
This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is
posted here by agreement between Elsevier and the University of Turin. Changes resulting
from the publishing process - such as editing, corrections, structural formatting, and other
quality control mechanisms - may not be reflected in this version of the text. The definitive
version of the text was subsequently published in THEORETICAL COMPUTER
SCIENCE, 464, 2012, doi:10.1016/j.tcs.2012.06.020.

You may download, copy and otherwise use the AAM for non-commercial purposes
provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the
CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and
publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en),
doi:10.1016/j.tcs.2012.06.020

The definitive version is available at:
http://www.sciencedirect.com/science/article/pii/S0304397512006020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301901189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/article/pii/S0304397512006020

Tracing where and who provenance in Linked Data:
a calculus

Dedicated to Yoshihito Toyama on the occasion of his 60-th Birthday

Mariangiola Dezani-Ciancaglini✩a, Ross Horne✩b, Vladimiro Sassonec

aDipartimento di Informatica, Università di Torino, Italy
bInstitute of Computer Science, Romanian Academy, Iaşi, Romania

cElectronics and Computer Science, University of Southampton, United Kingdom

Abstract

Linked Data provides some sensible guidelines for publishing and consuming data on
the Web. Data published on the Web has no inherent truth, yet its quality can often be
assessed based on its provenance. This work introduces a new approach to provenance
for Linked Data. The simplest notion of provenance – viz., a named graph indicating
where the data is now – is extended with a richer provenance format. The format
reflects the behaviour of processes interacting with Linked Data, tracing where the data
has been published and who published it. An executable model is presented based on
abstract syntax and operational semantics, providing a proof of concept and the means
to statically evaluate provenance driven access control using a type system.

Keywords: Operational Semantics, Type Systems, Linked Data

1. Introduction

The Web challenges traditional perspectives on data. Traditionally, data is stored
in centralised databases with clear ownership. Only trusted experts have access to
the mechanisms for manipulating data and the boundaries of each data set are fixed.
Linked Data shatters these assumptions, by removing the boundaries between datasets
and reducing barriers for publishing data.

Linked Data is a movement that is pushing data onto the Web [7]. To reflect the
diversity of data a light data format is introduced. The data format is based on triples
of Uniform Resource Identifiers (URIs). Triples of URIs are versatile. A wide variety
of data sources can be lifted to collections of triples. Furthermore, the use of URIs as
standardised global identifiers allows data from one source to refer to data in another
source. Several protocols are then employed to consume and publish data collabora-
tively. With many contributors and locations, tracking the provenance of data becomes
a significant challenge.

✩The first author is supported by the MIUR Project IPODS. The second author is supported by CNCS-
UEFISCDI Project PN-II-ID-PCE-2011-3-0919.

Preprint submitted to Theoretical Computer Science June 11, 2012

In the Web of Linked Data, anyone can form a triple. If someone makes a statement
and publishes it as a triple on the Web, it does not mean that the triple can be trusted.
The degree of trustworthiness of the triple will depend on the trustworthiness of the
individuals involved in producing the triple and the judgement of the consumer of the
triple. Thus this work argues that a consumer of Linked Data is most concerned with
the provenance of triples. The provenance of any values inside triples is secondary.
For Linked Data the big concern is the provenance of a statement such as “Yoshihito
Toyama is affiliated with Tohoku University,” rather than the provenance of identifier
for Tohoku University.

The problem of provenance tracking for Linked Data is well known. A basic prove-
nance mechanism called a named graph is widely supported [13, 53]. A named graph
extends triples with an extra location, which indicates where the triple is located. This
is the simplest kind of where provenance. From a triple in a named graph, decisions
can be made based on where the triple is located now. A query may specifically ask for
triples lifted from the BBC News feed for Asia.

A named graph only captures ‘where now’ provenance. Harth, Polleres and Decker
argue that a more social provenance model is required [33]. By a social provenance
model, they mean that the context should record who provenance. The ‘where now’
provenance of named graphs can be extended with ‘who now’ provenance, by also
identifying the agent who published the data. This work captures such social prove-
nance, by extending the notion of a named graph with pairs.

This work extends named graphs one step further, by tracing provenance history.
The protocols for Linked Data allow triples to be retrieved from locations and written
to other locations [51]. Thus a history of ‘where and who’ provenance can be accu-
mulated. Each time an agent publishes data in a location, the agent and location can
be recorded in the provenance history of the triple. Furthermore, the data may be pro-
cessed locally, by the agent. Recording the operations that were applied to the data
provides a notion of ‘how’ provenance.

This work provides a calculus of processes which use, consume and publish Linked
Data tracing provenance. The calculus demonstrates that the proposed provenance
format tracks the provenance of data according to the processes modelled. It allows the
claim that the provenance format introduced is suitable for Linked Data to be evaluated.

The calculus goes one step further, by exploiting the provenance format to enhance
Linked Data protocols. The model introduces a logic for provenance patterns. The
logic can be used to specify precise queries over Linked Data. The calculus is then
typed to ensure that an access control policy based on the provenance format can be
maintained. A type system ensures the integrity of the policy of each location. Such
policies can improve the reliability of Linked Data. A first key result is a subject
reduction theorem, which verifies that such policies can be guaranteed by the static
analysis of processes. Further formal results prove that the policies described are in-
deed captured by the model. The implication is that this static analysis can be applied
to programs which follow the Linked Data protocols modelled.

The present paper is organised as follows. Section 2 introduces provenance and
Linked Data. The syntax and the operational semantics of the calculus are the contents
of Section 3 and of Section 4, respectively. Section 5 introduces a type system whose
properties are shown in Section 6. Related work is discussed in Section 7 and some

2

conclusions are drawn in Section 8. The electronic version ofthis paper contains the
URIs mentioned as active links.

2. Linked Data: Guiding Principles and Provenance

Some ubiquitous Web standards are employed to support Linked Data. These stan-
dards enable the decentralised identification of resources, the transfer of data, the rep-
resentation of data and the exploitation of data. These technologies are briefly sum-
marised, and an overview of how these technologies meet the guidelines for Linked
Data is provided.

URIs are identifiers for resources on the Web. A URI may be used in HTTP to
support the fundamental operations for publishing and consuming data at that URI.
URIs may also be used in the Resource Description Framwork (RDF), to identify re-
sources in data. RDF is a standardised loosely structured data format that allows the re-
sources identified by URIs to be described by their relationship to other URIs. Finally,
SPARQL, a protocol and RDF query language, standardises some basic mechanisms
for exploiting RDF.

The guiding principles of Linked Data were outlined by Berners-Lee [5]. Firstly,
in data use URIs to name things; as opposed to a local identifier scheme specific to a
dataset. Secondly, make use of the HTTP protocol, so that the URIs can be looked up.
This process of looking up a URI using HTTP, called dereferencing, should provide
useful information using standards, specifically RDF and SPARQL. Finally, include
other dereferenceable URIs in the dereferenced data, so that more things can be dis-
covered. The idea is that distributed data published following these guidelines can be
used collectively, without prior coordination.

Information about the publications of Yoshihito Toyama is readily available as
Linked Data. There is of course a URI for the home page of Toyama at Tohoku Uni-
versity. However, the Web page does not return Linked Data, so is not dereferenceable.
Fortunately, there are many dereferenceable URIs for Toyama. One such URI can be
dereferenced to obtain the following data.

subject property object
Toyama akt:type akt:Person
rkpres:CS132820 akt:has-author Toyama

The above data is in the standard format of RDF triples. Furthermore the data
contains dereferenceable URIs. Thus the URI for the paper,rkpres:CS132820, can be
dereferenced to obtain some more information. The data returned includes the follow-
ing data.

subject property object
rkpres:CS132820 akt:has-author Toyama
rkpres:CS132820 cites rkpres:CS323375

Notice that these triples have a different provenance, the first two triples came from
dereferencing a URI for Toyama, the second two triples came from dereferencing a URI
for one of his papers. Indeed the same triple appeared twice with different provenance
traces.

The source of these triples can be traced further. Three of these triples originated
from a data source published at URI source1. This source can be traced back to a data

3

http://citeseer.rkbexplorer.com/id/resource-CSP320933-cfc54f03e872f01fdae400840c9eb63a
http://www.aktors.org/ontology/portal#type
http://www.aktors.org/ontology/portal#Person
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#has-author
http://citeseer.rkbexplorer.com/id/resource-CSP320933-cfc54f03e872f01fdae400840c9eb63a
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#has-author
http://citeseer.rkbexplorer.com/id/resource-CSP320933-cfc54f03e872f01fdae400840c9eb63a
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#cites-publication-reference
http://citeseer.rkbexplorer.com/id/resource-CS323375
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf

dump made by the website CiteSeer. Thus the origin of the last two triples above might
be traced as the following sequence of two URIs followed by an operationlift. Thus
lift# is the mapping of a function, which transforms some raw data into RDF, into the
provenance format. The left most location is the most recent.

rkpres:CS132820 · source1· lift#

Furthermore, we can trace the agents who wrote this data. In this case, an agent acting
on behalf ofCiteSeer lifted the data and published the data as RDF. Another agent
RKBexplorer owned the process that republished part of this information for the above
paper. Thus the agents can be included in the provenance trace. Notice that the agent
that wrote the data and the location where the data was published form a pair.

(RKBexplorer, rkpres:CS132820) · (CiteSeer, source1)· lift#

There are several operations involved in the scenario in this section. There is the pro-
cess owned by agentCiteSeer, that obtained the data and published it in a location.
There is the process owned byRKBexplorer, that obtained data from several locations,
including the dump above. The data was then filtered for information about a URI and
the resulting data was published at the URI, so that the URI could be dereferenced. This
work introduces a calculus which captures the behaviour of processes in this scenario
whilst automatically tracking the provenance of triples.

Notice that including the entire trace is stronger than the approach offered by named
graphs [13]. A named graph just provides a current location for a triple, it cannot
track the provenance history. With the extended provenance format we can determine
whether a triple originated with theACM, CiteSeer or DBLP as well as the current
location. This is useful since these are trustworthy sources for data on academic publi-
cations. We may also only trust data that was most recently handled byRKBexplorer,
sinceRKBexplorer is a reliable agent for gathering Linked Data. These, and many
more, provenance patterns can be handled by this work.

The language suggested by this work is a high level language, where interaction
with provenance is primitive. At times, several low level operations are covered by
a single high level operation. However, there should be no doubt that the language
encompasses the guidelines for publishing Linked Data. The provenance format is
a serious contribution to the area of Linked Data, extending existing approaches for
tracing the provenance of triples.

