
15 December 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: Altered energetic efficiency?

Published version:

DOI:10.1016/j.bbagen.2012.11.009

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/146250 since 2016-01-17T21:38:49Z



 
 
This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here 
by agreement between Elsevier and the University of Turin. Changes resulting from the publishing 
process - such as editing, corrections, structural formatting, and other quality control mechanisms - 
may not be reflected in this version of the text. The definitive version of the text was subsequently 
published in Biochim Biophys Acta. 2013 Mar;1830(3):2770-8.  DOI: 10.1016/j.bbagen.2012.11.009  
 
You may download, copy and otherwise use the AAM for non-commercial purposes provided that 
your license is limited by the following restrictions: 
 
(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND 
license.  

(2) The integrity of the work and identification of the author, copyright owner, and publisher must 
be preserved in any copy.  

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), 
http://www.sciencedirect.com/science/article/pii/S0304416512003297 
  

http://www.sciencedirect.com/science/article/pii/S0304416512003297


ABSTRACT 

 

Background: Cachexia is a wasting condition that manifests in several types of cancer, and the main 

characteristic is the profound loss of muscle mass. Methods: The Yoshida AH-130 tumour model has been 

used and the samples have been analyzed using transmission electronic microscopy, real-time PCR and 

Western blot techniques. Results: Using in vivo cancer cachectic model in rats, here we show that skeletal 

muscle loss is accompanied by fiber morphologic alterations such as mitochondrial disruption, dilatation 

of sarcoplasmic reticulum and apoptotic nucleus. Analyzing the expression of some factors related to 

proteolytic and thermogenic processes, we observed in tumor-bearing animals an increased expression of 

genes involved in proteolysis such as ubiquitin ligases Muscle ring finger 1 (MuRF-1) and Muscle Atrophy 

F-box protein (MAFBx). Moreover, an overexpression of both sarco/endoplasmic Ca2+-ATPase (SERCA1) 

and adenine nucleotide translocator (ANT1) (factors related to cellular energetic efficiency) was observed. 

Tumor burden also leads to a marked decreased in muscle ATP content. Conclusions: In addition to 

muscle proteolysis, other ATP-related pathways may have a key role in muscle wasting, both directly by 

increasing energetic inefficiency, and indirectly, by affecting the sarcoplasmic reticulum-mitochondrial 

assembly that is essential for muscle function and homeostasis. General Significance: The present study 

reports, for the first time?, profound morphological changes in cancer cachectic muscle, which are 

visualized mainly in alterations in sarcoplasmic reticulum and mitochondria. These alterations are linked 

to pathways that can account for some of energy inefficiency associated with cancer cachexia. 
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INTRODUCTION 

 



 In advanced malignant diseases, cachexia appears to be one of the most common systemic 

manifestations. The presence of cachexia always implies a poor prognosis, having a great impact on the 

patients' quality of life and survival [1]. The skeletal muscle loss is the main characteristic of cancer cachexia 

and the principal cause of function impairment, fatigue and respiratory complications [2]. Several 

important molecular mechanisms have been shown to be involved in the increased muscle catabolism 

observed in cancer-induced cachexia, such as greater ubiquitin-proteasome-dependent proteolysis, 

apoptosis, and activation of uncoupling proteins [3]. Interaction of these mechanisms leads to muscle-mass 

loss by promoting protein and DNA breakdown and energy inefficiency. 

 Skeletal muscle is a very heterogeneous tissue and is used to respond to a broad range of 

functional demands in each animal species. It represents approximately 50% of the whole total weight and 

plays a central role in the whole-body metabolism [4]. Consequently, the loss of muscle in catabolic 

syndromes, such as cancer cachexia, represents a devastating condition not only for patient’s quality of life, 

but also as a surgical risk and also decreasing the response to chemotherapy [3, 5]. It is important to 

emphasize that approximately 30% of body weight loss represents a 75% of muscle loss. This factor leads to 

patient death, and it is the most prominent phenotypic feature in cancer cachexia [6]. In many years, the 

experts are challenging to understand what mechanisms are involved in the maintenance of muscle mass 

for the development of strategies to attenuate the wasting and improve muscle function [7]. 

