B − �

]
+ρ∇�g = 0, (2)

∂B
∂t

+ ∇ × E = 0, (3)

∂e

∂t
+ ∇ ·

[(
e + P + B · B

2

)
u − (u · B)B + (ηm J) × B

]

−∇ · (u · �) = −�cool. (4)

The usual notation has been used for primitive variables, i.e. ρ

the mass density, u the bulk speed of the flow, B the magnetic
field vector and P the scalar thermal pressure. For a more compact
notation, we can write the primitive variable vector as

V = (ρ, ur , uφ, uz, Br , Bφ, Bz, P ) . (5)

In the momentum equation (equation 2) the forces taken into
account are the thermal pressure gradient, the Lorentz force, vis-
cous stresses and the gravitational force. The latter is described
by its potential, created by the central object of mass M, which in
cylindrical coordinates reads �g = −GM/

√
r2 + z2. The viscous

transport coefficient ηu is included in �, the viscous stress tensor.
Its components, in the compressible limit, can be expressed in a
general fashion as

�ij = 2
ηu

hihj

(
ui;j + uj ;i

2

)
+

(
ηb − 2

3
ηu

)
∇ · u δij . (6)

Here ηu and ηb are the first and second viscosity parameters, al-
though the latter is assumed to be equal to zero. On the other hand,
hi and hj are the geometrical elements in the respective directions.
ui; j and uj; i are the covariant derivatives of velocity.

The evolution of the magnetic field is governed by the induction
equation (equation 3). The electric field is given by Ohm’s law
E = −u × B + ηm J and the current by J = ∇ × B, where we
introduced the magnetic resistivity tensor ηm.

In the energy equation (equation 4), the variable e stands for the
total energy density, which is given by

e = P

γ − 1
+ ρu · u

2
+ B · B

2
+ ρ�g, (7)

the summation of internal, kinetic, magnetic and gravitational en-
ergy components. The system is completed by an ideal gas equation
of state, assuming the specific heat ratio γ equal to 5/3.

A proper treatment of heating and cooling would require a better
understanding of the disc’s dissipative heating processes and radia-
tive cooling in optically thin and thick regimes. As a first approach,
a toy-model approximation will be employed instead; we specify a
cooling term �cool proportional to the viscous and Ohmic heating
terms, namely

�cool = fmQOhm + fuQvisc, (8)
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where QOhm ∝ ηm J2 and Qvisc ∝ ∇ · (u · �) − u · (∇ · �). The
non-dimensional parameters fm and fu essentially control how much
of the entropy increase due to Ohmic and viscous heating, respec-
tively, remains inside the disc. This approach is similar to the one
employed in Narayan & Yi (1995) and Casse & Ferreira (2000b),
albeit the parametrization is done on the fraction of the actual cool-
ing (�) and heating (Q) terms as opposed to their volume integrals.
Even though this is still a crude approximation, it allows us to
overcome the usual constraint of an adiabatic disc evolution.

2.1 Model description

The initial configuration at t = 0 assumes a geometrically thin
accretion disc that rotates at a slightly sub-Keplerian velocity around
a generic central attractor. The disc, in pressure equilibrium with
a radially stratified atmosphere, is threaded by a magnetic field
that exits its surface at some angle. We shall take advantage of
the system’s symmetries, i.e. axial symmetry on the rotation axis
(z-axis) and equatorial symmetry at the equator (r-axis). This not
only allows us to utilize a two-dimensional approach with three
vector components but also reduces computational costs, as we only
need to simulate a section of the disc (1/4 of the actual physical
extension of the system).

With that in mind the procedure to assign the initial condition in
the computational domain, in terms of the primitive variables (V ),
follows the steps of Tzeferacos et al. (2009). In brief and for the
sake of clarity they are repeated here.

We begin by specifying a magnetic field configuration via its
flux function, ensuring a divergence-free condition throughout the
domain. A radially self-similar profile is chosen of the type

� = 4

3
Bz0r

2
0

(
r

r0

)3/4
m5/4

(m2 + z2/r2)5/8
. (9)

The components of the magnetic field are then written as

Bz = 1

r

∂�

∂r
, Br = −1

r

∂�

∂z
. (10)

The parameter m determines the initial bending of the magnetic
field lines whereas the coefficients Bz0 and r0 are constants. In our
formulation, we use the magnetization parameter μ = B2/2P to
define the strength of the magnetic field, included in Bz0.

The remaining components of V are derived sequentially, starting
from a radial self-similarity assumption for density at the equator.
Coupling that with a polytropic equation of state (with the polytropic
index γ = 5/3), we derive the equatorial thermal pressure and
solve numerically for force equilibrium (in both radial and vertical
directions) to obtain the velocity components.

The resulting physical quantities, Vi, follow power laws that for
z = 0 are of the form

Vi = Vi,0

(
r

r0

)βVi

, (11)

where βVi
defines the scaling. The power-law coefficients βVi

are
−1/2 for the three components of the flow speed (the scaling of
the Keplerian velocity), −5/4 for the components of the magnetic
field, −5/2 for the gas pressure and −3/2 for the density. With this
choice the radial dependence for the mid-plane temperature will in
turn follow a scaling of r−1.

Above the disc we impose a radially stratified atmosphere, ini-
tially in hydrostatic equilibrium; the density and pressure profiles

for the atmosphere are

ρa = ρa0

(
1√

r2 + z2

)1/γ−1

, Pa = Pa0

(
ρa

ρa0

)γ

. (12)

The constant ρa0 is the density of the atmosphere at R = r0, which
is assumed to be δ times lighter than the disc’s fiducial density ρ0,
i.e. ρa0 = δρ0. The temperature of the corona will then scale with
the spherical radius R = √

r2 + z2 as 1/R. The equilibrium region
between the atmospheric and disc pressures defines the disc’s initial
surface.

The normal collisional diffusion processes inside the disc are al-
ways negligible with respect to advection, characterized by a large
Reynolds number. Nonetheless, disc instabilities can be triggered
and lead to a turbulent state. In such a state, transport coefficients
are enhanced during the non-linear evolution of turbulence, leading
to anomalous magnetic diffusivity and viscosity that can transport
both angular momentum and magnetic field. Even though a con-
clusive answer regarding the origin of such turbulence is yet to
be given, recent studies revealed the existence of a great variety of
unstable modes, both in weakly magnetized and equipartition accre-
tion discs (Keppens, Casse & Goedbloed 2002). Instabilities such
as the magnetorotational instability (Balbus & Hawley 1991) or the
trans-slow Alfvén continuum modes (Goedbloed et al. 2004) are
excellent candidates to account for disc turbulence and the associ-
ated anomalous transport coefficients in accretion flows. The latter
have also the added advantage that they operate with equipartition
magnetic fields, which are needed for stationary outflows (Ferreira
1997; Tzeferacos et al. 2009).