3. A Syntax for Capturing Provenance in Linked Data

The methods employed here are purely syntactic. This section introduces the ba-
sic atoms and grammars required to discuss both a provenance format and systems in
which the provenance represented can be traced.

3.1. The Syntax for a Format for Provenance Traces
The basis of the provenance format are identifiers representing where and who.

Both identifiers are readily provided by the Linked Data architecture. Using these
identifiers, a provenance format is proposed, which is evaluated throughout this work
for its effectiveness in tracking the provenance of triples.

4

http://citeseer.rkbexplorer.com/id/resource-CS132820
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf

agents:α, β functions: f , g

locations:ℓ,m location variable:a, b

location or variable:λ F ℓ | a

provenance traces:
pF ǫ empty
| (α, ℓ) who-where
| f# why
| p · p concatenation
| p ∨ p disjunction

σF α | ? ΛF λ | ? φF f | ?

patterns:
πF ǫ empty
| (σ,Λ) who-where
| φ# why
| π · π concatenation
| π ∨ π disjunction
| π∗ Kleene star
| ⊤ top

Figure 1: The provenance format and pattern syntax.

Identifiers for where, who and why. This work refers to URIs as locations, ranged
over byℓ,m in definitions. Toyama denotes one of several dereferenceable URIs for
Yoshihito Toyama.

Entities that run processes, are referred to as agents. It is assumed here that each
agent has an identifier, ranged over byα, β, which identifies ‘who.’ Harth et al. note that
the Web has a built in mechanism for identifying agents via the Domain Name System
(DNS) [33]. There are obvious issues with using DNS to identify agents, particularly
since the correspondence between DNS identifiers and agents is not necessarily one-
to-one. The exact choice of identifier is perpendicular to this work.

This work assumes that there are some basic functions which can be applied to
data, ranged over byf , g. These functions can be recorded in the provenance format
where they appear as the function names followed by #. There are various mechanisms
these functions could represent, so the details are not provided in this work. The point
is that some basic ‘why’ provenance can be recorded.

The provenance format. Figure 1 introduces the provenance format, which traces ‘who’
and ‘where’ provenance with some basic ‘why’ provenance information. A who-where
provenance pair indicates that a particular agent published data in a particular location.
That data may be retrieved and published in another location by another agent. Each
time the trace is extended. Disjunction can be used in provenance traces to represent
that the data from several sources have been combined. Why they were combined may
also be indicated.

The following trace represents that initially there were two pieces of data. One
piece of data was published by agentACM in acm 1, another piece was published by
agentCiteSeer in cs 1. AgentRKBExplorer consumes both pieces of data, applies the
functionClean to the combination of both pieces of data, and publishes it in location
Toyama.

(RKBExplorer, Toyama) · Clean# · ((ACM, acm 1) ∨ (CiteSeer, cs 1))

The pattern language. Figure 1 introduces the syntax of patterns. The basic atoms of
the patterns are who-where pairs and functions extended with wild cards. The wild

5

http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf

data variable:x, y

queries:
QF (λ λ λ)π triple pattern
| Q ⊕ Q choose
| Q ⊗ Q tensor
| ∃a.Q exists
| ∗Q iteration

stored data:
DF (ℓ ℓ ℓ)p tracked triple
| D || D composition
| 0 empty data

expressions:
eF x variable
| D data
| f (e) application
| e || e composition

Figure 2: The syntax of stored data queries and expressions.

cards state that any agent, location or function can be matched. The pattern language
for provenance traces is based on Kleene algebras. The operations are concatena-
tion, and disjunction of patterns as well as a Kleene star, which allows a pattern to
be matched an arbitrary number of times. There is also a top element, which can match
any pattern.

The following examples are useful patterns which can be expressed. Using iteration
and disjunction, the pattern((Glaser, ?) ∨ (Millard, ?))∗ guarantees that only agents
Glaser or Millard ever wrote this data. The pattern⊤ · (?, acm 1) states that data
originated from the ACM periodical data. The pattern⊤ · (L3S, ?) · (? , Toyama) · ⊤
states that at some point data published in locationToyama was republished by agent
L3S.

Note. Glaser, Millard and the organisation L3S published the real Linked Data used in
examples.

3.2. Mechanisms for Manipulating Linked Data
This section introduces the standards for Linked Data, extended with the prove-

nance formats from the previous section. Query mechanism for picking out patterns
in Linked Data are extended with provenance patterns, so that provenance traces can
be exploited in queries. Finally, expressions that manipulate data are suggested. See
Fig. 2.

Annotating triples with provenance. RDF is based on triples of URIs, which resemble
simple sentences in natural language. The first component is the subject, the second
the property and the third the object. There are some further features of RDF including
literal values and blank nodes [36], however this work focuses only on URIs.

For stored data the syntax of triples is decorated with a provenance. The provenance
represents the history of where, who and why the triple was obtained. Furthermore, the
most recent provenance indicates where the triple is now. An example is:

(ipl:Toyama87 dc:creator Toyama)(L3S,dipl:Toyama87)·(DBLP,source4)

6

http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/publications/journals/ipl/Toyama87
http://purl.org/dc/elements/1.1/creator
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/data/publications/journals/ipl/Toyama87

Annotating queries with patterns. The standard for querying RDF is SPARQL. A for-
mal syntactic model for SPARQL queries has been provided [38]. For brevity, this work
takes the most relevant subset of SPARQL and adapts it to this setting, represented as
the queries in Fig. 2. The constructs form a commutative Kleene algebra with existen-
tial quantifiers over triples annotated with provenance patterns. The disjunction gives a
choice of queries, the tensor allows more than one triple to be identified, the existential
quantifiers allow locations to be discovered. The Kleene star allows many instances of
a triple to be matched.

Queries are used in this setting to test whether some data matches a pattern. This is
used in the calculus to consume data which matches only that pattern. The following
query demands that two triples are discovered. The subject of both triples must be the
same URI. Furthermore, the provenance patterns ensure that the triples were originally
posted by an agent on behalf of the ACM.

∗∃a.
(

(a dc:creator Toyama)⊤·(ACM,?) ⊗ (a journal ipl)⊤·(ACM,?)
)

Expressions over data. To allow data to be manipulated, functions mapping stored data
to stored data are introduced. The functions are used in the syntax of expressions to
represent the manipulation of data. Future work would introduce a calculus of functions
to precisely specify the transformation performed, facilitating a more detailed analysis
of why provenance.

3.3. A Syntax for Process Configurations
This section introduces processes that manipulate data. Systems then model a com-

bination of data decorated by provenance traces and processes run by particular agents.
Firstly, policies for URIs must be explained since they appear in processes. Policies
control the access of an agent to a location based on the provenance of data.

The syntax of policies. According to the syntax of systems, Fig. 3, agents interact
with data by means of three operations: getting, deleting and inserting. Therefore it is
sensible to design location policies prescribing which agents can read and modify their
data.

For example the locationdipl:Toyama87 can allow anybody to get the data inserted
byGlaser and originally posted by an agent representing theACM. This can be repre-
sented by the access triple:

〈? ,Glaser,⊤ · (ACM, ?)〉

The same location can allowMillard to delete only data inserted by himself and at
some point published at locationacm 1, whileGlaser can delete arbitrary data. This is
represented by the following set of access triples:

{〈Millard,Millard,⊤ · (?, acm 1) · ⊤〉, 〈Glaser, ?,⊤〉}

Lastly onlyMillard andGlaser can insert data in the locationdipl:Toyama87, and while
Millard must take the data fromDBLP, Glaser can take data from any source. This is
expressed by the set of insert pairs:

{〈Millard, (?,DBLP) · ⊤〉, 〈Glaser,⊤〉}

7

http://purl.org/dc/elements/1.1/creator
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://swrc.ontoware.org/ontology#journal
http://dblp.l3s.de/d2r/resource/journals/ipl
http://dblp.l3s.de/d2r/data/publications/journals/ipl/Toyama87
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/data/publications/journals/ipl/Toyama87

process variable:X

policy of locations:Loc(R,D,I)

processes:
PF 0 termination
| get (Q, x) .P consume
| del (Q, x) .P delete
| ins (λ, e) .P publish
| P + P choose
| ∃a : Loc(R,D,I).P select location
| X process variable
| recX.P recursion

access triples:κF 〈σ, σ, π〉

insert pairs:ιF 〈σ, π〉

sets of access triples:R,D

sets of insert pairs:I

systems:
S F 0 termination
| D stored data
| α [P] agent
| S || S parallel

Figure 3: The syntax of processes and systems.

These examples justify that the location policies are built from three sets (see Fig. 3):

1. the setR of access triples that controls get access to data;

2. the setD of access triples that controls delete access to data;

3. the setI of insert pairs that prescribes the data insertion policy.

The syntax of processes. Processes suggest a high level programming language that
combines HTTP operations with queries and expressions. This allows sequences of
interactions with Linked Data, including dereferencing, to be expressed. The syntax of
processes is defined in Fig. 3.

There are three operators for interacting with Linked Data – get, delete and in-
sert. These operations model both HTTP operations and query mechanisms [51]. Get
retrieves some data, but also restricts the data using a query pattern. The resulting
data is then passed on to a continuation process, since the data variable binds occur-
rences in the continuation process. I.e. the processP is the continuation of the process
get (Q, x) .P.

Since queries include provenance patterns, the provenance of the data retrieved
is also selected. This allows the most basic dereference operation to be realised, as
shown below. Notice that a dereferenceable URI for Toyama appears in the provenance
pattern, indicating the location to dereference. The query pattern asks for anything, so
all data in that location can be retrieved.

get
(

∗∃a.∃b.∃c.(a b c)(? ,Toyama)·⊤ , x
)

.Display Data(x)

The data variable binds occurrences in the continuation process. It is assumed that the
processDisplay Data does something useful with the data retrieved. Several examples
of get with more precise queries are provided throughout this work.

Delete has the same form as get. The only difference is the data retrieved which
matches the query is removed, whereas get persists the data. Insert consists of an

8

http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama

expression, a location and a continuation process. Insert isused to publish the data
which results from evaluating the expression at the location, before continuing.

The other operations are used to control the flow of processes. The choice operator
allows one of two processes to be selected. The existential operator binds a location
variable. When a location variable in a query is bound, the location discovered is uni-
fied with the continuation. This allows locations to be passed from data to continuation
processes. Notice that the bound location variable is annotated with a location policy.
This is necessary to guarantee that the variable is replaced by a location of that policy.

The process variable and fixed point operator allow a process to behave recursively.
Finally, there is a process representing termination.