 It is known that mitochondria and sarcoplasmic reticulum (SR) have a key role in the muscular 

function. This advantageous assembly reflects the Ca2+ releasing from SR, stimulating mitochondrial ATP 

production helping to meet increased energy demand during muscle contraction, a process called 

excitation-contraction (EC) coupling [8]. On the other hand, functionally intact mitochondria inhibit 

undesired localized SR Ca2+ release by controlling the local redox environment of the calcium release units 

(for a review, see ref. [8]). Thus, bidirectional SR-mitochondrial communication provides a powerful local 



control mechanism for integrating Ca2+ release/reuptake and ATP utilization during muscle contraction with 

ATP production and skeletal muscle bioenergetics [9]. 

 Reduced thermodynamic efficiency will result in an increased weight loss. The laws of 

thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. 

Therefore such variability can be related to differences in weight loss. An alteration of energy balance is the 

immediate cause of cachexia [10]. Although alterations of energy intake are often associated with cachexia, 

it has lately become clear that increased energy expenditure is the main cause of wasting associated with 

different types of pathological conditions, such as cancer, infections and chronic heart failure. Different 

types of molecular mechanisms contribute to involuntary body weight loss [11]. 

 Taking into consideration that skeletal muscle loss is the most prominent characteristic of cancer 

cachexia, and that the mitochondria and SR have an important role in the muscle function and energetic 

metabolism [2], the purpose of this work has been to examine if a dysregulation of mitochondria and SR 

functions could be involved in the development of cancer cachexia in animals bearing cachectic tumors, 

analyzing the putative pathways involved in energy efficiency and homeostasis. 

 



MATERIAL AND METHODS 

 

Animals 

 5 weeks old male Wistar rats (Interfauna, Barcelona, Spain)  were maintained at 22 ± 2 °C with a 

regular light-dark cycle (light on from 08:00 a.m. to 08:00 p.m.) and had free access to food and water. 

The diet (Panlab, Barcelona, Spain) consists of 63.9% carbohydrate, 14.5% protein, and 4% fat (the residue 

was non-digestible material). Food intake was measured daily. All animal manipulations were conducted 

in accordance with the European Community guidelines for the use of laboratory animals. 

 

 Tumor inoculation 

 Rats were divided into two groups, namely controls (n=6) and tumor hosts (n=7). The latter 

received an intraperitoneal inoculum of 10
8
 AH-130 Yoshida ascites hepatoma cells obtained from 

exponential tumors [12]. 8 days after tumor transplantation, the animals were weighed and anesthetized 

with an i.p. injection of ketamine/xylazine mixture (3:1) (Imalgene and Rompun respectively). The tumor 

was harvested from the peritoneal cavity, and its volume and cellularity were evaluated. Several tissues 

were rapidly excised, weighed, and frozen in liquid nitrogen except for the muscles processed for electron 

microscopy and histology (see below).  

 

Histology, SDH staining and total activity 

 During rat sacrifice, the EDL muscles were rapidly excised and divided in two parts in the mid-belly 

region, half directly frozen in liquid nitrogen for the enzymatic activity, half mounted in OCT and frozen in 

melting isopentane for histology. Ten micrometers of transverse sections were cut on a cryostat and later 



stained for SDH (succinate dehydrogenase) incubating for 30 min at 37°C with 1 mg/mL NTB 

(nitrotetrazolium blue chloride) and 27 mg/mL Na-succinate in PBS. Afterwards the slides were washed 

three times in PBS, mounted with glycerol and photographed at different magnifications. Fiber cross-

sectional area (CSA) was determined on randomly chosen 100 individual fibers (for both oxidative and 

glycolytic ones) by the Image J software. 