On the basis of these arguments we assume that the disc transport
coefficients can be modelled in terms of an alpha prescription, as
initially proposed by Shakura & Sunyaev (1973). We define two
diagonal tensors ηu and ηm, for turbulent viscosity and resistivity.
The non-zero components for the viscous coefficient tensor are
equal (isotropic behaviour) and given by

ηu = αucsHexp

(
−2

z2

H 2

)
. (13)

Here αu is the viscosity parameter, while cs is the sound speed
and H = cs/�K = ε r defines the disc’s thermal height scale, both
evaluated at the equator. The non-dimensional parameter ε is the
sound-to-Keplerian speed ratio. The exponential decay ensures that
above the disc region transport is negligible and that the ideal MHD
formulation applies. Resistivity on the other hand is described
by an anisotropic tensor ηm i, j, whose non-zero components are
ηm φ, φ = ηm and ηmr,r = ηmz,z = η′

m, given by

ηm = αmVAHexp

(
−2

z2

H 2

)
. (14)

Here αm is the magnetic diffusivity parameter, while VA = Bz/
√

ρ

is the Alfvén speed at the equator. η′
m is defined through the

anisotropy parameter χm = η′
m/ηm.

The two transport coefficients are related through the magnetic
Prandtl number, defined at the equator as

Pm = ηu

ηm

∣∣∣∣
z=0

. (15)

2.2 Parameters and normalization

Our viscous and resistive model has, in total, nine free non-
dimensional parameters. Using the notation adopted in the previous
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section, these are

(i) ε, the sound-to-Keplerian speed ratio cs/VK;
(ii) μ, the magnetization B2/2P, the inverse of plasma β;
(iii) m, an auxiliary parameter controlling the field inclination;
(iv) αm, the magnetic diffusivity parameter;
(v) χm, the anisotropy parameter η′

m/ηm;
(vi) δ, the corona-to-disc density ratio ρa0/ρ0;
(vii) Pm, the magnetic Prandtl number;
(viii-ix) fm, fu, parameters that control disc cooling via equation

(8).

All of the above parametric quantities are subject to constraints
and serve to control the initial configuration. According to Ferreira
(1997), a trans-Alfvénic solution requires a minimum value for ε

of 5 × 10−4. In order to maximize the number of cells in the disc
region while retaining a geometrically thin initial disc, we choose ε

= 0.1.
From our previous investigations, we have established that the

initial magnetization is a crucial parameter for the disc–jet system
evolution (Tzeferacos et al. 2009). Efficient acceleration and sta-
tionary numerical solutions can only be found for μ close to and
below equipartition, also in agreement with the analytical studies of
Ferreira & Pelletier (1995) and Ferreira (1997) regarding the disc
structure.

The bending of the field lines, on the other hand, is dictated by
m; a proper choice of its value can reduce currents and forces in the
corona. As a convenient side effect, the Blandford & Payne criterion
can also be satisfied; such a configuration favours an early onset of
the magnetocentrifugal drive. In all runs we set m = 0.4 but the
field inclination is allowed to change during integration. This, in
conjunction with a light corona (δ is set 10−4 corresponding to a
corona much lighter than the underlying accretion disc), also allows
for large characteristic velocities in the propagation of transient
features, such as an initial torsional Alfvén wave.

Given the definition of the transport coefficients we can easily
see that

ηu = (αucsH )
∣∣∣
z=0

exp

(
−2

z2

H 2

)
,

ηm = (αmVAH )
∣∣∣
z=0

exp

(
−2

z2

H 2

)
→ Pm = ηu

ηm

∣∣∣∣
z=0

= αucs

αmVA

∣∣∣∣
z=0

→ αu = Pm

αmVA

cs

∣∣∣∣
z=0

= Pmαm

√
2μ

γ
.

Therefore, the choice of the viscosity parameter αu is already im-
posed by the magnetic Prandtl number Pm. The latter is expected
to be of the order of unity in the case of fully developed turbulence
(see also Lesur & Longaretti 2009).

The disc’s cooling is controlled by fm and fu via equation (8) and
the energy equation (equation 4). As expected, those parameters
must be in the range (0, 1), meaning that for fm = fu = 0 we ob-
tain solutions where all generated entropy is dissipated inside the
accretion disc (analogous to a radiatively inefficient regime; e.g.
Casse & Keppens 2004), while for fm = fu = 1 the solutions are
‘cold’ and adiabatic, though they include viscosity and resistivity
in the disc’s dynamics through the momentum and induction equa-
tions. The cases studied by varying the values of fm, fu are denoted
as ‘fm#fu#’. In this notation, # stands for the fraction of entropy
extracted. It is also useful to define 〈f 〉 ≡ f̄ = (1/2)(fm + fu) for
a more compact representation.

In terms of energetics, our simulations differ from the numerical
study of radiatively inefficient jet launching by Casse & Keppens

Table 1. Parameters.

fm0fu0 fm0.2fu0.2 fm0.4fu0.4 fm0.6fu0.6 fm0.8fu0.8 fm1fu1

fm 0.0 0.2 0.4 0.6 0.8 1.0
fu 0.0 0.2 0.4 0.6 0.8 1.0
Pm 1.0 1.0 1.0 1.0 1.0 1.0
μ 0.3 0.3 0.3 0.3 0.3 0.3
αm 1.0 1.0 1.0 1.0 1.0 1.0
χm 3.0 3.0 3.0 3.0 3.0 3.0
ε 0.1 0.1 0.1 0.1 0.1 0.1
m 0.4 0.4 0.4 0.4 0.4 0.4
δ 10−4 10−4 10−4 10−4 10−4 10−4

The choice of parameters for the cases studied. (fm, fu) control the disc’s
cooling while Pm is the magnetic Prandtl number, set to unity. μ is
the magnetization, αm the magnetic diffusivity parameter and χm the
anisotropy parameter for the resistivity tensor. ε is the ratio between the
isothermal sound speed and the Keplerian velocity, m the parameter that
controls the initial bending of the B field (see equation 10) and δ the
corona-to-disc density ratio.

(2004) in the following aspects. (i) The parameter f̄ allows for more
degrees of freedom in the radiation efficiency, even though it is still
a crude modelling of cooling to be refined in forthcoming studies.
(ii) Heating inside the accretion disc is a result of both anomalous
resistivity and viscosity. (iii) The alpha prescription of turbulence
in our case specifies αm ∼ 1, a requirement for a stationary jet-
emitting disc (Ferreira & Pelletier 1995; Ferreira 1997; Combet &
Ferreira 2008). The value is 10 times larger than Casse & Keppens
(2004, see also Zanni et al. 2007), which unavoidably also affects
the Ohmic heating as QOhm ∝ αm. The values of the parameters are
resumed in Table 1.