The syntax of systems. The state of systems is expressed using the syntax in Fig. 3.
Systems indicate the agent that runs a process. This information is required for tracing
who provenance. The processes of several agents can be composed in parallel with
stored data. Two examples of processes which refer to the agent that runs them are
provided.

Suppose that an agentα has made some contribution to data located atpubs . The
following pattern removes all data this agent has created. Both data that was written
directly to the location by the agent, and data in the location that was touched by the
agent at some point in the past is removed.

α
[

del
(

∗∃a.∃b.∃c.(a b c)(α,pubs)·⊤∨((? ,pubs)·⊤·(α,?)·⊤) , x
)

.0
]

Suppose that an agentβ periodically moves information from one location to an-
other location (the origin locationacm 1 and the target locationpubs). The agent
obtains citations from the source location. The agent then removes citations with a
provenance that indicates that the agent himself had obtained them from the source
location and inserted them in the target location. Finally, the agent inserts new triples
in place of the triples removed.

β















recX.














get
(

∗∃a.∃b.(a cites b)(? ,acm 1)·⊤ , x
)

.

del
(

∗∃a.∃b.(a cites b)(β,pubs)·(? ,acm 1)·⊤ , y
)

.ins (pubs, x) .X





























Notice that the triples inserted will have the same provenance as the triples removed in
the previous step. This means that on the next iteration of the recursion, these triples
will be removed and replaced by more up to date triples. The effect is thatβ maintains
a copy of citation data from the source location at the target location.

The next section defines the behaviour of the above systems precisely.

4. An Operational Semantics for Provenance Tracking in Linked Data

Operational semantics captures the behaviours of the systems modelled by the syn-
tax of the previous section. The behaviour of systems depends on the evaluation of
provenance patterns, queries and expressions, which are formalised using deductive
systems. Given the mechanisms defined in this section, substantial examples that track
provenance in Linked Data can be executed.

9

http://dblp.l3s.de/d2r/all/Publications
http://dblp.l3s.de/d2r/all/Publications
http://dblp.l3s.de/d2r/all/Publications
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/all/Publications
http://www.aktors.org/ontology/portal#cites-publication-reference
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://www.aktors.org/ontology/portal#cites-publication-reference
http://dblp.l3s.de/d2r/all/Publications
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/all/Publications

4.1. Pre-order on Patterns and Satisfaction of Patterns
Let fix finite setsA of agent names,L of location names andF of function names.

The mappingre associates to each patternπ which only contains names inA∪L∪F a
regular expression on the alphabetΣ = {(α, ℓ) | α ∈ A & ℓ ∈ L} ∪ { f# | f ∈ F }, where
the notation for regular expressions is as in [2]. The main purpose of this mapping is
to reduce the wild cards in patterns to well understood regular expressions:

re(ǫ) = ǫ re((σ,Λ)) = α∈reA(σ),ℓ∈reL(Λ) (α, ℓ) re(φ#) = reF(φ)

re(π · π′) = re(π)re(π′) re(π ∨ π′) = re(π) | re(π′) re(π∗) = re(π)∗ re(⊤) = Σ∗

where

reA(σ) =















{α} if σ = α,

A if σ =?
reL(Λ) =















{ℓ} if Λ = ℓ,

L if Λ =?

reF(φ) =















f# if φ = f ,
f∈F f# if φ =?

Following the semantic subtyping approach [14] thepre-order ≤ on patterns is
defined by:

π ≤ π′ only if re(π) ⊆ re(π′)

where the sets of names are those occurring inπ, π′ and the inclusion between regular
expressions stands for the inclusion between the generated languages. The pre-order
on patterns can then be decided in exponential time for the worst case; however there
exist algorithms which are efficient in practice [2].

The mappingsreA, reL andreF make ?the top of agents, locations and why func-
tions. Similarly,re makes⊤ the top of patterns:

α ≤ ? λ ≤ ? f# ≤ ?# π ≤ ⊤

Since provenance traces are a subset of patterns, satisfaction of patterns is a special
case of the above pre-order.

A provenance p satisfies a pattern π (notationp
 π) if re(p) ⊆ re(π).

The following proposition can be easily shown by the definitions of pre-order and pat-
tern satisfaction.

Proposition 4.1. π ≤ π′ if and only if, for all p, p
 π implies p
 π′. In particular
p ≤ π if and only if p
 π.

10

p
 π
⌈QAx⌉

Cp |= Cπ
D |= Q0

⌈QChL⌉
D |= Q0 ⊕ Q1

D |= Q1
⌈QChR⌉

D |= Q0 ⊕ Q1

D0 |= Q0 D1 |= Q1
⌈QT⌉

D0 || D1 |= Q0 ⊗ Q1

D |= Q{ℓ/a}
⌈QE⌉

D |= ∃a.Q

⌈QW⌉
|= ∗Q

D |= Q
⌈QD⌉

D |= ∗Q

D |= ∗Q ⊗ ∗Q
⌈QC⌉

D |= ∗Q

Figure 4: Satisfaction of queries

4.2. Satisfaction of Queries
Figure 4 presents a deductive system for deciding whether some data satisfies a

query. The definition adapts the most relevant subset of the model of a SPARQL query
presented in [38].

The axioms for queries hold when a stored triple, matches a triple demanded by the
query. Triples of locations and of location variables are denoted byC. In this axiomC
is a triple of locations. The stored triple is annotated with a provenance, while the query
triple is annotated with a pattern. The axiom is therefore dependent on the provenance
matching the pattern, as defined in the previous section.

Further operators enable an expressive query language. The tensor rule is a language-
based approach to joining queries. The rule ensures that both parts of a query are
simultaneously answered using distinct resources. Traditional join semantics give a
denotational set of all solutions to a query [52], which is a mismatch for this oper-
ational approach. Instead, a particular solution is selected for execution. The linear
restriction, which ensures disjointness of the resources used, is suited to a concurrent
distributed setting [38].

The rules for choose and exists provide more flexibility in queries by selecting
one of several ways in which a query can be evaluated. Iteration employs weakening,
dereliction and contraction to enable a pattern to be answered an unbounded number
of times.

4.3. Expression Evaluation
A big step operational semantics is provided for expressions, though the relation⇓

defined in Fig. 5. Functions are recorded in the provenance of triples only when they
affected the triples.

Raw stored data is simply stored data without the provenance annotation. The
functions from stored data to stored data are defined with respect to their underlying
functions from raw stored data to raw stored data. More precisely assume that for
each functionf there is a corresponding raw function| f | from raw stored data to raw
stored data. The raw function may be undefined if some of the triples in the data are

11

⌈id⌉
D ⇓ D

e0 ⇓ D0 e1 ⇓ D1
⌈par⌉

e0‖e1 ⇓ D0‖D1

| f |(Πmi=1Ci) ↓ Π
n
j=1Ĉ j q = f# ·

m
∨

i=1

pi
⌈fun⌉

f (Πmi=1C
pi
i || D) ⇓ Πnj=1Ĉ

q
j || D

Figure 5: A big step operational semantics for expressions.

unused. The notation↓ (inspired by big step semantics) is used for the evaluation of
raw functions.

For more accurate why and how provenance the nature of these functions over data
need to be more precisely defined. It would be possible to base the functions on the
calculus of SPARQL Updates [40]. Each update is associated with a proof that explains
why an update holds. The proofs should however be considered up to equivalence,
which greatly increases the cost of evaluating provenance patterns.

A model of how provenance for updates in databases is provided by Green et al. [29].
Green et al. employ a provenance structure that accounts for the data deleted and the
data inserted by updates. Similar provenance structures could be considered here.

4.4. Policies
The pre-order on agents, locations, why functions and patterns (see Sec. 4.1) natu-

rally induces the component-wise pre-order on access triples and insert pairs. We can
then also compare location policies: a smaller policy must allow all that is allowed by
a bigger policy. This agrees with standard subtyping. In this way each location can be
ascribed all policies that are bigger than its own. This can be achieved by asking that
all triples and pairs in the bigger policy have corresponding bigger triples and pairs in
the smaller policy. This leads to the definition:

Loc(R′,D′,I′) ≤ Loc(R,D,I) if

∀x ∈ X ∃x′ ∈ X′ . x ≤ x′, whereX ranges overR,D,I.

For example the following policy

Loc({〈? ,Glaser,⊤〉}, {〈? , ?,⊤ · (?, acm 1) · ⊤〉, 〈Glaser, ?,⊤〉}, {〈? ,⊤〉})

is smaller than the policy of locationdipl:Toyama87 (see page 7). The bottom policy
is Loc({〈? , ?,⊤〉}, {〈? , ? ,⊤〉}, {〈?,⊤〉}) and there is no top policy.

4.5. Reduction Rules for Systems
The reduction rules for systems are presented in Fig. 6, where we assume standard

structural congruences, i.e. associativity and commutativity of|| and+, and neutrality
of 0 for ||. This completes the definition of the operational semantics, hence more
substantial examples are provided.

12

http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/data/publications/journals/ipl/Toyama87

S 0 −→ S 1
⌈context⌉

S 0 || S 2 −→ S 1 || S 2

D |= Q
⌈get⌉

α [get (Q, x) .P] || D −→ α
[

P{D/x}
]

|| D

α
[

P{recX.P/X}
]

|| D −→ S
⌈rec⌉

α [recX.P] || D −→ S

e ⇓ Πmi=1C
pi
i

⌈ins⌉
α [ins (ℓ, e) .P] −→ α [P] || Πmi=1C

(α,ℓ)·pi
i

D |= Q
⌈del⌉

α [del (Q, x) .P] || D −→ α
[

P{D/x}
]

α [P1] || D −→ S
⌈choose⌉

α [P1 + P2] || D −→ S

α
[

P{ℓ/a}
]

|| D −→ S T (ℓ) ≤ Loc(R,D,I)
⌈select⌉

α [∃a : Loc(R,D,I).P] || D −→ S

Figure 6: Reduction rules for systems

Get and delete and insert. The get rule and delete rule are similar. Both rules match
some data that occurs in parallel with the process containing the query pattern. The
resulting data is substituted in the continuation process. The difference between the two
is that for get the data in the context persists, whereas for delete the data is consumed.

The insert rule evaluates an expression to obtain some data. The data is then in-
serted in the location indicated. This is done by placing the data in parallel with the
process and updating the provenance to indicate that most recently the data was written
to the location by the given agent.

The following scenario demonstrates the execution of get, delete and insert op-
erators. Suppose that two agents identified bySassone andHorne contribute triples
about Toyama. In the system configuration belowSassone has already contributed a
triple andHorne is ready to contribute some misleading information. The misleading
information is about a city classified as a Core City in Japan, also called Toyama. Mis-
taken identity of resources with similar properties is a well known problem for Linked
Data [23].