 As for the total SDH activity, the muscles were homogenized (5% wt/vol) in ice-cold 150 mM NaCl, 

10 mM KH2PO4, 0,1 mM EGTA, 2 times x 30 sec. using a turrax device and centrifuged 5 min. at 800 x g. 

The supernant was collected and total protein content measured using the BCA protein assay (Pierce, 

Thermo Fisher Scientific, Rockford, IL, USA). 50µL of protein homogenate were incubated with 200 µL 

reaction buffer containing 10 mM Na-succinate, DCPIP 50 µg/mL, 10 mM phosphate buffer (pH 7,4), 2 

mM KCN, 10 mM CaCl2, 0,05% BSA. The absorbance at 600 nm was measured at t0, 3 min and 20 min 

after the addition of proteins. The rate of disappearance of the absorbance between 3 and 20 min was 

corrected for the total protein loaded and used to calculate the SDH content. 

 

Transmission Electronic Microscopy 

 

Muscle pieces of 1 mm2 were removed under a stereomicroscope and transferred to glass vials filled with 

2% parafomaldehyde and 2.5% glutaraldehyde in phosphate buffer. They kept in the fixative during 24 h 

at 4ºC. Then, they were washed with the same buffer and potsfixed with 1% osmium tetroxide in the 

same buffer containing 0.8% potassium ferricyanide at 4ºC. Then the samples were dehydrated in 

acetone, infiltrated with Epon resin during 2 days, embedded in the same resin orientated for longitudinal 

sectioning and polymerised at 60ºC during 48 hour. Semithin sections were made in order to look for 

muscle fibers at light microscope. When they were found, ultrathin sections were obtained using a Leica 



Ultracut UC6 ultramicrotome and mounting on Formvar-coated copper grids. They were staining with 2% 

uranyl acetate in water and lead citrate. Then, sections were observed in a JEM-1010 electron microscope 

(Jeol, Japan) equipped with a CCD camera SIS Megaview III and the AnalySIS software. Intermyofibrillar 

mitochondrial morphology was classified into unchanged and altered (swelling-related ultraestructural 

changes). Mitochondrial counting was performed from 25-30 micrographs, which were fields randomly 

taken at 20000x magnification, from three different areas of one grid. 

 

ATP measurement  

The determination of ATP using bioluminescence was performed using the commercially available 

kit ATP Bioluminescence Assay Kit CLS II (Roche) according to manufacturer’s recommendations. Briefly, 

GSN muscles were homogenized in PBS (proportion 1:10 w/v). Then, the samples were diluted 10x in 100 

mM Tris, 4 mM EDTA (pH 7.75), incubated 2 minutes at 100°C and centrifuged 1 minute at 1000xg. The 

supernatant was transferred to a new tube. In a multiwell black plate (96 wells - Packard) 50 µL of the 

sample and 50 µL of the Luciferase reagent were added. The luminescence was measured in a 

Luminometer at 562 nm with an integration time of 10 seconds. The ATP concentrations were obtained 

from a log-log plot of the standard curve data. 

 

Real-time PCR (polymerase chain reaction) better at the bottom, respecting the order of the results 

Total RNA was extracted by using Tripure Isolation Reagent (Roche Applied Science, Switzerland) 

according to manufacturer’s  recommendations. Expression of SERCA1 (5’- TTG TCC TAT TTC GGG GTG 