All primitive variables are conveniently normalized to avoid nu-
merical integration of values that may differ quantitatively by many
orders of magnitude. The fiducial values are selected so that the
resulting scales can efficiently describe the problem. With this in
mind, all lengths are normalized to the inner radius of the disc,
r = rin = r0 and speeds to the Keplerian velocity calculated at r0.
This choice dictates a time unit equal to t0 = r0/VK0. Density is nor-
malized with respect to the initial density ρ0 at the disc’s mid-plane
and at the inner radius. From the equation of state the resulting P0

will be equal to ε2, whereas from the momentum equation we get
B0 = Bz0 = ε

√
2μ. As a quick reference, the corresponding units

in YSO and AGN disc–jet systems are given as follows:

r0 = 0.1 au (YSO)

= 10 RSchw = 10−4

(
M

108 M


)
pc (AGN), (16)

where RSchw = 2GM/c2 is the Schwarzschild radius of the AGN.
The Keplerian velocity will be

VK0 = 94

(
M

M


) 1
2 ( r0

0.1 au

)− 1
2

km s−1 (YSO)

= 6.7 × 104

(
r0

10 RSchw

)− 1
2

km s−1 (AGN). (17)

Given this scaling, the rotation period of the inner disc radius will
be 2π, and since t0 = r0/VK0, the time unit will be

t0 = 1.7

(
M

M


)− 1
2 ( r0

0.1 au

) 3
2

d (YSO)

= 0.5

(
M

108 M


) (
r0

10 RSchw

) 3
2

d (AGN). (18)
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Density is normalized through the choice of a suitable mass ac-
cretion rate Ṁ0 = r2

0 ρ0VK0,

Ṁ0 = 3 × 10−7

(
ρ0

10−12 g cm−3

) (
M

M


) 1
2 ( r0

0.1 au

) 3
2

M
 yr−1

= 9

(
ρ0

10−12 g cm−3

) (
M

108 M


)2 (
r0

10 RSchw

) 3
2

M
 yr−1.

(19)

Having defined the initial thermal height scale through the ε param-
eter, the normalization value for temperature in the mid-plane will
be given by Tz=0 = ε2 mpGM

Kr
,

Tz=0 = 104
( ε

0.1

)2
(

M

M


) ( r

0.1 au

)−1
K (YSO)

= 5 × 109
( ε

0.1

)2
(

r

10 RSchw

)−1

K (AGN). (20)

On the other hand, the strength of the poloidal magnetic field at the
equator Bz=0 = √

μ 8π P reads in gauss,

B0 =2.6
( μ

0.3

) 1
2
( ε

0.1

)(
M

M


) 1
2
(

ρ0

10−12 g cm−3

) 1
2( r

0.1 au

)− 5
4

=1.8 ×103
( μ

0.3

) 1
2
( ε

0.1

) (
ρ0

10−12 g cm−3

) 1
2
(

r

10 RSchw

)− 5
4

.

(21)

2.3 Numerical setup

Numerical integration of the MHD equations is carried out using
the finite volume/finite difference, shock capturing numerical code
PLUTO (Mignone et al. 2007; Mignone, Tzeferacos & Bodo 2010).
The computational domain consists of a rectangular region, resolved
on to [512 × 1536] cells and spanning in the radial direction from 0
to 40 r0 whereas in the vertical direction (aligned with the rotation
axis of the accretion disc) from 0 to 120 r0.

Temporal integration is carried out for 400 time units t0, us-
ing a second-order Runge–Kutta method. Given the normalization
described previously and the differential rotation profile, this trans-
lates to approximately 63 disc rotations at the inner radius (r = r0),
whereas the outer part (r = 40 r0) has only performed ∼1/4 rev-
olutions. This inconvenient disparity, inherent in such simulations,
will limit our search for a stationary outflow in the innermost part
of the accretion disc.

Spatial reconstruction is done utilizing a linear interpolation,
applying a van Leer limiter for all primitive variables. Upwind
fluxes are computed with a Harten–Lax–van Leer Riemann solver.

The upwind constrained transport (UCT) scheme (Londrillo &
Del Zanna 2004) is chosen to handle the induction equation for the
magnetic field and maintain solenoidality (∇ · B = 0) at machine
accuracy.

The initial condition of our runs is displayed in Fig. 1. At the
borders of the computational box we still need to specify boundary
conditions for the components of V . Regions I and II exploit the
system’s symmetries, i.e. axial symmetry for the rotation axis (r =
0, I) and equatorial symmetry at the disc’s mid-plane (z = 0, II).
On the right boundary of the domain (r = 40 r0, III) we specify an
outflow (zero-gradient) condition for density, thermal pressure and
the poloidal components of the velocity vector. For the components
uφ , Bz and Bφ , we retain the first derivative so as to avoid artificial

Figure 1. The initial condition, t = 0, displaying density logarithm along
with sample field lines. The sink/internal boundary region is included as a
magnification on the left. Roman numerals denote the six boundary regions,
four (I–IV) for the computational domain and two more (V, VI) for the sink.

collimation (see also Ustyugova et al. 1999); Br is handled by the
UCT scheme to ensure solenoidality. On the upper boundary (z =
120 r0, IV), since no pronounced reflection effects are observed, an
outflow condition is imposed for all variables. The normal com-
ponent of the magnetic field, this time Bz, is once again computed
retaining ∇ · B = 0.

A specific treatment is needed for the sink region, i.e. where the
central attractor is located. Since the star/black hole–disc interaction
is beyond the scope of this study and the initial radial self-similar
slope is singular for r = 0, the origin is excluded from the compu-
tational domain. This is accomplished by introducing a rectangular
region [r0 × 0.5 r0], inside of which the equations are not evolved.
The borders of this internal boundary region, nonetheless, will inter-
act with the system’s evolution and are to be treated as ghost zones
(V, VI). In this context, we follow the strategy used for regions III
and IV, albeit with an additional restriction so as to emulate the sink
properties: the poloidal velocity components are required to be less
than zero, avoiding thus artefact outflows. The boundary conditions
are resumed in Table 2.

3 ‘WA R M ’ A N D ‘ C O L D ’ O U T F L OW S

Our model is evolved in time for 400 time units, roughly translated
into ∼63 rotations at the inner radius. As a reminder, ‘warm’ cases
are those denoted by values of f̄ , fm, fu close to zero, whereas
‘cold’ cases have these factors close to unity. Due to the favourable
initial conditions, we observe the prompt creation of outflows for all
values of f̄ ; the ejecta follow the propagation of an initial torsional
Alfvén wave, present due to the differential rotation between the
atmosphere and the rotating disc (see also Ouyed & Pudritz 1997).

After approximately 10 revolutions of the inner edge of the ac-
cretion disc, cases with f̄ → 1 have almost reached the upper part
of the computational domain (right-hand panels of Fig. 2), while
warmer configurations present slower propagation speeds and are
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3156 P. Tzeferacos et al.

Table 2. Boundary conditions.