(Toyama akt:has-affiliationTohoku University)(Sassone,Toyama) ||

Horne
[

ins (Toyama, (Toyama City akt:typeCore city)ǫ) .0
]

Consider a third agent identified byDezani. This agent trusts contributions made
by Sassone about Toyama, but notices thatHorne has made a mistake. Using a prove-
nance pattern the agentDezani can remove the work ofHorne, without affecting the
contribution ofSassone and other agents. Furthermore, the contribution removed is
reposted in the correct location.

Dezani
[

del
(

∗∃a.∃b.∃c.(a b c)(Horne,Toyama)·⊤ , x
)

.ins (Toyama City, x) .0
]

13

http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://www.aktors.org/ontology/portal#has-affiliation
http://data.semanticweb.org/organization/tohoku-university/html
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dbpedia.org/resource/Toyama,_Toyama
http://www.aktors.org/ontology/portal#type
http://dbpedia.org/resource/Core_city
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dbpedia.org/resource/Toyama,_Toyama

After three steps, the following data are obtained:

(Toyama akt:has-affiliationTohoku University)(Sassone,Toyama) ||

(Toyama City akt:typeCore city)(Dezani,Toyama City)·(Horne,Toyama)

Notice that the correctly contributed triple has not been touched. The provenance of
the new triple records the agents who affected its current and prior locations.

Note. Agents can lie about provenance only by inserting new data with a misleading
provenance. This can be avoided by restricting the provenance of data to the the empty
provenance within insert commands in the initial configuration of an agent. Interme-
diate operational steps, may include data with richer provenance, but the operational
semantics ensure that this provenance is properly tracked.

Passing locations to continuations. Notice that the target location of insert can be a
variable. This allows a name discovered by a query to be used. This effect is achieved
by using existential quantifiers at the level of processes. The rule substitutes a location
in place of the variable such that the process can perform a transition.

The rule also checks whether the substituted location has a suitable policy, though
the functionT which associates policies to locations. This function is also used in the
type system in the next section. Details are not specified for where in a system this
function is stored; however it is clear for security that it cannot be stored client-side
where it would be available to agents. Thus type checking and execution must occur
server-side in a system that implements this model.

The following example demonstrates an existential quantifier that binds a location
variable in a query and an insert. Assume thatLoc0 is some policy with the insert pair
〈α,⊤ · (ACM, ?)〉, which allowsα to insert triples originating with theACM.

α
[

∃a : Loc0.
(

del
(

(a akt:has-authorToyama)(? ,Toyama)·⊤ , x
)

.ins (a, x) .0
)]

||

(rkpres:CS132820akt:has-authorToyama)(Glaser,Toyama)·(ACM,acm 1)

Assuming that the locationrkpres:CS132820 has the policyLoc0, this location is sub-
stituted toa when evaluating the delete. So the the system evolves to the following
state.

α

[

ins

(

rkpres:CS132820,
(rkpres:CS132820akt:has-authorToyama)(Glaser,Toyama)·(ACM,acm 1)

)

.0

]

The reduction of the insert command gives the following data:

(rkpres:CS132820akt:has-authorToyama)(α,rkpres:CS132820)·(Glaser,Toyama)·(ACM,acm 1)

An example of exists binding pattern in continuations is presented in the next section.

4.6. Dereferencing Revisited
This section returns to the scenario initially described in Sect. 2. The data and

processes defined realise the scenario. This demonstrates the power of the calculus for
precisely modelling and evaluating Linked Data.

14

http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://www.aktors.org/ontology/portal#has-affiliation
http://data.semanticweb.org/organization/tohoku-university/html
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dbpedia.org/resource/Toyama,_Toyama
http://www.aktors.org/ontology/portal#type
http://dbpedia.org/resource/Core_city
http://dbpedia.org/resource/Toyama,_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://www.aktors.org/ontology/portal#has-author
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#has-author
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#has-author
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#has-author
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://acm.rkbexplorer.com/models/acm-periodicals.rdf

Consider how the data was published. Initially some agentCiteSeer lifts the data
from some source. The lifted data is then published atcs 1 . This results in the follow-
ing stored data, along with a huge amount of similarly annotated data.

(Toyama akt:type akt:Person)(CiteSeer,cs 1)·Lift# ||

(rkpres:CS132820akt:has-author Toyama)(CiteSeer,source1)·Lift#

Now some agentRKBexplorer dereferences the data and extracts the data that immedi-
ately refers to Toyama. The agent is also allowed to draw from another sourceacm 1 ,
which for now is empty. The agent them publishes the combination of any data from
both sources in the locationToyama . An agent that achieves this is presented below.

RKBexplorer

























get
(

∗∃a, b.
(

(Toyama a b)(? ,cs 1)·⊤ ⊕ (a b Toyama)(? ,cs 1)·⊤
)

, x
)

.

get
(

∗∃a, b.
(

(Toyama a b)(? ,acm 1)·⊤ ⊕ (a b Toyama)(? ,acm 1)·⊤
)

, y
)

.

ins (Toyama, x || y) .0

























Reducing the parallel composition of the above data and agent gives the following data:

(Toyama akt:type akt:Person)(RKBexplorer,Toyama)·(CiteSeer,cs 1)·Lift# ||

(rkpres:CS132820akt:has-authorToyama)(RKBexplorer,Toyama)·(CiteSeer,source1)·Lift#

Note that the original data is retained, so it now appears in two locations.
Consider an agentSassonewho consumes this data. The agent dereferencesToyama

to discover one publication. The location of the publication is passed to the continua-
tion process. The continuation dereferences the publication to find a paper cited by the
original paper. The location of the cited paper is then passed to the continuation. The
continuation process then dereferences the cited paper to find whether an author of the
paper was also Toyama. The data consumed is a proof of a self-citation. The process
is expressed as follows.

Sassone





































∃a : Loc1.





































get
(

(a akt:has-authorToyama)(? ,Toyama)·⊤ , x
)

.

∃b : Loc1.

























get
(

(a cites b)(? ,a)·⊤ , y
)

.

get
(

(b akt:has-authorToyama)(? ,b)·⊤ , z
)

.

Demonstrate Self Citation (x || y || z)

































































































Assume thatLoc1 contains the access triple〈Sassone, ? ,⊤〉 for reading, which gives
Sassone full read access. Reducing the parallel composition of the agentSassone with
some dataD matching the above queries gives:

D || Sassone
[

Demonstrate Self Citation (D)
]

Thus key processes for publishing and consuming Linked Data are captured.

5. A Type System for Provenance Based Access Control

A type system for the calculus is defined. The type system guarantees that access
control policies for data are respected by processes run by agents. The access control
policies are based on the provenance of the data. More precisely the typing rules assure
that:

15

http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://www.aktors.org/ontology/portal#type
http://www.aktors.org/ontology/portal#Person
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#has-author
http://citeseer.rkbexplorer.com/id/resource-CSP320933-cfc54f03e872f01fdae400840c9eb63a
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://www.aktors.org/ontology/portal#type
http://www.aktors.org/ontology/portal#Person
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://citeseer.rkbexplorer.com/id/resource-CS132820
http://www.aktors.org/ontology/portal#has-author
http://citeseer.rkbexplorer.com/id/resource-CSP320933-cfc54f03e872f01fdae400840c9eb63a
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://www.aktors.org/ontology/portal#has-author
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://www.aktors.org/ontology/portal#cites-publication-reference
http://www.aktors.org/ontology/portal#has-author
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama

wf(ǫ)
⊢L ℓ : Loc(R,D,I) (α, p) ∈ I wf(p)

wf((α, ℓ) · p)

wf(p)

wf(f# · p)

wf(p) wf(q)

wf(p ∨ q)

Figure 7: Well-formed provenance traces

⌊D0⌋
⊢D 0 : π

wf(p) p
 π
⌊Dt⌋

⊢D Cp : π

⊢D D0 : π ⊢D D1 : π
⌊D||⌋

⊢D D0 || D1 : π

Figure 8: Typing rules for stored data

1. the provenance traces of the tracked triples agree with the location policies;

2. getting, deleting and inserting operations are always done by agents that are
authorised by the location policies, as formalised in Theorem 6.9.

For the first point it is handy to define well-formed provenance traces, see Fig. 7. A
well-formed provenance is such that the provenance that follows each who-where pair
appears for the agent in the policy of the location.

Location types are policies. Theprincipal type of a location is the policy given by
the functionT . A location must have all location types that are greater than or equal to
the principal type of that location. This is achieved by the following axiom:

T (ℓ) ≤ Loc(R,D,I)
⌊Lℓ⌋

⊢L ℓ : Loc(R,D,I)

Since the location policies relate agents and patterns, patterns type stored data,
queries and expressions. Figure 8 gives the rules for stored data: the empty data can
have any pattern, a tracked triple with a well-formed provenance has all the patterns
satisfied by its provenance and composed data must have the patterns of their compo-
nents. Note that by rule⌊Dt⌋ each triple has many patterns, the smallest one being the
provenance itself of the triple.

Figure 9 gives the typing rules for queries, where each triple pattern has all the
provenance patterns that are bigger than or equal to its own provenance pattern.

In order to type expressions, environments (ranged over byΓ) associating data vari-
ables to patterns are needed, see Fig. 10. The only interesting rule is⌊E f ⌋: since in

π ≤ π′

⌊Qt⌋
⊢Q Cπ : π′

⊢Q Q : π
⌊Q∃⌋

⊢Q ∃a.Q : π

⊢Q Q : π
⌊Q∗⌋

⊢Q ∗Q : π

⊢Q Q0 : π ⊢Q Q1 : π
⌊Q⊕⌋

⊢Q Q0 ⊕ Q1 : π

⊢Q Q0 : π ⊢Q Q1 : π
⌊Q⊗⌋

⊢Q Q0 ⊗ Q1 : π

Figure 9: Typing rules for queries

16

⌊Ev⌋
Γ, x : π ⊢E x : π

⊢D D : π
⌊Et⌋

Γ ⊢E D : π

Γ ⊢E e : π
⌊E f ⌋

Γ ⊢E f (e) : f# · π ∨ π
Γ ⊢E e0 : π Γ ⊢E e1 : π

⌊E||⌋
Γ ⊢E e0 || e1 : π

Γ ⊢E e : π π ≤ π′

⌊Esub⌋
Γ ⊢E e : π′

Figure 10: Typing rules for expressions

evaluatingf (D) not all the provenance traces of the tracked triples inD are prefixed by
f# (see rule⌊fun⌋ in Fig. 5), only the patternf#·π∨π can be deduced forf (e) knowing
thate has patternπ.