AG-3’ and 5’-TCC CAC AGA GAC TTG CCT TC-3’), SERCA2 (5’-GCT TGT CCA TGT CCC TTC AC-3’ and 5’-ACT 

CCA GTA TTG CAG GCT CC-3’), ANT1 (5’-GCT GGT GTC CTA TCC GTT TG-3’ and 5’-CAG TCA AGT GTC CCC 

GTG TA-3’), RyR1(5’-GTC TCT GTC AGT TCG AGC CC-3’ and 5’-GCC AAC TTG TCA GTC ATG GA-3’), MFN2 



(5’-GAG AGG CGA TTT GAG GAG TG-3’ and 5’- GTC AAT GAA TCT CAG CCG GT-3’), CALP1 (5’-GAG GAA 

GAT GGG TGA GGA CA-3’ and 5’- GCT GAG GTG GAT GTT GGT CT-3’), PGC-1a (5’-AAG GTC CCC AGG CAG 

TAG AT-3’ and 5’-TCA GAC TCC CGC TTC TCA T-3’), UB (5’-CAC CAA GAA GGT CAA ACA GGA-3’ and 5’- CAA 

ACC CAA GAA CAA GCA CA-3’), MURF (5’-GTG AAG TTG CCC CCT TAC AA-3’ and 5’-GTG GCT GTT TTC CTT 

GGT CA-3’) and MAFbx (5’-TGT GCG ATG TTA CCC AAG AA-3’ and 5’- GGT GAA AGT GAG ACG GAG CA-3’) 

were confirmed in each correspondent group. Primer sequences were designed through Primer3 

software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). 

The Operon tool (https://www.operon.com/oligos/toolkit.php) was used to check the putative 

primer-dimer formation. All reactions were performed with Power SyBR® Green Master Mix (Applied 

Biosystems) according to manufacturer’s instructions. The relative amount of transcripts was calculated 

using comparative CT method and Acidic Ribosomal Phosphoprotein P0 mRNA was used for normalization 

[13].  

 

Western Blot  

Protein isolations from EDL and GSN muscles were performed using the Mitochondria Isolation 

Kit for Rodent (Mitosciences),allowing the separation of total and mitochondrial fractions. 40 µL of a 

protease inhibitor cocktail (Complete Roche, Stock solution 25x) was added per mL of isolation buffer. 

Protein concentrations were determined by the method of bicinchoninic acid (Pierce). Equal amounts of 

proteins (50 µg) were heat denatured in sample loading buffer (50 mmol/L Tris-HCl pH 6.8, 100 mmol/L 

DTT, 2% SDS, 0.1% bromophenol blue, 10% glycerol). The samples were loaded on a 4-15% Tris-HCl gel 

(Ready Gel Biorad) and transferred to Immobilon membranes (Immobilon polyvinylidene difluoride, 

Millipore). The membranes were blocked with 5% PBS-non fat dry milk and then incubated with Anti-

SERCA1 (primary antibody; dilution 1:1000 monoclonal anti-mouse; Sigma), Anti-SERCA2 (primary 

antibody; dilution 1:1000 monoclonal anti-mouse; Sigma), Anti-ANT1 (primary antibody; dilution 1:500 



polyclonal anti-goat; Santa Cruz). Anti-Na+K+-ATPase alpha subunit (primary; dilution 1:100 monoclonal 

anti-mouse; Developmental Studies Hybridoma Bank, Iowa) was used for normalization. Anti-goat 

(dilution 1:5000; Bio Rad) and anti-mouse (dilution 1:10000; Bio Rad) IgG-HRP conjugate were used as 

secondary antibodies. The membrane-bound immune complexes were detected by an enhanced 

chemiluminescence system (EZ-ECL, Amersham Biosciences). 

Statistical analysis 

 Statistical analysis of the data was performed by means of one-way analysis of variance (ANOVA). 

 



RESULTS AND DISCUSSION 

 

 The implantation of the Yoshida AH-130 ascites hepatoma caused a marked decrease in body 

weight, together with an important decrease in skeletal muscle mass represented through 27% of 

extensor digitorius longus (EDL) and 25% of gastrocnemius (GSN) and 24% of tibialis when compared with 

control animals (Figure 1A; Table S1). These changes were accompanied by a significant decrease in food 

intake (18%). These data agree with previous results from our own laboratory [12].  