V /region I II III IV V VI

ρ +V +V ∂rV = 0 ∂zV = 0 ∂rV = 0 ∂zV = 0
ur −V +V ∂rV = 0 ∂zV = 0 ∂rV = 0 ∂zV = 0
uφ −V +V ∂2

r V = 0 ∂zV = 0 ∂2
r V = 0 ∂zV = 0

uz +V −V ∂rV = 0 ∂zV = 0 ∂rV = 0 ∂zV = 0
Br −V −V ∇ · B = 0 ∂zV = 0 ∇ · B = 0 ∂zV = 0
Bφ −V −V ∂2

r V = 0 ∂zV = 0 ∂2
r V = 0 ∂zV = 0

Bz +V +V ∂2
r V = 0 ∇ · B = 0 ∂2

r V = 0 ∇ · B = 0
P +V +V ∂rV = 0 ∂zV = 0 ∂rV = 0 ∂zV = 0

Boundary conditions of the computational box and the sink region (see Fig.
1), for all primitive variables (V ). For the symmetry regions I and II, the
ghost cell values of the V component of V are specified via symmetric (+V)
and antisymmetric (−V) reflections of their respective values inside the
computational domain. For the remaining ghost zone regions (III–VI), we
utilize either outflow or constant first derivative conditions, depending on the
variable (see the text). Normal (with respect to the boundary) components of
the magnetic field are computed by the UCT scheme to impose ∇ · B = 0.
Furthermore, the poloidal components of velocity for regions V and VI are
required to be less than zero, preventing artefact outflows from the sink.

considerably denser (left-hand panels of Fig. 2). In all six simula-
tions discussed, we obtain current-carrying outflows in agreement
with the analytical results of Ferreira (1997) and Casse & Ferreira
(2000b).

The long-term evolution of the flow and the poloidal magnetic
field is seen in Fig. 3 where two extreme cases are presented, namely
fm0.2 fu0.2 and fm0.8 fu0.8. The most pronounced difference is in the
jet density: warmer cases can be as much as two to three times denser
than colder ones.

The resulting field topology is similar if projected on the poloidal
plane but differs in pitch: the ratio of toroidal to poloidal fields
Bφ/Bp is larger for colder cases. This occurs due to a relatively
slower rotation rate of the accretion disc at the innermost radii for
warmer cases. As a result, the winding of the magnetic field lines is
less pronounced but still helical.

The jet acceleration can be monitored through the flow’s terminal
velocity. In Fig. 4 we show the ratio of poloidal to Keplerian speeds,
the latter calculated at z = 0, along a selected field line. The range of
the obtained velocities is quite large: dense and ‘warm’ flows have
speeds near the Keplerian, while for ‘cold’ flows we reproduce the
results shown in fig. 8 of Tzeferacos et al. (2009). Denoted along
the field line, the letters ‘A’ and ‘F’ show the locus of the Alfvén
and fast critical points, respectively. The Alfvén point is crossed
at lower altitudes in warmer cases, confirming Casse & Ferreira
(2000b).

In order to examine the acceleration mechanism’s properties, it
is useful to analyse the forces at play and the sequence of events.
Matter is deflected from accretion by thermal pressure gradients
(the only non-pinching force inside the accretion disc), leaves the
viscous/resistive regime and is loaded on to the field lines. Due to
differential rotation, the initially poloidal magnetic field generates
a toroidal component (see also Fig. 3).

The flow’s dynamics are subject to the forces resumed in Fig. 5
for an intermediate case fm0.6fu0.6. The upper panel displays the
force components along a given magnetic field line situated at r =
1.5 r0 after ∼63 rotations. In the sub-Alfvénic region, the dominant
driving force is the centrifugal one, whereas at greater heights over
the disc the Lorentz force is responsible for the acceleration, mainly
through the magnetic pressure gradient of Bφ . This two-part drive
is the magnetocentrifugal acceleration discussed by Blandford &

Figure 2. Four snapshots of the poloidal current distribution and logarith-
mic density after ∼10 inner radius rotations. The extreme cases (‘warm’ on
the left, ‘cold’ on the right) are displayed. All present a ‘butterfly’ current
configuration, but the expansion of the initial torsional Alfvén wave and the
outflow that follows are faster for colder solutions. For values of f̄ close to
zero, the resulting outflow is slower and denser.

Payne (1982). It should be noted that thermal pressure gradients are
important only in the base of the outflow, albeit their contribution
to the drive becomes more important for small f̄ . Magnetic and
centrifugal forces are also dominant in the trans-field balance (lower
panel of Fig. 5). The magnetic surface is subject to the decollimating
centrifugal force and the confining (since the footpoint is located
at a small disc radius) magnetic force, with the hoop stress being
prevalent.

The efficiency of the accelerating mechanism is linked to the
transformation of magnetic energy into kinetic energy. For every
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Effects of entropy generation in jet-launching discs 3157

Figure 3. Evolution of the density logarithm and sample magnetic field for cases fm0.8fu0.8 (‘cold’, upper part) and fm0.2fu0.2 (‘warm’, lower part). The
two-dimensional solution is rendered on to a three-dimensional Cartesian grid to follow also the evolution of the toroidal magnetic field.

Figure 4. Poloidal velocity along a field line whose footpoint is anchored
at r = 2 r0 and normalized over the Keplerian speed at the footpoint, at time
t = 400. Warmer cases are notably slower, with terminal velocities close to
the Keplerian.

case, we evaluate the Poynting-to-kinetic flux ratio

σ = −2�rBφBp

ρu2up

(22)

along a fiducial field line and report in the upper panel of Fig. 6 its
asymptotic value, as found at the upper part of the computational
box. Here � denotes the rotation rate of the magnetic surface (an
integral of motion). As f̄ increases, moving from ‘warm’ to ‘cold’
outflow solutions, the asymptotic value of σ decreases. This implies
that the magnetic energy not yet transformed is larger for warmer
cases, agreeing with the trend shown in the poloidal velocity.

Note that for all cases a trans-Alfvénic flow is observed. The
usual analytical condition for that, in stationary ‘cold’ outflows,
requires

ωA = �rA

VAp,A
> 1, (23)

where rA is the Alfvén radius and VAp,A the poloidal component
of the Alfvén speed at the Alfvén point. The ωA is called the fast-
ness parameter and distinguishes jets in ‘fast’ (ωA > 1) and ‘slow’
(ωA < 1) rotators (Michel 1969; Pelletier & Pudritz 1992; Ferreira
1997). The condition of equation (23), nonetheless, applies only
for solutions with very large magnetic lever arms (equation 28).
In Casse & Ferreira (2000b) a generalized condition is described
that allows for super-Alfvénic flows even for values of ωA less than
unity, i.e. super-Alfvénic slow rotators when the disc’s surface is
heated. Applying that line of thought in our simulations, we calcu-
late the fastness parameter for a field line rooted at r = 1.5 r0, for
all cases. In the lower panel of Fig. 6 we see that we do obtain slow
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3158 P. Tzeferacos et al.