For typing processes, environments (ranged over byΘ) associating data variables
to patterns and location variables to location types are needed. To derive for a location
all locations types that are bigger than or equal to the principal location type of that
location, a weakening of rule⌊Lℓ⌋ and a standard axiom are handy:

⊢L ℓ : Loc(R,D,I)
⌊Lℓw⌋

Θ ⊢L ℓ : Loc(R,D,I)

Loc(R′,D′,I′) ≤ Loc(R,D,I)
⌊La⌋

Θ, a : Loc(R′,D′,I′) ⊢L a : Loc(R,D,I)

Processes are built from get, delete and insert operations on locations. Each operation
can be allowed or disallowed by location policies according to the agent who is willing
to act. For this reason, processes are typed by agents, meaning that a process typed
by an agent contains only operations that the agent is authorised to do (see Fig. 11).
In rules⌊Pg⌋ and⌊Pd⌋ the patterns of the queries must start with a who-where pair,
so that the queries are limited to exactly one location (σ can be ?and therefore the
triples can be inserted by an arbitrary agent). The condition〈α, σ, π〉 ∈ R assures that
the getting agrees with the location policy. Similarly for〈α, σ, π〉 ∈ D. The rule for
typing insertion simply checks thatα is allowed to insert data with provenanceπ in the
locationλ by the location policy.

Since systems do not contain free variables, environments to type them are not
needed, see Fig. 12. Rule⌊S d⌋ validates well-typed stored data. The typing of an agent
checks that the process can be typed by the agent name, see rule⌊Sα⌋.

5.1. Examples of Typed Systems
The examples of systems in the previous section are revisited to consider the effect

of typing.
Consider the first scenario in Sec. 4.5. There are three agents interacting with

data in a location. Assume that the locationToyama has the insert pair〈Horne, ǫ〉
and the access triple〈Dezani,Horne,⊤〉 for deleting. Also assume that the location
Toyama City has the insert pair〈Dezani,⊤〉. These assumptions allow the system to be
typed. The agentHorne can write any fresh data to the location and the agentDezani
can remove any data contributed byHorne. However without the insert pair〈Horne, ǫ〉,
the system is not well typed, so the agentHorne could not have inserted the misleading
triple.

Consider the second scenario in Sec. 4.5. Assume that the locationToyama has
access triple〈α, ? ,⊤〉 for deleting. Then the agentα is well typed. Notice that the

17

http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://dbpedia.org/resource/Toyama,_Toyama
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama

Θ, x : (σ, λ) · π ⊢P P : α 〈α, σ, π〉 ∈ R

Θ ⊢L λ : Loc(R,D,I) ⊢Q Q : (σ, λ) · π
⌊Pg⌋

Θ ⊢P get (Q, x) .P : α

Θ, x : (σ, λ) · π ⊢P P : α 〈α, σ, π〉 ∈ D

Θ ⊢L λ : Loc(R,D,I) ⊢Q Q : (σ, λ) · π
⌊Pd⌋

Θ ⊢P del (Q, x) .P : α

Θ ⊢L λ : Loc(R,D,I) Θ ⊢P P : α Γ ⊢E e : π Γ ⊆ Θ (α, π) ∈ I
⌊Pi⌋

Θ ⊢P ins (λ, e) .P : α

⌊P0⌋
Θ ⊢P 0 : α

⌊Pv⌋
Θ ⊢P X : α

Θ ⊢P P : α
⌊Pr⌋

Θ ⊢P recX.P : α

Θ ⊢P P0 : α Θ ⊢P P1 : α
⌊P+⌋

Θ ⊢P P0 + P1 : α

Θ, a : Loc(R,D,I) ⊢P P : α
⌊P∃⌋

Θ ⊢P ∃a : Loc(R,D,I).P : α

Figure 11: Typing rules for processes

⌊S 0⌋
⊢S 0

⊢D D : π
⌊S d⌋

⊢S D

⊢P P : α
⌊Sα⌋

⊢S α [P]

⊢S S ⊢S S ′
⌊S ||⌋

⊢S S || S ′

Figure 12: Typing rules for systems

annotation on the select quantifier is sufficient to guarantee that the location discovered
by the query is of the correct type to enable the insert to be triggered. Thus assuming
that the location rkpres:CS132820 has the insert pair〈α,⊤ · (ACM, ?)〉, the system
will reduce since the dynamic check in the reduction rule enforces that the location
discovered matches the annotation. Thus the static typing relies on the dynamic type
check for that location.

Consider the scenario in Sec. 4.6. Assume that the locationsacm 1 and cs 1
have the access triple〈RKBexplorer, ?,⊤〉 for getting, and that the locationToyama
has the insert pair〈RKBexplorer, (?, cs 1) · ⊤ ∨ (?, acm 1) · ⊤〉 and the access triple
〈Sassone,RKBexplorer,⊤〉 for getting. Then both agents are well typed. For agent
Sassone the dynamic checks in the reduction rules assure that the discovered locations
indeed allowSassone to read, as indicated by the annotations.

5.2. Type Inference
The given type assignment system can be easily made syntax directed in order to

get a type inference algorithm. It is enough:

• to replace in the second clause of the definition of well-formed provenance traces
and in rules⌊Pg⌋, ⌊Pd⌋, and⌊Pi⌋ the membership condition with a condition
which takes subtyping into account,

• to eliminate the subtyping in rules⌊Lℓ⌋, ⌊La⌋, ⌊Qt⌋,

18

http://citeseer.rkbexplorer.com/id/resource-CS132820
http://acm.rkbexplorer.com/models/acm-periodicals.rdf
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://dblp.l3s.de/d2r/resource/authors/Yoshihito_Toyama
http://citeseer.rkbexplorer.com/models/cs_metadata_1.rdf
http://acm.rkbexplorer.com/models/acm-periodicals.rdf

⊢L ℓ : Loc(R,D,I) (α, p) ∈≤ I wf(p)

wf((α, ℓ) · p)
⌊Lℓ′⌋

⊢L ℓ : T (ℓ)

⌊La′⌋
Θ, a : Loc(R,D,I) ⊢L a : Loc(R,D,I)

wf(p)
⌊Dt′⌋

⊢D Cp : p

⌊Qt′⌋
⊢Q Cπ : π

⊢Q Q0 : π0 ⊢Q Q1 : π1
⌊Q⊕′⌋

⊢Q Q0 ⊕ Q1 : π0 ∨ π1

⊢Q Q0 : π0 ⊢Q Q1 : π1
⌊Q⊗′⌋

⊢Q Q0 ⊗ Q1 : π0 ∨ π1

Γ ⊢E e0 : π0 Γ ⊢E e1 : π1
⌊E||′⌋

Γ ⊢E e0 || e1 : π0 ∨ π1

Θ, x : (σ, λ) · π ⊢P P : α Θ ⊢L λ : Loc(R,D,I)
⊢Q Q : (σ, λ) · π 〈α, σ, π〉 ∈≤ R

⌊Pg′⌋
Θ ⊢P get (Q, x) .P : α

Θ, x : (σ, λ) · π ⊢P P : α Θ ⊢L λ : Loc(R,D,I)
⊢Q Q : (σ, λ) · π 〈α, σ, π〉 ∈≤ D

⌊Pd′⌋
Θ ⊢P del (Q, x) .P : α

Θ ⊢L λ : Loc(R,D,I) Θ ⊢P P : α Γ ⊢E e : π Γ ⊆ Θ (α, π) ∈≤ I
⌊Pi′⌋

Θ ⊢P ins (λ, e) .P : α

Figure 13: Syntax directed versions of provenance well-formedness and of typing rules

• to build unions in rules⌊Q⊕⌋, ⌊Q⊗⌋, ⌊E||⌋, and

• to cancel rule⌊Esub⌋.

More precisely the new clause of provenance well-formedness and the new typing
rules are shown in Fig. 13, where forX ranging overR,D andI, we define:

x ∈≤ X if there isx′ ∈ X such thatx ≤ x′

in agreement with the pre-order on policies defined in Sec. 4.4. In this way each loca-
tion is typed with the least policy, and each data, query and expression is typed with the
least provenance pattern. This assures that the new membership condition is satisfied
whenever possible. The unique provenance pattern of a query is used to type the data
variable that is bound in a get or in a del operator, i.e. if⊢Q Q : π, then in the inference
of a type forget (Q, x) .P or del (Q, x) .P, the premisex : π is used for obtaining a
type forP.

This shows that typing of closed systems is decidable when the pre-order on access
triples and insert pairs is decidable, which in turn is assured by the decidability of the
pre-order on patterns (see Sec. 4.1).

6. Properties

This section verifies that the type system is correctly defined. An essential subject
reduction theorem verifies that typing can be statically checked. Finally, it is proven

19

that the location policies are indeed enforced for well-typed systems.
This section starts as usual with inversion lemmas whose proofs are standard.

Lemma 6.1 (Inversion Lemma for Data). 1. If ⊢D Cp : π, then wf(p) and p
 π.

2. If ⊢D D0 || D1 : π, then ⊢D D0 : π and ⊢D D1 : π.

Lemma 6.2 (Inversion Lemma for Queries). 1. If ⊢Q Cπ : π′, then π ≤ π′.

2. If ⊢Q Q0 ⊕ Q1 : π, then ⊢Q Q0 : π and ⊢Q Q1 : π.

3. If ⊢Q Q0 ⊗ Q1 : π, then ⊢Q Q0 : π and ⊢Q Q1 : π.

4. If ⊢Q ∃a.Q : π, then ⊢Q Q : π.

5. If ⊢Q ∗Q : π, then ⊢Q Q : π.

Lemma 6.3 (Inversion Lemma for Expressions). 1. If Γ ⊢E x : π, then Γ = Γ′, x :
π′ and π′ ≤ π.

2. If Γ ⊢E D : π, then ⊢D D : π.

3. If Γ ⊢E f (e) : π, then Γ ⊢E e : π′ and f# · π′ ∨ π′ ≤ π.

4. If Γ ⊢E e0 || e1 : π, then Γ ⊢E e0 : π and Γ ⊢E e1 : π.

Lemma 6.4 (Inversion Lemma for Processes). 1. If Θ ⊢P get (Q, x) .P : α, then
Θ, x : (σ, λ) · π ⊢P P : α and Θ ⊢L λ : Loc(R,D,I) and ⊢Q Q : (σ, λ) · π and
〈α, σ, π〉 ∈ R.