A thorough analysis of muscle morphology in EDL cross sections of controls and AH-130 bearing 

rats shows that muscle atrophy occurs in both fast and slow twitch muscle fibers. In fact, the cross 

section area is dramatically reduced in both oxidative and glycolytic fibers (SDH positive and negative, 

respectively; Figure 1C-D). Such result suggests that muscle wasting in tumor-bearing animals is not 

selective for a fiber type, although previous results support the notion that fast fibers are the most 

affected in cancer cachexia […]. In order to measure the gross mitochondrial amount, quantitative 

biochemical assessment of total SDH activity in muscle homogenates was performed. The results show a 

lower SDH activity (corrected for total protein content; Figure 1 B) in the muscles from AH-130 bearing 

rats, evidencing a selective reduction of mithochondrial amount and prompting us to deeper investigate 

the effects of tumor growth on mitochondial morphology and energetics.   

Fiber cross-sectional area (CSA) was determined on oxidative and glycolytic fyber types from EDL muscles 

indicating that in both fiber types atrophy is present (Figure 1C and 1D). The results are indicated as 

percentage of fiber number of different areas and it could be observed that in tumour-bearing animals 

there are an increased number of fibers with small area. It is also observed that total SDH activity is lower 

in EDL from tumour-bearing animals pointing out that there was a damage in the mitochondria of this 

group. 



  Tumor burden induced important morphological changes at the level of skeletal muscle. In 

Figure 2, the EDL micrographs from control animals show organized sarcomeres, with normal 

mitochondrial morphology (A-F), whereas the micrographs (G-L) from tumor-bearing rats show 

disorganized myofibers, dilated SR and a significant increase, both in the surface area and number of 

mitochondria. Total mitochondrial area showed a threefold increase. The presence of lipid inclusions 

along the muscle fibers can also be observed in the tumor-bearing animals. In relation to changes 

induced by tumor burden in GSN muscles (Figure 3), and although the total mitochondrial number was 

decreased, surface area was significantly increased and the total mitochondrial area was increased 2.6 

times. There were also important morphological differences. In control group, sarcomeres were 

organized (Figure 2 A-F); nucleus contained clear nucleolus and a homogeneous nuclear membrane; 

mitochondria presented clear cristae and aligned with the triad. Conversely, mitochondria from tumor-

bearing animals muscles showed a clear disruption of cristae (Figure 3J, 3K, 3L). Cristae were also often 

whorled (Figure 3J).  

Muscle morphology in the tumor-bearing animals also included sarcomere disorganization, nucleus with 

an irregular membrane and chromatin compaction (Figure 3H, 3I), features that characterize the 

apoptotic process. Indeed, apoptosis is linked to muscle wasting during cancer, both in animals [14] and 

human subjects [15]. As can be observed in Figure 2, in addition to a clear mitochondrial damage, the SR 

is dilated, with profound alterations in the triad structure (Figure 2L). It is interesting to observe that 

satellite cells show nucleus with apoptotic morphology similar to what is observed in GSN muscle fibers 

(Figure 3G and I). Previous studies have shown mitochondrial defects associated with the development of 

myopathies [16, 17]. The results presented here agree with those that link apoptosis with higher 

mutation rate in mitochondrial genes and an increased mitochondrial mass in human myopathies that 

are associated with intolerance to exercise, defects in the energy production and muscle weakness [18]. 



New experiment PAZ: Additionally to the quatification of area and number of mitochondrias, the 

percentatge of normal and altered mitochondria have been also measured. As can be seen in figure 4, 

EDL and GSN from tumour-bearing animals showed an increased number of altered mitochondria 

compared with the control muscles. This result is in accordance to the decreased ATP content (in GSN) 

and to the decreased SDH activity (in EDL) in tumour-bearing muscles. 