Figure 5. Upper panel: logarithmic magnitude of forces along a field line
with its footpoint anchored at r = 2 r0 at time t = 400 for case fm0.6fu0.6.
Displayed are the Lorentz (solid), centrifugal (dotted), thermal (dashed)
and gravitational (dot–dashed) forces. Forces that in the legend display a
(−) in front decelerate the outflow. Perpendicular lines, noted as ‘S’, ‘A’ and
‘F’, show the locus of the slow, Alfvén and fast critical points, respectively.
Lower panel: logarithmic magnitude of forces perpendicular to the same
field line. Forces that in the legend display a (−) in front collimate the
outflow.

Figure 6. Upper panel: asymptotic Poynting-to-kinetic flux ratio, as a func-
tion of f̄ . For warmer cases the transformation of magnetic energy is less
prominent. Lower panel: fastness parameter ωA, as a function of f̄ . Even
though most cases are fast rotators, we obtain solutions that are super-
Alfvénic slow rotators.

rotator solutions for the warmest of cases which cross nevertheless
the Alfvén point, confirming the theoretical predictions of Casse &
Ferreira (2000b).

4 D I S C B E H AV I O U R

Apart from altering the jet dynamics, Ohmic and viscous heating
will also modify the accretion disc’s structure. We can write the
conservation of energy (equation 4) in primitive form such as

∂T

∂t
+ u · ∇T = (γ − 1)(Q − T ∇ · u) . (24)

From this equation we can expect that by allowing for fractions
of QOhm and Qvisc in the net energy per unit mass term Q (upper
panel of Fig. 7 ), (a) the disc temperature will rise (upper panel of
Fig. 8) and (b) the vertical thermal pressure gradient will increase
(lower panel of Fig. 8), promoting mass ejection. Even though we
find a monotonic increase in surface temperature T+ as f̄ decreases,
compatible with the results of Casse & Ferreira (2000b), unlike this

Figure 7. Upper panel: temporal evolution of vertical profiles of Q (sum
of the fractions of Ohmic and viscous heating dissipated in the accretion
disc) for the cases presented in Fig. 3, at r = 5 r0. The displayed energy
input is normalized to the value of Q for f̄ = 0.2 at z = 0 and t = 50 for
the sake of exposition. Note that for the warmer case f̄ = 0.2, Q is not
only larger than its ‘cold’ case (f̄ = 0.8) equivalent but also retains large
values at higher altitudes as the simulation progresses. This significantly
enhances mass loading at the disc surface. Lower panel: logarithmic density
in the accretion disc region for all cases at the end of the simulations. Also
depicted are sample poloidal field lines whose inclination at the surface
decreases (straighter lines) as f̄ decreases. The disc’s geometrical thickness
increases for warmer solutions.
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Effects of entropy generation in jet-launching discs 3159

Figure 8. Upper panel: surface and mid-plane mean disc temperatures
for all cases in the ejection region, r ∈ [1 r0, 10 r0], after ∼63 rotations.
Heating effects due to transport coefficients can increase the temperature
up to approximately one order of magnitude. Lower panel: thermal pressure
gradient along a magnetic field line anchored at r = 5.0 r0. A closeup in
the disc region is shown for all cases. Colder cases present smaller values
(resulting to less mass being loaded on to the field line) and faster decay,
since the disc retains the initial geometrical thickness.

study our heating effects are not a priori localized on the disc’s
surface but extend throughout the disc structure. This also results in
an increase in the mid-plane temperature, T0, which in turn specifies
a new thermal height scale H(T0) and leads to a geometrically thicker
disc. In the upper panel of Fig. 8 we display mean values of surface
and mid-plane temperature at the ejection region. Note that, even for
‘cold’ solutions, the ratio T+/T0 remains above unity, a numerical
effect due to diffusion at the disc’s surface. This limitation has been
pointed out before (e.g. Zanni et al. 2007; fig. 12 of Tzeferacos et al.
2009 or the discussion in Murphy et al. 2010).

The impact on the disc’s geometry can be seen in the lower panel
of Fig. 7, where the density logarithm of the disc for all cases
is displayed, along with sample field lines, after ∼63 rotations.
As expected, the disc becomes thicker as temperature rises, more
prominently in the inner part as it has rotated more. The poloidal
magnetic field lines show a decrease in curvature R and inclination
at the surface. As discussed in Ferreira (1997), for ‘cold’ solutions

Figure 9. Temporal evolution of the ejection-to-accretion rate (upper panel)
and the ejection rate (lower panel) for the cases studied. The increase of
entropy inside the accretion disc results in stronger ejection but cases like
fm0fu0 and fm0.2fu0.2 present ejection-to-accretion rates that are much larger
than those observed.

there is an inverse relation between the ejection index and the cur-
vature,

ξ = ln(1 − 2Ṁej/Ṁacc)

ln(ri/re)
. (25)

The same qualitative behaviour exists also in ‘warm’ analytical so-
lutions, where mass loading is enhanced (larger ξ ) and the poloidal
lines are straighter (also found in fig. 8 of Casse & Ferreira 2000b
and fig. 5 of Ferreira 2002).

A proper treatment of the inflow–outflow dynamics is required
to study the impact of Ohmic and viscous heating on the mass
loading process. We define a box-like control volume, similarly to
Zanni et al. (2007), whose surfaces Si, Se reside at r = ri = 1 r0 and
r = re = 10 r0, respectively, while surface Sd on top of the disc is
located at 1.5H. The mass flux entering the control volume from Se

is given by

Ṁacc = −2πr

∫ 1.5H

−1.5H

ρur dz, (26)

whereas the mass ejected through the Sd is

Ṁej =
∫

Sd

ρu · dS. (27)

In Fig. 9 we can see the temporal evolution of the ejection-to-
accretion rate (upper panel) and the actual ejection rate (lower
panel) as a function of time. It is evident that the disc’s heating,
by increasing the only non-pinching force ∇P, deflects more matter
on to the field lines amplifying ejection rates up to factors of even
greater than 10. Nonetheless, accretion-to-ejection rates such as
those obtained for f̄ ≤ 0.2 are not observed (∼0.96, 0.75 at the end
of integration) and do not reach some plateau to indicate stationarity
(in agreement with Zanni et al. 2007).
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Table 3. Ejection index, magnetic lever arm (mean value over
the control volume) and terminal velocity (at r = 1.5 r0).