2. IfΘ ⊢P del (Q, x) .P : α, thenΘ, x : (σ, λ) ·π ⊢P P : α andΘ ⊢L λ : Loc(R,D,I)
and ⊢Q Q : (σ, λ) · π and 〈α, σ, π〉 ∈ D.

3. If Θ ⊢P ins (λ, e) .P : α, then Θ ⊢L λ : Loc(R,D,I) and Θ ⊢P P : α and
Γ ⊢E e : π and Γ ⊆ Θ and 〈α, π〉 ∈ I.

4. If Θ ⊢P P0 + P1 : α, then Θ ⊢P P0 : α and Θ ⊢P P1 : α.

5. If Θ ⊢P recX.P : α, then Θ ⊢P P : α.

6. If Θ ⊢P ∃a : Loc(R,D,I).P : α, then Θ, a : Loc(R,D,I) ⊢P P : α.

Lemma 6.5 (Inversion Lemma for Systems). 1. If ⊢S D, then ⊢D D : π, for some
π.

2. If ⊢S α [P], then ⊢P P : α.

3. If ⊢S S || S ′, then ⊢S S and ⊢S S ′.

The proof of subject reduction (Theorem 6.8) is based on the agreement between
the typing of stored data and the pre-order on patterns, the satisfaction of queries and
the reduction of expressions, as formalised in the following Lemma.

Lemma 6.6 (Key). 1. If ⊢D D : π and π ≤ π′, then ⊢D D : π′.

20

2. If ⊢Q Q : π and D |= Q and ⊢S D, then ⊢D D : π.

3. If ⊢E e : π and e ⇓ D, then ⊢D D : π.

Proof. (1). By induction on the definition of⊢D using Proposition 4.1 for rule⌊Dt⌋.
(2). By induction on the definition of|=.

Rule⌈QAx⌉
p
 π′

Cp |= Cπ
′

By Lemma 6.2(1)⊢Q Cπ
′

: π impliesπ′ ≤ π. Proposition 4.1 andp
 π′ give p
 π.
By Lemmas 6.5(1) and 6.1(1)⊢S Cp implieswf(p). So⊢D Cp : π can be derived using
rule ⌊Dt⌋.

Rule⌈QChL⌉
D |= Q0

D |= Q0 ⊕ Q1

By Lemma 6.2(2)⊢Q Q0 ⊕ Q1 : π implies ⊢Q Q0 : π and⊢Q Q1 : π. The induction
applied to⊢Q Q0 : π andD |= Q0 gives⊢D D : π.

Rule⌈QChL⌉
D0 |= Q0 D1 |= Q1

D0 || D1 |= Q0 ⊗ Q1

By Lemma 6.2(3)⊢Q Q0 ⊗ Q1 : π implies⊢Q Q0 : π and⊢Q Q1 : π. Induction gives
⊢D D0 : π and⊢D D1 : π and then⊢D D0 || D1 : π can be derived using rule⌊D||⌋.
The remaining cases are similar and simpler.
(3). By induction on⇓. The only interesting case is

| f |(Πmi=1Ci) ↓ Π
n
j=1Ĉ j q = f# ·

m
∨

i=1

pi

f (Πmi=1C
pi
i || D) ⇓ Πnj=1Ĉ

q
j || D

By Lemma 6.3(3)⊢E f (Πmi=1C
pi
i || D) : π implies⊢E Πmi=1C

pi
i || D : π′ and f#·π′∨π′ ≤ π.

Lemmas 6.3(2) and 6.1(2) give⊢D Cpii : π′ for all i (1 ≤ i ≤ m) and⊢D D : π′. Lemma
6.1(1) implieswf(pi) andpi
 π′ for all i (1 ≤ i ≤ m), which allow to derivewf(q) and
∨m
i=1 pi
 π′ and thenq
 f# · π′ andq
 π. Lastly⊢D Ĉqj : π for all j (1 ≤ j ≤ n) using

rule ⌊Dt⌋. Point (1) gives⊢D D : π and⊢D Πnj=1Ĉ
q
j || D : π can be derived using rule

⌊D||⌋. �

The following substitution lemma has a simple proof since data variables in pro-
cesses can only occur inside expressions.

Lemma 6.7 (Substitution Lemma). If Θ, x : π ⊢ P : α and ⊢ D : π, then Θ ⊢ P{D/x} : α.

The preservation of typing under reduction can now be shown.

Theorem 6.8 (Subject Reduction). If ⊢S S and S −→ S ′, then ⊢S S ′.

Proof. By induction on−→.

Rule⌈Pg⌉
D |= Q

α [get (Q, x) .P] || D −→ α
[

P{D/x}
]

|| D

21

By Lemma 6.5(3)⊢S α [get (Q, x) .P] || D implies⊢S α [get (Q, x) .P] and⊢S D. By
Lemma 6.5(2)⊢S α [get (Q, x) .P] implies ⊢P get (Q, x) .P : α. Thenx : (σ, ℓ) · π ⊢P
P : α and⊢L ℓ : Loc(R,D,I) and⊢Q Q : (σ, ℓ) · π and〈α, σ, π〉 ∈ R by Lemma 6.4(1).
By Lemma 6.6(2)⊢D D : (σ, ℓ) · π, which implies⊢P P{D/x} : α by Lemma 6.7. Lastly
⊢S α

[

P{D/x}
]

|| D can be derived using rules⌊Sα⌋, ⌊S d⌋ and⌊S ||⌋.

Rule⌈Pi⌉
e ⇓ Πmi=1C

pi
i

α [ins (ℓ, e) .P] −→ α [P] || Πmi=1C
(α,ℓ)·pi
i

By Lemma 6.5(2)⊢S α [ins (l, e) .P] implies⊢P ins (l, e) .P : α. Then⊢L ℓ : Loc(R,D,I)
and ⊢P P : α and ⊢E e : π and (α, π) ∈ I by Lemma 6.4(3). By Lemma 6.6(3)
⊢D Π

m
i=1C

pi
i : π. This implieswf(pi) andpi
 π for all i (1 ≤ i ≤ m) by Lemma 6.1(2)

and (1). The well-formednesswf((α, ℓ)·pi) follows fromwf(pi) and⊢L ℓ : Loc(R,D,I)
and (α, π) ∈ I . Then⊢S C(α,ℓ)·pi

i for all i (1 ≤ i ≤ m) can be derived using rules⌊Dt⌋
and⌊S d⌋. Lastly⊢S α [P] || Πmi=1C

(α,ℓ)·pi
i can be derived using rules⌊Sα⌋ and⌊S ||⌋.

�

This section ends by showing that reducing a well-typed system:

1. If an agentα gets a tracked tripleC(β,ℓ)·p, then the getting policy ofℓ contains the
triple 〈α, β, p〉.

2. If an agentα deletes a tracked tripleC(β,ℓ)·p, then the deleting policy ofℓ contains
the triple〈α, β, p〉.

3. If an agentα inserts a tracked tripleCp, then the inserting policy ofℓ contains
the pair〈α, p〉.

More precisely the following theorem holds:

Theorem 6.9. 1. If ⊢S α [get (Q, x) .P] andC(β,ℓ)·p ||D |= Q, then ⊢L ℓ : Loc(R,D,I)
and 〈α, β, p〉 ∈ R.

2. If ⊢S α [del (Q, x) .P] and C(β,ℓ)·p || D |= Q, then ⊢L ℓ : Loc(R,D,I) and
〈α, β, p〉 ∈ D.

3. If ⊢S α [ins (ℓ, e) .P] and e ⇓ Cp || D, then ⊢L ℓ : Loc(R,D,I) and 〈α, p〉 ∈ I.

Proof. (1). By Lemmas 6.5(2) and 6.4(1)⊢S α [get (Q, x) .P] implies x : (σ, ℓ′) · π ⊢P
P : α and⊢L ℓ′ : Loc(R,D,I) and⊢Q Q : (σ, ℓ′) · π and〈α, σ, π〉 ∈ R. By Lemmas
6.6(2) and 6.1(2),C(β,ℓ)·p || D
 Q and⊢Q Q : (σ, ℓ′) · π give⊢D C(β,ℓ)·p : (σ, ℓ′) · π. This
gives (β, ℓ) · p
 (σ, ℓ′) · π by Lemma 6.1(1), which impliesβ ≤ σ, ℓ = ℓ′ andp ≤ π by
Proposition 4.1 and definition of≤. LastlyLoc(R,D,I) ≤ Loc(R ∪ {〈α, β, p〉},D,I)
and then⊢L ℓ : Loc(R ∪ {〈α, β, p〉},D,I) can be derived using rule⌊Lℓ⌋.
(2). Similar to the proof of (1).
(3). By Lemmas 6.5(2) and 6.4(3)⊢S α [ins (ℓ, e) .P] implies⊢L ℓ : Loc(R,D,I) and
⊢P P : α and⊢E e : π and〈α, π〉 ∈ I. By Lemmas 6.6(3) and 6.1(2),e ⇓ Cp || D and⊢E
e : π imply ⊢D Cp : π. This givesp
 π by Lemma 6.1(1) andp ≤ π by Proposition 4.1.
LastlyLoc(R,D,I) ≤ Loc(R,D,I ∪ {〈α, p〉}) and then⊢L ℓ : Loc(R,D,I ∪ {〈α, p〉})
can be derived using rule⌊Lℓ⌋. �

22

Thus a well-typed system reduces by respecting the access control dictated by the
location policies. More precisely if the operational semantics had rules that did dy-
namic checks that the policy is satisfied, then these checks would always succeed by
reducing well-typed systems.

7. Related Work

The Web of Linked Data, or simply ‘Linked Data’ [57], which draws experience
from ideas explored for the ‘Semantic Web,’ is a composite and exciting movement of
ideas, applications and techniques arising around the Web as we know it. It originates
from the desire of moving away from a web of documents to a web of data. This is
a web where links are not simply a technical device to reach documents, but rather
a way to attach meaning to data and establish semantic connections between pieces
of information. Its characterising features include the use of dereferenceable URIs to
represent atomic information and RDF to represent their relationships [5].

So far the Linked Data community has chiefly focussed on publishing large datasets,
importing them from various sources to RDF, and on designing applications that make
use of such data in tools of popular impact. Most of the theoretical work has been de-
voted to developingontologies and their formulation usingdescription logics [41]. An
equally considerable effort has been dedicated to the study of the Web as a science [6],
including (social)network dynamics (cf. e.g. [3]).

Ours is among the first papers to propose a language-based semantics for Linked
Data. Indeed, to the best of our knowledge, the first formal operational model of (com-
putation over) Linked Data is [37], followed by [40] and [39, 38]. Our calculus here is
original in its all provenance elements, but bears a close resemblance to that of [37] for
its linked data part. An alternative formal model of dereferencing URIs in linked data
is provided by Jeffrey and Patel-Schneider [42].