 

 Table 1 shows the consequences of tumor burden on pattern of gene expression in both GSN and 

EDL muscles. It can be seen that tumor-bearing rats manifested a marked increase in expression for 

genes related to muscle proteolysis such as ubiquitin (UB) (by 5.4-fold and 3.4-fold for EDL and GSN, 

respectively), muscle specific ubiquitin ligases MuRF-1 (by 3-fold and 5.5-fold for EDL and GSN, 

respectively) and MAFBx (by 6.2-fold and 5.4-fold for EDL and GSN, respectively), and also calpain-2 (2.2-

fold for both muscles). These results agree with previous results from our own group, where it showed 

that muscle proteolysis is a common mechanism linked to cachexia present in cancer. [12, 19], Recent 

studies have shown that MAFBx ligase seems to be involved in the direct degradation of MyoD protein 

and myofibrillar proteins, whereas MuRF-1 seems to be involved in the degradation of thick filaments 

[20, 21]. Calcium-dependent proteases (calpains) also seem to play a role in the muscle wasting process 

[22].  

SR and mitochondria have an important inter-relationship and the orchestral regulation of share 

pathways between these organelles is critical for Ca2+ signaling in EC coupling, for the maintenance of 

cellular homeostasis, for energy supply and for cellular fate under stress conditions [8, 9]. Based on the 

morphological alterations in these organelles found in cancer cachexia, we decide to analyze if the 

disruption of SR-mitochondrial communication could be an important factor to explain muscle 

dysfunction and posterior muscle loss in cancer cachexia. By means of real time PCR and Western Blot 



techniques, the expression of some targets connected to this hypothesis in EDL and GSN muscles was 

analyzed.  

 An increased expression of ryanodine receptor 1 (RyR1) gene was observed, as shown in the 

Table 1. This receptor is located in the terminal SR and provides the primary means of SR Ca2+ release 

during skeletal muscle EC coupling. The increase in myoplasmic Ca2+ during a single twitch is due  almost 

exclusively to the Ca2+ released from RyR1 channels located in triads [23]. Mutations of this gene, that 

cause a hyperactivation of RyR1, are implicated in malignant hyperthermia (MH), where a rapid and 

sustained rise in intracellular Ca2+ in muscle occurs, that causes a profound alteration in Ca2+ 

homeostasis, leading to a rise in body temperature and muscle rigidity upon exposure to a fluorinated 

inhalation anesthetic such as halothane [23]. Moreover, the increase of RyR1 and its dysregulation has 

been shown in muscle weakness and fatigue in aging [24, 25]. Therefore, it can be speculated that 

overexpression of RyR1 can increase the Ca2+ leak from SR in cachexia and can be involved in the stress 

responses, that triggers proteolytic and apoptotic processes [23, 25]. 

 It is particularly interesting to remark on the significant increased expression in both SERCA1 and 

2 genes in EDL muscles in the tumor-bearing animals, as shown in  Table 1. In GSN muscles, tumor burden 

also resulted in an increased SERCA1 gene expression by 3.6-fold (Table 1). The sarco/endoplasmic Ca2+-

ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an 

indispensable component of the EC coupling, being at the expense of ATP hydrolysis involved in Ca2+ 

exchange with a high thermodynamic efficiency across the SR membrane [26, 27]. In skeletal muscle, 

SERCA1 has the capacity to interconvert different forms of energy. Thus, SERCA1 activity may be coupled 

to Ca2+ translocation from the cytosol to the SR, a process that requires a considerable amount of energy, 

since it represents a dynamic process against a concentration gradient. Some of the energy associated 

with the activity of the pump is released as heat [28]. Interestingly, the pump may also function in an 

uncoupled way, releasing just heat without translocating Ca2+ [26, 29]. In fact, the rate of uncoupled 



ATPase activity is much higher than the coupled one. It is for this reason that SERCA1, in addition to being 

involved in Ca2+ translocation, has also been related to non-shivering thermogenesis [30]. Conversely, in 

SERCA2 most of the hydrolytic ATP-derived energy is coupled to Ca2+ transport to the lumen of the SR 