Plateau 2Ṁej/Ṁacc ξ λ Vp/VK

fm1fu1
√

0.08 0.036 ∼15 3.9
fm0.8fu0.8

√
0.10 0.046 ∼11 3.5

fm0.6fu0.6
√

0.13 0.060 ∼9 2.9
fm0.4fu0.4

√
0.31 0.161 ∼4 2.1

Intermediate ‘warm’ cases however present some astrophysical rel-
evance. For those we calculate the ejection index using equation
(25) and obtain the results that are summarized in Table 3. As f̄

decreases to warmer configurations, the ejection index ξ increases.
The inverse trend is observed for the magnetic lever arm, an MHD
invariant along a given field line, defined at the Alfvénic surface as

λ = L(A)

�(A)r2
0

=
(

rA

r0

)2

. (28)

The values reported in Table 3 are found by mediating at different
radii in the control volume. The resulting range is between ∼ 4
for f̄ = 0.4 and ∼ 15 for f̄ = 1. Such a range of lever arms and
velocities is fairly compatible with the analytical study of Casse &
Ferreira (2000b), although their values of λ are comparatively larger
at the cold limit; this again can be attributed to numerical diffusion
at the disc’s surface, which acts as a small additional heating source
that promotes mass ejection. The inverse correlation between mass
loading and magnetic lever arm, found by many previous investiga-
tors (e.g. Blandford & Payne 1982,Ouyed & Pudritz 1997, Ferreira
1997 to name a few), is confirmed.

The analysis of the angular momentum and energy balance of the
accretion disc can provide important indications about its properties.
In a stationary situation, the angular momentum balance can be
written as

J̇acc = 2J̇j + J̇vis , (29)

showing that the angular momentum flux due to accretion

J̇acc =
∫

Si

(rρuφu−rBφ B)·dS−
∫

Se

(rρuφu−rBφ B)·dS (30)

can be driven by the jet torque

J̇j =
∫

Sd

(
rρuφu − rBφ B

) · dS , (31)

given by the sum of the kinetic and magnetic fluxes, or the viscous
torque

J̇vis =
∫

Si

rΠ · dS −
∫

Se

rΠ · dS , (32)

where the vector Π is responsible for the poloidal transfer of the
disc’s angular momentum due to viscous stresses and is equal to
(�r,φ, 0, �z,φ).

In a similar manner, the energy balance can be written as

Ėlib = Ėrad + Ėenth + 2Ėj . (33)

This equation shows that the energy liberated by accretion between
re and ri

Ėlib =
∫

Si

[(
�g + 1

2
u2

)
ρu + E × B − u�

]
· dS

−
∫

Se

[(
�g + 1

2
u2

)
ρu + E × B − u�

]
· dS , (34)

Table 4. Angular momentum and energy fluxes at the end of
the integration of cases converging towards a steady state.

J̇vis/2J̇j Ėrad/Ėlib Ėenth/Ėlib 2Ėj /Ėlib

fm1fu1 0.04 0.04 0.08 0.87
fm0.8fu0.8 0.03 0.05 0.10 0.83
fm0.6fu0.6 0.02 0.04 0.15 0.76
fm0.4fu0.4 0.05 0.04 0.33 0.58

given by the sum of mechanical, magnetic and viscous powers can
be extracted as radiation

Ėrad =
∫

Vc

�cool dV =
∫

Vc

f̄ (Qvisc + Qres) dV , (35)

advected towards the central object by the enthalpy flux

Ėenth =
∫

Se

γ P

γ − 1
u · dS −

∫
Si

γ P

γ − 1
u · dS , (36)

or extracted by the jet

Ėj =
∫

Sd

{[(
�g + 1

2
u2

)
ρ + γ P

γ − 1

]
u + E × B

}
· dS .

(37)

The relative weight of the terms on the right-hand side of equa-
tions (29) and (33) allows us to distinguish between different disc
solutions. For example, in a standard accretion disc (Shakura &
Sunyaev 1973), the accretion power (equation 34) fuels the radia-
tive emission of the disc (equation 35), while in an ADAF solution
(Narayan & Yi 1995) most of the energy liberated by accretion is
advected towards the central object in the form of enthalpy (equa-
tion 36). In a disc emitting powerful jets, the outflows extract most
of the energy and angular momentum. In Table 4 we present the
values of these different terms for the simulations that converge
towards a steady state. In the first column we can clearly see that
the torque exerted by the jets on to the disc largely dominates the
viscous one. Consequently, we verified that the viscous contribu-
tion to the accretion power is negligible, as well as the magnetic
term: the power released by accretion is essentially given by the me-
chanical energy. In the second column we show that our solutions
are clearly radiatively inefficient with most of the accretion power
released in the jet (fourth column). In any case, a trend is clearly
visible: as we increase the amount of energy which is dissipated
locally inside the disc, the enthalpy accretion flux becomes more
and more important at the expenses of the jet power. Cold simula-
tions correspond to a solution where the outflows extract essentially
all the energy and angular momentum from a geometrically thin
disc, as in the models by Blandford & Payne (1982) or Ferreira
(1997). In the simulations characterized by smaller values of the f̄

parameter, the outflow is accelerated from a geometrically thicker
disc where the disc enthalpy flux becomes of the same order of
magnitude as the jet power: this corresponds to a situation closer
to the adiabatic inflow-outflow system (ADIOS) models (Bland-
ford & Begelman 1999). Note that since the rotation of a thick
disc becomes sub-Keplerian and tends to decrease towards the disc
surface, magnetocentrifugal effects only are not efficient enough to
launch an outflow from the surface of a thick disc (Ferreira 1997):
necessarily, the outflows need an extra pressure term that is pro-
vided, in our simulations, by the dissipative heating at the disc
surface.

Finally, note that the sum of the energy terms gets close to 1 in
colder cases, pointing out that these simulations reach a steady state.
As the f̄ parameter decreases, the sum departs from 1, marking the
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Effects of entropy generation in jet-launching discs 3161

Figure 10. MHD invariants calculated along a magnetic field line at r =
1.5 r0. The ratio of the invariant over its final value is shown for cases
0.4 ≤ f̄ ≤ 1. The deviation above the accretion disc remains small: ∼5 per
cent.

transition to the non-stationary solutions we obtained for f̄ equal
to 0 and 0.2.

The stationarity of intermediate ‘warm’ and ‘cold’ cases is ver-
ified unequivocally through the MHD invariants. MHD axisym-
metric analytical models have shown that certain quantities are
conserved along any given magnetic surface in steady-state config-
urations (Tsinganos 1982). In terms of the poloidal magnetic flux
A = 1/2π

∫
Bp · dS of a field line whose footpoint is situated at a

radius r, we can write the following integrals:

�(A) =
√

4πρ
Vp

Bp

,

�(A) = 1

r

(
Vφ − �(A)Bφ√

4πρ

)
, L(A) = r

(
Vφ −

√
4πBφ

�(A)

)
,

E(A) = V 2

2
+ γ

γ − 1

P

ρ
+ � − r0�(A)

√
4πBφ

�(A)
. (38)

In Fig. 10 we display the ratio of each invariant over its final (asymp-
totic) value, along a fiducial field line at r = 1.5 r0. Since above the
disc the value is close to unity (in the range ∼ 0.95−1.05), we can
safely assume that a quasi-stationary state is reached. Note once
more that the deviation from the asymptotic values is more promi-
nent for smaller values of f̄ , which agrees with the trends seen
earlier on the energy budget analysis.