As a research theme, provenance covers a very wide spectrum of problems, tech-
niques and approaches. With a recent flourishing of activity, and most of its literature
published in the last four years, it is a field in flux, rather complex to review system-
atically. A comprehensive survey and full literature analysis is therefore beyond our
present scope, and can be found e.g. in [46]. Here only the main components of the
provenance movement are mentioned, as well as those items of work more directly
related to the present paper.

Historically, provenance emerged from issues indatabases (cf. [19] for an overview),
where the need arose to characterise the source of information [62] so as to justify the
answer to complex queries [11]. In that context, provenance developed an elegant
mathematical theory, which is arguably the pinnacle of its theoretical development,
where symbolic polynomials on semi-rings are used to represent abstractly computa-
tions and their sources (cf., e.g., [30]).

The research on provenance moved out of its databases origins to find wider and
deeper applications in workflow systems for eScience and for web computing (cf. [58]
for a survey). This represented a significant extension in scope, which brought to a
consolidation of ideas and a generalisation of techniques, as well as the design of pilot
systems and infrastructures, including Kepler [8], VDL [21], Taverna [64] and PA-
SOA [31], and the formulation of the concept of ‘provenance-aware’ application [45].

23

In particular, provenance became a concept in distributed computing, where it devel-
oped a need for standardisation [47] and interchange of data [48] and processes [43].
Among other trends, provenance recently acquired a trust and security dimension (cf.
[4]), which is relevant to this work.

According to its most liberal definition, the provenance of a piece of data is the
process that led to that piece of data. A concrete approach to this notion represents
provenance via directed acyclic graphs, where nodes are data and edges are data deriva-
tions [44, 47]. Our work is compatible with such a kind of model, yet we use traces
that can be viewed as trees and leave the generalisation to graphs to future work. The
‘why-’ ‘where-’ and ‘how-provenance’ notions from databases [62, 22, 11] are also
well represented in our calculus. An alternative approach that focusses on the use of
user-provided metadata to record the provenance information is the ‘provenance-as-
annotations’ paradigm [54].

The present work is more closely related to the application to provenance of formal
methods and analysis techniques. Bunemanet al in [10] study the expressive power of
provenance in database queries, Cheneyet al [17] introduce a formal notion of prove-
nance traces and study some of its properties, including computability, consistency and
fidelity issues. Cheneyet al [18] argue that dependency analysis techniques provide a
formal foundation for forms of provenance that are intended to show how the output
of a query depends on its input. A formal account of the interchange provenance data
model of [47] has been given in [44]. A precursor to this paper is [59], where Sas-
sone and Souilah present aπ-calculus where the provenance channel communication
is traced. As here, the provenance model is a tree, whilst the data model only includes
names like in theπ calculus.

Provenance for Linked Data has already been considered in the literature. A first
line of work is concerned with representing provenance using RDF and to query and
reason over provenance using Linked Data techniques (see, e.g., [63]). Various pa-
pers deal with annotated RDF, and consider also annotations providing information on
provenance. Udreaet al [60] present a formal declarative semantics for RDF annotated
by members of a partially ordered set. Buneman and Kostylev [12] develop an algebra
for computing annotations on inferred triples. Zimmermann et al [65] present a de-
tailed and systematic approach for combining multiple annotation domains into a new
single complex domain. Closer to our interests, Carrollet al [13] introducednamed
graphs as a first approach to where provenance for RDF triples. In [25] Flouriset al
rely on coloured RDF triples represented as quadruples to capture ‘where’ provenance.
Halpin and Cheney [32] consider a provenance model for SPARQL queries and up-
dates to data stores involving named graphs, whose purpose is to provide a record of
how the raw data in a dataset has changed over time. Our work extends named graphs
is several significant ways.

The standard approach to the semantics of SPARQL is denotational, see for exam-
ple [52]. In this paper we use instead the operational semantics of [39], which better
fits with the reduction rules of our calculus. We remark that the algebraic axiomatisa-
tion of SPARQL queries in [39] provides a starting point for our future investigation of
provenance semirings for our calculus.

A significant amount of work has concerned provenance and security. One strand
deals with securing access to provenance information (cf., e.g., [49, 9]). Hasanet al

24

[35] show how to provide strong integrity and confidentialityassurances for data prove-
nance information. In [16] Cheney formalises what it means for a provenance tracking
system to successfully disclose some information that users require while obfuscating
other sensitive information. Acar et al. [1] develop a core calculus for provenance in
programming languages and discuss some solutions to the disclosure and obfuscation
problems. Chong [20] presents a formal system to control undesired indirect disclosure
of provenance trace. Rosenthalet al [56] introduce ‘attribute-based access control’ to
specify policies of access control to provenance, whilst [15, 50] focus on confiden-
tiality of provenance by controlling respectively ‘user view’ and queries. A different
research line treats of integrity [34, 24, 26] and non-repudiability [27] of provenance
traces. Golbeck [28] exploits provenance to implement trust-based filtering of web
content, whilst Vaughanet al [61] use evidence-based audits for language-based secu-
rity. We believe our calculus provides a powerful and flexible framework to investigate
questions such as these, which is proposed as future work. The reader is remanded to
[55] for further information about open problems and current provenance research.

8. Conclusion

The provenance format introduced in the work is clean and simple. It is however
a significant extension of existing provenance formats for Linked Data. It provides a
comprehensive account of where and who provenance, and records all agents who have
published the data and where the data was written. In line with existing approaches to
provenance for Linked Data, the provenance is recorded at the level of triples (rather
than URIs).

Our examples use Linked Data published on the Web at the time of writing. They
represent realistic scenarios, and are provided to explain how the demands of the appli-
cation are addressed. The examples benefit from the formal syntax and the operational
semantics of the calculus they are expressed in, and this enables an unambiguous dis-
cussion of the ideas explored.

The calculus presents some fresh ideas for new high level languages for Linked
Data. Some high level constructs are suggested that combine explicit dereferencing of
URIs with queries over the data obtained and the continuation process that uses the
data. Furthermore, the queries are extended with patterns that exploit provenance, and
demonstrate that the ideas in this paper can be usefully integrated with several existing
languages. The framework for operational semantics employed is concise and extensi-
ble. Thus further features for tackling problems in Linked Data [36] can be combined
with this work easily. Some basic how provenance is suggested by means of functions.
By recording the functions applied to data in the provenance format, judgements can be
made about the quality of data depending on whether reliable functions were applied.
More detailed why provenance could be recorded by indicating a proof of why some
data is transformed into some other data.

The present calculus leaves a significant number of open issues to investigate. Lo-
cation policies are assumed to be fixed and available for centralised checks. Moreover
agents cannot lie and provenance cannot be forgotten. A calculus which addresses
these realistic challenges should allow location policies to change over the time and be
stored in locations themselves, while agents may be untrusted. This scenario requires

25

a reputation system for agents, and for locations to dynamically check agent requests
against their policies, whilst taking the reputation of agents into account.

The calculus provides a credible and flexible framework for future developments,
some of which are indicated in the previous section. Among the several avenues for
future work, three priorities are anticipated. Firstly, a calculus of transformations over
Linked Data should be specified to provide a detailed account of why provenance.
Also, provenance traces are expected to be extended to directed acyclic graphs. This
entails formulating a suitable syntax for graphs as well as a treatable logic for querying
them. Security figures among the most interesting challenges for both Linked Data
and provenance. A proposal is to focus on controlling the access to provenance infor-
mation. This will involve equipping the calculus with mechanisms and primitives to
specify suitable access control policies, as well as the analysis of how information may
covertly flow from (public) provenance trees to (private) data following [20] and [16].
The obtained calculus will be a formal platform to develop trust-based assessment and
filtering on the Web of Linked Data.

Acknowledgements. The present version of this paper strongly improved on the sub-
mitted one thanks to many useful referee suggestions.

References

[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A core calculus for provenance. In
POST’12, volume 7215 ofLNCS, pages 410–429. Springer, 2012.

[2] A. V. Aho and J. D. Ullman.Principles of Compiler Design. Addison-Wesley, 1977.

[3] R. Albert, H. Jeong, and A.-L. Barabasi. Internet: Diameter of the World-Wide Web.
Nature, 401:130–131, 1999.

[4] D. Artz and Y. Gil. A survey of trust in computer science and the semantic web.Web
Semantics: Science, Services and Agents on the World Wide Web, 5(2):58 – 71, 2007.

[5] T. Berners-Lee. Linked Data – W3C design issues, 2006.
http://www.w3.org/DesignIssues/LinkedData.html.

[6] T. Berners-Lee, W. Hall, J. A. Hendler, K. O’Hara, N. Shadbolt, and D. J. Weitzner. A
framework for web science.Foundations and Trends in Web Science, 1(1):1–130, 2006.

[7] C. Bizer. The emerging Web of Linked Data.IEEE Intelligent Systems, 24:87–92, 2009.

[8] S. Bowers, T. McPhillips, B. Ludscher, S. Cohen, and S. Davidson. A model for user-
oriented data provenance in pipelined scientific workflows. InIPAW’06, volume 4145 of
LNCS, pages 133–147. Springer, 2006.

[9] U. Braun, A. Shinnar, and M. I. Seltzer. Secur-
ing provenance. In HotSec. USENIX Association, 2008.
http://www.usenix.org/events/hotsec08/tech/full_papers/braun/braun.pdf .

[10] P. Buneman, J. Cheney, and S. Vansummeren. On the expressiveness of implicit provenance
in query and update languages.ACM Transactions on Database Systems, 33:1–47, 2008.

[11] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data
provenance. InICDT’01, volume 1973 ofLNCS, pages 316–330. Springer, 2001.

[12] P. Buneman and E. Kostylev. Annotation algebras for RDFS. InSWPM’10, volume 670 of
CEUR Workshop Proceedings, pages 1–6. CEUR-WS.org, 2010.

26

http://www.w3.org/DesignIssues/LinkedData.html
http://www.usenix.org/events/hotsec08/tech/full_papers/braun/braun.pdf

[13] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and trust. In
WWW’05, pages 613–622. ACM Press, 2005.

[14] G. Castagna and A. Frisch. A gentle introduction to semantic subtyping. InPPDP’05,
pages 198-208, ACM Press, (full version) andICALP’05, volume of LNCS, pages 30-34,
Springer, (summary), 2005. Joint ICALP-PPDP keynote talk.

[15] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi. Storing and querying scientific work-
flow provenance metadata using an RDBMS. IneScience’07, pages 611–618. IEEE, 2007.