[28]. It is clear that in adult mammals, despite a small heat production in brown adipose tissue, the major 

contributor for thermogenesis is the skeletal muscle since it represents about 50% body weight. The 

increased gene expression of SERCA1 was accompanied by increased protein content both in EDL (by 4-

fold, Figure 3A) and GSN (by 3.6-fold, Figure 3A) muscles from tumor animals. SERCA2 protein content 

was also increased in EDL muscles (Figure 3C). It may thus be suggested that SERCA, in particular SERCA1, 

could be involved in the energetic inefficiency that characterizes the cachectic condition [10]. In fact, 

upregulation of SERCA1 in skeletal muscle has been described in disuse atrophy [31]. It is also very 

interesting to remark that ATP consumption by SERCA pumps accounts for 50% of resting metabolic rate 

in mice [32]. If we take into consideration the fact that cancer patients have an increased energy 

expenditure [33], which contributes to weight loss, it becomes clear the importance that SERCA pumps 

may have in cancer cachexia. In addition, previous studies have shown that an increased cytosolic ADP 

concentration, due to an increased SERCA activity, leads to Ca2+ leakage from the SR in fast-twitch 

muscles, effectively reducing the capacity of SERCA to maintain an adequate Ca2+ intracellular gradient, 

and thus leading to increased energetic inefficiency [34]. 

 It is interesting to note that, in addition to the energetic implications of SERCA, it may play a key 

role in apoptosis. From this point of view, it was characterized a truncated variant of the SERCA1, S1T, 

that amplifies ER stress, determines endoplasmic reticulum Ca2+ depletion due to increased Ca2+ leak, an 

increased number of endoplasmic reticulum-mitochondria contact sites, and inhibition of mitochondria 

movements that leads to trigger apoptotic processes [35]. Considering the present morphological results 

that show the apoptotic processes in cachectic muscles and also previous studies [14], the altered SR-

mitochondria interactions could be involved in muscle dysfunction and cell death observed in cachexia. 



 In the mitochondrial internal membrane, the adenine nucleotide translocator (ANT) carries out 

the ATP/ADP exchange between cytoplasm and mitochondrial matrix. Interestingly, there are four 

different ANT isoforms (ANT1, ANT2, ANT3 and ANT4) but ANT1 is the predominant isoform present in 

skeletal muscle and, although not normally included as a part of the OXPHOS system, it is a key protein 

regulating the mitochondrial ATP/ADP flux [36]. It seems that the activity of the transporter may be 

intimately linked to uncoupling of the respiratory chain, basically due to proton leakage across the inner 

mitochondrial membrane and, therefore, disruption of the electrochemical proton gradient that drives 

ATP synthesis in the mitochondria [37]. Interestingly, our results show an increased ANT1 gene 

expression in both GSN and EDL muscles during tumor growth (2.2 and 2-fold respectively), as shown in  

Table 1. These increases in mRNA content are accompanied by significant elevations in protein content 

(Figure 3D, E). These alterations may be an indication of uncoupling in mitochondria from tumor-bearing 

animals. ANT1 also seems to play a key role in the pathogenesis of fascioscapulohumeral muscular 

dystrophy, one of the most common hereditary muscle diseases, where ANT1 is significantly elevated in 

muscle resulting in mitochondrial dysfunction associated with oxidative stress, leading to progressive 

weakness involving the face, shoulders, hips and feet [38]. In addition, [39] have reported an increased 

expression of ANT1 in soleus muscles undergoing immobilization-induced atrophy. Based on above 

evidences, the high expression of ANT1 in cachexia can be linked to an improved proton leak that leads to 

a decrease of ATP production, maybe at the beginning of the cachectic stage. In addition to its role in 

wasting, there is a connection between ANT1 and apoptosis. ANT1 has been known to be a major 

component of the permeability transition pore complex (PTP), a high conductance channel that cause an 

abrupt increase in the permeability of small solutes across the inner mitochondrial membrane, 

contributing to mitochondria-mediated apoptosis [40]. In any case, ANT1 could therefore have an 

important role in muscle apoptosis during tumor burden [14, 15]. 