5 D ISC U SSION

Our results confirm that thermal effects can alter both the disc-
outflow dynamics and disc structure, while also controlling directly
the physical properties of the jet. Even though based on a toy model
for the cooling function, the present study shows that the mass load
(in terms of the amount of mass ejected from the disc) can increase
dramatically if large fractions of Ohmic and viscous heating are
allowed to raise the disc’s enthalpy. This in turn leads to slower,
denser outflows. Clearly, a more accurate treatment of the energy
equation is required in order to provide reliable diagnostics for the
disc’s ejection efficiency ξ , including realistic heating, cooling and
transport processes. A priori assumptions of the level of turbulence,
such as the alpha prescription, are prone to inconsistencies: if the
thermal scale height H increases too much (as with case f̄ = 0 for
example), diffusivity (which is strongly correlated with heating as

ηm ∝ H) will further enhance thermal effects. We must therefore
treat MHD turbulence in a more consistent way.

‘Warm’ outflows and acceleration. In all cases we obtain the
generation of a super-Alfvénic, superfast magnetosonic outflow.
However, different configurations lead to different jet densities and
velocities. For ‘warm’ flows the velocities obtained (∝ VK0) are
typically slower – by a factor of 3 to 4 (Fig. 4) – than ‘cold’ solutions.
Correspondingly ‘cold’ flows are two to three times lighter than
what is obtained for large entropy generation (Fig. 3). The fastness
parameter ωA was found to reach values close to and below unity
for cases of f̄ ≤ 0.2, in agreement with Casse & Ferreira (2000b)
who found super-Alfvénic solutions for slow rotators.

Collimation and currents. Regarding the topology of the cur-
rent loops, which defines the flow’s acceleration, no pronounced
difference was found: in all cases a butterfly topology was ob-
tained, compatible with analytical predictions (Ferreira 1997). The
inclination of the poloidal magnetic field at the disc’s surface, on
the other hand, was found to decrease (Fig. 7), qualitatively in
agrement with Casse & Ferreira (2000b). Even though all cases
retain an open poloidal field, the magnetic pitch differs: in large
f̄ configurations the field winds up more with respect to warmer
cases.

Disc–jet connection and mass load. The effects of entropy gener-
ation alter the interplay between the accretion disc and the outflow
in two ways: (i) the temperature and the geometrical thickness of
the disc increase (upper panel of Fig. 8) and (ii) the thermal pres-
sure gradient becomes stronger (lower panel of Fig. 8). The latter
is responsible for an enhanced deflection of the accreting plasma
on to the magnetic field lines. Fig. 9 shows that Ohmic and viscous
heating can increase the ejection rate by factors of larger than 10,
while the same is also true for ejection-to-accretion rates. Regarding
the disc’s energetics, most of the energy liberated by accretion is
given by mechanical power, with a negligible viscous contribution.
Correspondingly, the accretion power is mainly extracted by the
bipolar jets and only a tiny fraction is radiated. Nevertheless, as the
amount of turbulent energy dissipated inside the disc increases (i.e.
the f̄ parameter decreases), the enthalpy flux advected by accretion
towards the central object becomes comparable to the jet power, as
in the case of ADIOS models.

Stationarity. The flattening of the ejection-to-accretion rates (Fig.
9) and the balance between accretion and jet/radiation powers sug-
gest that a quasi-stationary state is reached for f̄ ≥ 0.4. This is
confirmed by the behaviour of flow invariants shown in Fig. 10.
Nevertheless, this result applies only for the flow originating from
the innermost part of the accretion disc, as the dynamical evolution
of the outer part is too limited to permit any conclusion regarding
stationarity.

Comparison with disc-wind models from the co-rotation radius.
The numerical solutions recovered in this study fall in the category
of extended disc winds (see for example fig. 1 a in Ferreira et al.
2006), which place the jet origins at radii that span from the disc’s
inner radius ri up to an external radius re�ri. A different paradigm,
originally suggested by Shu et al. (1994), is that of disc-powered jets
launched from the ‘X-region’ with re � ri (e.g. figs 3 and 4 in Shu
et al. 1994). Such an ejection region has the added benefit of bringing
the star–disc dynamics into the picture, allowing for the wind to
tap into the angular momentum reservoir of the star and explain
naturally its spin-down. Although the launching processes involved
are similar to ours, i.e. magnetocentrifugal acceleration for X-winds
(Shu et al. 1994) and magnetic drive for conical/propeller-driven
winds (Romanova et al. 2009), there exist a number of differences
which should be discussed.
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A crucial distinction between the two scenarios is the amount
of magnetic flux threading the accretion disc (Ferreira et al. 2006).
While in the X-wind paradigm the disc is devoid of any large-scale
magnetic field, reducing the launching radii to its innermost annuli,
the extended disc wind is characterized by a magnetic field which
threads the disc on a large radial extension. Given that both the
range of the ejection region and the shape of the Alfvén surface are
different [compare for example fig. 11 in Tzeferacos et al. (2009)
and fig. 1 in Shang et al. (1998)], the predicted terminal veloci-
ties, ejection efficiencies and angular momentum fluxes will also
diverge.

Compared to our disc winds, published outflow solutions from
the X-region obtain a smaller range of magnetic lever arms and their
typical values are lower [λ � 3−6, fig. 1 in Shang et al. (1998); sim-
ilar values can be inferred from figs 12(c) and 15(c) in Romanova
et al. (2009)]. Moreover, since the launch only occurs at small radii
near the co-rotation point, the available Keplerian angular momen-
tum is relatively small. This results in winds that carry 10−100
times less specific angular momentum compared to our extended
winds (see also fig. 3 in Ferreira et al. 2006). In the outflow’s launch-
ing region the viscous torque is at most comparable to that of the
jet (Romanova et al. 2009), whereas in the angular momentum bud-
get of our simulations the wind’s torque is always dominant (Table
4). This discrepancy can also be attributed to the magnetic Prantl
number used in Romanova et al. (2009), which is relatively elevated
with respect to ours.

Conversely, the ejection efficiency values found for both X-winds
and conical winds are systematically larger than those seen in Table
3. For example, in Shu et al. (1994) they derive Ṁej/Ṁacc � 0.33
whereas in Romanova et al. (2009) and Lii et al. (2012) they report
Ṁej/Ṁacc � 0.2. It should be noted though that these values consti-
tute upper limits, since viscous effects in the disc remain uncertain
(Ostriker & Shu 1995).