[16] J. Cheney. A formal framework for provenance security. InCSF’11, pages 281–293. IEEE,
2011.

[17] J. Cheney, U. A. Acar, and A. Ahmed. Provenance traces. Technical report, University of
Edinburgh, 2008. arXiv:0812.0564v1.

[18] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as dependency analysis.Mathematical
Structures in Computer Science, 21(6):10301–1337, 2011.

[19] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in databases: Why, how, and where.
Foundations and Trends in Databases, 1(4):379–474, 2009.

[20] S. Chong. Towards semantics for provenance se-
curity. In TAPP’09. USENIX Association, 2009.
http://www.usenix.org/events/tapp09/tech/full_papers/chong/chong.pdf .

[21] B. Clifford, I. Foster, J.-S. Voeckler, M. Wilde, and Y. Zhao. Tracking provenance in a
virtual data grid. Concurrency and Computation: Practice and Experience, 20(5):565–
575, 2008.

[22] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a warehousing
environment.ACM Transactions on Database Systems, 25(2):179–227, 2000.

[23] L. Ding, J. Shinavier, Z. Shangguan, and D. McGuinness. SameAs networks and beyond:
Analyzing deployment status and implications of owl:sameAs in Linked Data. InISWC’10,
volume 6496 ofLNCS, pages 145–160. Springer, 2010.

[24] M. Factor, E. Henis, D. Naor, S. Rabinovici-Cohen, P. Reshef, S. Ronen, G. Michetti, , and
M. Guercio. Authenticity and provenance in long term digital preservation: modeling and
implementation in preservation aware storage. InTAPP’09. USENIX Association, 2009.
http://www.usenix.org/events/tapp09/tech/full_papers/factor/factor.pdf .

[25] G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis, and V. Christophides. Coloring
RDF triples to capture provenance. InISWC’09, volume 5823 ofLNCS, pages 196–212.
Springer, 2009.

[26] L. M. Gadelha Jr and M. Mattoso. Kairos: An architecture for securing authorship and
temporal information of provenance data in grid-enabled workflow management systems.
In eScience’08, pages 597–602. IEEE, 2008.

[27] A. Gehani, M. Kim, and J. Zhang. Steps toward managing lineage
metadata in grid clusters. InTAPP’09. USENIX Association, 2009.
http://www.usenix.org/events/tapp09/tech/full_papers/gehani/gehani.pdf .

[28] J. Golbeck. Combining provenance with trust in social networks for semantic web content
filtering. In IPAW’06, volume 4145 ofLNCS, pages 101–108. Springer, 2006.

[29] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update exchange with mappings
and provenance. InVLDB’07, pages 675–686. ACM Press, 2007.

[30] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. InPODS’07, pages
31–40. ACM Press, 2007.

27

http://www.usenix.org/events/tapp09/tech/full_papers/chong/chong.pdf
http://www.usenix.org/events/tapp09/tech/full_papers/factor/factor.pdf
http://www.usenix.org/events/tapp09/tech/full_papers/gehani/gehani.pdf

[31] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L. Moreau. An ar-
chitecture for provenance systems. Technical report, University of Southampton, 2006.
http://eprints.ecs.soton.ac.uk/13216/.

[32] H. Halpin and J. Cheney. Dynamic provenance for SPARQL updates us-
ing named graphs. InTAPP’11, pages 4:1–4:6. USENIX Association, 2011.
http://static.usenix.org/event/tapp11/tech/final_files/Halpin.pdf .

[33] A. Harth, A. Polleres, and S. Decker. Towards a social provenance model for the web. In
PrOPr’07, 2007.http://axel.deri.ie/publications/harth-etal-2007.pdf .

[34] R. Hasan, R. Sion, and M. Winslett. The case of the fake Picasso: Preventing history
forgery with secure provenance. InFAST’09, pages 1–14. USENIX Association, 2009.
http://www.usenix.org/events/fast09/tech/full_papers/hasan/hasan.pdf .

[35] R. Hasan, R. Sion, and M. Winslett. Preventing history forgery with secure provenance.
ACM Transactions on Storage, 5(4):12:1–12:43, Dec. 2009.

[36] R. Horne. Programming Languages and Principles for Read–Write Linked Data. PhD
thesis, School of Electronics and Computer Science, University of Southampton, 2011.

[37] R. Horne and V. Sassone. A typed model for Linked Data. Technical report, University of
Southampton, 2011.http://eprints.ecs.soton.ac.uk/21996/.

[38] R. Horne and V. Sassone. A verified algebra for Linked Data. InFOCLSA’11, volume 58
of EPTCS, pages 20–33, 2011.

[39] R. Horne and V. Sassone. A verified algebra for read-write Linked Data. Technical report,
University of Southampton, 2012.http://eprints.soton.ac.uk/273248/.

[40] R. Horne, V. Sassone, and N. Gibbins. Operational semantics for SPARQL Update. In
STC’11, volume 7185 ofLNCS, pages 242–257. Springer, 2011.

[41] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. InKR’06, pages
57–67. AAAI Press, 2006.

[42] A. Jeffrey and P. Patel-Schneider. Integrity constraints for Linked Data. InDL’11, volume
745 ofCEUR Workshop Proceedings, pages 521–531. CEUR-WS.org, 2011.

[43] G. Klyne and P. Groth. PROV-AQ: Provenance access and query. Technical report, W3C
Working Draft, 2012.http://www.w3.org/TR/prov-aq .

[44] N. Kwasnikowska, L. Moreau, and J. Van den Bussche. A formal account of
the open provenance model. Technical report, University of Southampton, 2010.
http://eprints.ecs.soton.ac.uk/21819/.

[45] S. Miles, P. T. Groth, S. Munroe, and L. Moreau. PrIMe: A methodology for developing
provenance-aware applications.ACM Transactions on Software Engineering and Method-
ology, 20(3):8, 2011.

[46] L. Moreau. The foundations for provenance on the web.Foundations and Trends in Web
Science, 2(2-3):99–241, 2010.

[47] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. Miles,
P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. Van den Bussche. The
open provenance model core specification (v1.1).Future Generation Computer Systems,
27(6):743–756, 2010.

[48] L. Moreau and P. Missier. The PROV data model and abstract syntax notation. Technical
report, W3C Working Draft, 2012.http://www.w3.org/TR/prov-dm.

28

http://eprints.ecs.soton.ac.uk/13216/
http://static.usenix.org/event/tapp11/tech/final_files/Halpin.pdf
http://axel.deri.ie/publications/harth-etal-2007.pdf
http://www.usenix.org/events/fast09/tech/full_papers/hasan/hasan.pdf
http://eprints.ecs.soton.ac.uk/21996/
http://eprints.soton.ac.uk/273248/
http://www.w3.org/TR/prov-aq
http://eprints.ecs.soton.ac.uk/21819/
http://www.w3.org/TR/prov-dm

[49] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I.Seltzer. Provenance-
aware storage systems. InUSENIX’06, pages 43–56. USENIX Association, 2006.
http://static.usenix.org/event/usenix06/tech/muniswamy-reddy.html .

[50] M. Nagappan and M. Vouk. A model for sharing of confidential provenance information in
a query based system. InIPAW’08, volume 5272 ofLNCS, pages 62–69. Springer, 2008.

[51] C. Ogbuji. SPARQL 1.1 Graph Store HTTP Protocol. W3C Working Draft, 2012.
http://www.w3.org/TR/sparql11-http-rdf-update/ .

[52] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.ACM
Transactions on Database Systems, 34(3):16:1–16:45, 2009.

[53] A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation. InSWC’06,
volume 4011 ofLNCS, pages 332–347. Springer, 2006.

[54] A. Powell, M. Nilsson, A. Naeve, P. Johnston, and T. Baker. DCMI ab-
stract model. Technical report, Dublin Core Metadata Initiative, 2007.
http://www.dublincore.org/documents/abstract-model.

[55] Provenance Working Group.http://www.w3.org/2011/prov/wiki/Main_Page.

[56] A. Rosenthal, L. Seligman, A. Chapman, and B. Blaustein. Scalable
access controls for lineage. InTAPP’09. USENIX Association, 2009.
http://www.usenix.org/events/tapp09/tech/full_papers/rosenthal/rosenthal.pdf .

[57] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revisited.IEEE Intelligent
Systems, 21(3):96–101, 2006.

[58] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.SIGMOD
Record, 34:31–36, 2005.

[59] I. Souilah, A. Francalanza, and V. Sassone. A formal model of prove-
nance in distributed systems. InTAPP’09. USENIX Association, 2009.
http://www.usenix.org/events/tapp09/tech/full_papers/souilah/souilah.pdf .

[60] O. Udrea, D. R. Recupero, and V. S. Subrahmanian. Annotated RDF.ACM Transaction on
Computational Logic, 11(2):10:1–10:41, 2010.

[61] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit. InCSF’08,
pages 177–191. IEEE, 2008.

[62] Y. R. Wang and S. E. Madnick. A polygen model for heterogeneous database systems: The
source tagging perspective. InVLDB’90, pages 519–538. Morgan Kaufmann, 1990.

[63] J. Zhao, C. Goble, R. Stevens, and S. Bechhofer. Semantically linking and browsing prove-
nance logs for E-science. InICSNW’04, volume 3226 ofLNCS, pages 158–176. Springer,
2004.

[64] J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining taverna’s semantic web of provenance.
Concurrency and Computation: Practice and Experience, 20(5):463–472, 2008.

[65] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A general framework for repre-
senting, reasoning and querying with annotated semantic web data.Journal of Web Seman-
tics, 11:72–95, 2012.

29

http://static.usenix.org/event/usenix06/tech/muniswamy-reddy.html
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.dublincore.org/documents/abstract-model
http://www.w3.org/2011/prov/wiki/Main_Page
http://www.usenix.org/events/tapp09/tech/full_papers/rosenthal/rosenthal.pdf
http://www.usenix.org/events/tapp09/tech/full_papers/souilah/souilah.pdf

	Introduction
	Linked Data: Guiding Principles and Provenance
	A Syntax for Capturing Provenance in Linked Data
	The Syntax for a Format for Provenance Traces
	Mechanisms for Manipulating Linked Data
	A Syntax for Process Configurations

	An Operational Semantics for Provenance Tracking in Linked Data
	Pre-order on Patterns and Satisfaction of Patterns
	Satisfaction of Queries
	Expression Evaluation
	Policies
	Reduction Rules for Systems
	Dereferencing Revisited

	A Type System for Provenance Based Access Control
	Examples of Typed Systems
	Type Inference

	Properties
	Related Work
	Conclusion