The terminal speeds predicted by both types of models can be
conveniently recovered using Vp,∞ ≈ V0

√
2λ − 3 (equivalent also

to equation 4.12 in Shu et al. 1994), where V0 = �0r0 is the rotation
velocity of the magnetic field’s footpoint r0. In the case of X-winds,
we have �0r0 � �xrx (namely the rotation velocity at the co-rotation
point) and a relatively small span of lever arms, which results in a
specific range of velocities. In our simulations, however, we obtain
a broader spectrum of poloidal speeds due to the range of Keplerian
velocities (V0 ≈ VK0) in the extended launching region.

Comparison with YSO data. It has been known since the studies
of Garcia et al. (2001) and Pesenti et al. (2004) that ‘cold’ disc
winds, with magnetic lever arms larger than 50, cannot effectively
model YSO jet observations, since they predict too large rotation
rates and terminal velocities. Recent investigations in the literature,
such as the observations of DG Tau (Bacciotti et al. 2002), RW
Aur (Coffey et al. 2004; Woitas et al. 2005; Ferreira et al. 2006)
and TH 28 (Coffey et al. 2004), can provide stringent constrains for
our simulations. In those jets, the velocities observed vary greatly,
ranging from <100 up to ≥500 km s−1. According to the asymp-
totic relation Vp,∞ ≈ VK0

√
2λ − 3, the disc-wind terminal speed

is controlled by: (i) the λ parameter, which is in turn determined
by the mass ejection-to-accretion ratio as it has been shown in this
paper, and (ii) the toroidal velocity of the (Keplerian) disc VK0

in the launching region. Outflows launched from relatively larger
disc radii tend to be characterized by a smaller terminal speed but,
correspondingly, a larger specific angular momentum.

For instance, the object TH 28-Blue (blueshifted lobe; Coffey
et al. 2004; Ferreira et al. 2006, originating from a central star
of M ∼ 1 M
) shows velocities in the range 270–500 km s−1

and λ ≥ 4−16. In the simulations presented, solutions with small
amount of turbulent heating (f̄ close to unity) can account for the
faster branch of jets: assuming a central attractor of M ∼ 1 M
 and
an ejection region of 1 au the obtained velocities are ∼290 and
260 km s−1. Also the numerically obtained values of the magnetic
lever arms are ∼14–16 (also see Table 3). Conversely, the object
DG Tau-Blue with M ∼ 0.67 M
 (Bacciotti et al. 2002) is much
slower, its moderate velocity peaking at ∼70 km s−1 and with λ ≥
4–8, which agrees with our warmer cases of f̄ ∼ 0.4 with λ ∼ 4 and
an ejection region of 1 au. On the other hand, the observationally
inferred specific angular momentum seems to suggest that this out-
flow could be also characterized by a larger lever arm and a larger
launching radius (∼2 au; Ferreira et al. 2006), as previously dis-
cussed. Only precise observational constraints on the outflow spe-
cific angular momentum and the mass ejection/accretion efficiency
could help to distinguish between these possibilities. Whichever the
case though, this study confirms that T Tauri jets are connected with
extended ‘warm’ disc winds, stemming from regions between 0.1
au and several au from the central object (Ferreira et al. 2006; Stute
et al. 2008). Moreover, the ejection rates obtained from the simula-
tions are in good agreement with the upper limits that can be derived
from the λ lower limits (see equation 17 in Ferreira et al. 2006).

It should be noted at this point that a disparity in the ejection
efficiency, induced by the mass load variation due to disc heating,
could be an alternative explanation of the speed discrepancy seen in
the blue- and redshifted lobes of objects such as TH 28 or RW Aur
(see Ferreira et al. 2006 for other mechanisms). This however can
only apply to objects that exhibit an even larger discrepancy in the
ejection rate between lobes. In order to study such an option, the
equatorial symmetry should be lifted and allow for some anisotropy
between the two disc halves. Such investigations have already been
performed by Lovelace et al. (2010) and Matsakos et al. (2012),
while exploring the effects of complex magnetic field topologies at
the star region.

Comparison with AGN data. The impossibility of high-resolution
observations for AGN jets, at most down to parsec scales, makes
comparison with these observations somewhat more uncertain,
since our simulations refer to milli-parsec scales. Assuming a fidu-
cial mass for the central black hole of ∼108 M
, the values obtained
for the usual relativistic parameters β = u/c and γ = 1/

√
1 − β2

are in the range 0.39 ≤ β ≤ 0.72 and 1.09 ≤ γ ≤ 1.44, respectively,
for 0.4 ≤ f̄ ≤ 1. These values are obviously small for AGN jets
at parsec scales; however, for the radio galaxy NGC 6251, Sudou
et al. (2000) inferred a bulk acceleration from β = 0.13 to 0.42 on
sub-parsec scales, compatible with our intermediate ‘warm’ solu-
tions. Since the magnetic energy is not fully converted into kinetic
(upper panel of Fig. 6), there is still room for acceleration and
larger bulk velocities farther away (see also Vlahakis & Königl
2004). In any case, even converting all the available magnetic en-
ergy the terminal jet velocity could reach only mildly relativistic
values. For example, since (λ − 3/2)V 2

K0 ∼ (γ∞ − 1)c2, our cold-
est cases (f̄ = 0.8, 1) with λ ∼ 11−15 would exhibit an asymp-
totic γ∞ ∼ 1.47−1.67 which is only compatible with rather slow
Fanaroff–Riley type I sources such as 3C 338 (β ∼ 0.8, γ ∼ 1.7) at
parsec scales (Giovannini et al. 2001).

These solutions cannot account for ultrarelativistic sources like
the quasars 3C 279 (Piner et al. 2003 with γ ∼ 13), 3C 345 (Un-
win et al. 1997 with γ ∼ 10) or even more powerful blazars such
as 1510-089 (Jorstad et al. 2005 with γ ∼ 36). Such jets most
likely require a relativistic modelling of the innermost orbits to be
properly addressed (see for example Camenzind 1986; Vlahakis &
Königl 2004 or Fendt & Ouyed 2004; Komissarov et al. 2007, 2009;
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Keppens et al. 2008; Mignone et al. 2010; Porth & Fendt 2010 for
analytical and numerical approaches). Even if the ultrarelativistic
jet component can only originate from the innermost regions and/or
the black hole, the extended disc wind found by our simulations
contributes to the system’s energy budget.

AC K N OW L E D G M E N T S

PT would like to thank Prof. Max Camenzind for his hospitality
during the stay in Landessternwarte Königstuhl (LSW) of Heidel-
berg, Germany, while working on this project. The authors would
like to thank the reviewer for valuable comments. This study was
funded by the interuniversity consortium CINECA, Bologna, Italy.
The authors acknowledge financial contribution from the agreement
ASI-INAF I/009/10/0. All simulations have been performed at the
High Performance Computing Center Stuttgart (HLRS), Germany,
under the HPC Europa 2 project (project number 228398) with the
support of the European Commission – Capacities Area – Research
Infrastructure.

R E F E R E N C E S

Bacciotti F., Ray T. P., Mundt R., Eislöffel J., Solf J., 2002, ApJ, 576, 222
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