 The consequences of the abnormal SR-mitochondrial morphology and molecular profile of 

expression observed in cachectic muscle were reflected in total muscle ATP content. Indeed, as can be 

seen in Figure 3F, it was significantly reduced by 17% in the tumor-bearing animals. This could be 

explained taking into consideration an impairment of oxidative capacity of mitochondria, leading to PTP 

formation and apoptotic signals. Similar observations have previously been reported [41]. In fact, very 

recently, a defect in ATP synthesis during cancer has been described by our group, directly linked to 

mitochondrial dysfunction [42]. 

It is worth mentioning the increased gene expression of mitofusin-2 (Mfn2) and proliferator-

activated receptor gamma coactivator (PGC-1α) in EDL muscles of tumor-bearing rats (Table 1). Mfn2 is a 

mitochondrial protein involved in the regulation of mitochondrial morphology and distribution [43]. 

Moreover, Mfn2 is related to the interactions between endoplasmic reticulum and mitochondria which 

govern interorganellar Ca2+ signaling, having a key role in endoplasmic reticulum morphology [44]. 

Moreover, the SR-mitochondrial apposition performed by Mfn2 predisposes mitochondria to high Ca2+ 

microdomains and to the consequent overloading, leading eventually to apoptosis by excessive Ca2+ 

transfer [45, 46]. Furthermore, it is known that PGC-1α participates in the stimulation of Mfn2 expression 

under a variety of conditions characterized by enhanced energy expenditure (for review, see ref. [47]). 

Hence, in cachexia the overexpression of PGC-1α can activate Mfn2 expression, this leading to a Ca2+ 

dysregulation and formation of permeability transition pore (PTP), which is involved in apoptotic 

processes. It is known that Bax, a proapoptotic gene, is overexpressed in cachectic muscles [48]; 

therefore the apoptotic signals in cachexia could also be started by Mfn2 and Bax. 

 Finally, considering that SERCA and ANT1 are related to energy dissipation in SR and 

mitochondria, it may be suggest that they could have a role in energy inefficiency associated with 

cachexia. This process could induce SR stress by  high and constant citoplasmic Ca2+ levels, having 

dramatic consequences for the muscle cell, thus leading to a self-amplifying circuitry between SR and 



mitochondria by Mfn2 that eventually results in muscle death. The increased Ca2+ levels induce a 

decrease in ATP content not only by OXPHOS dysfunction, but also through thermogenic processes, such 

as those performed through ANT1. Recent evidences describes SERCA not only as a heat pump, 

functioning like a thermogenic device in the skeletal muscle, but also as a directly regulator of Ca2+ 

signaling in mitochondria [49, 50]. These facts lead to suggest that the main energy dissipation observed 

in cachexia could be related to an increased expression of SERCA, more precisely by implication of SERCA 

reactions that produce heat and also lead to Ca2+ leak. The proton leak activity of UCP3 [51] and ANT1 

into mitochondria can worsen the catabolic condition in cachexia, potentiate the ADP accumulation [34], 

Ca2+ leak and heat production as represented in the Figure 4. The constant Ca2+ leakage from SR and 

disruption of mitochondrial functions amplify subsequently the degradation signals, triggering proteolytic 

processes through calpain, cathepsins and Ub-Proteasome systems, and apoptotic signals performed by 

PTP formation through ANT1 and Bax [48].  

 



CONCLUSIONS 

The present study reports, for the first time, profound morphological changes in cancer cachectic 

muscle, which are visualized mainly in alterations in SR and mitochondria. posar alguna cosa més de 

morfologia de ME !!!! 

These alterations are linked to pathways that can account for some of energy inefficiency 

associated with cancer cachexia. It is known that SR-mitochondrial assembly is crucial for muscle activity, 

where SR Ca2+ release stimulates the mitochondrial ATP production to supply the increased energy 

demand during EC coupling [9].  EC uncoupling is a term used to describe a highly reproducible and 

specific phenomenon, in which the normal EC process in a skeletal muscle fiber is disrupted [52]. This 

phenomenon is thought to be implicated in situations such as ageing, muscle fatigue and some muscle 

diseases [52, 53]. Altogether, the present data suggests that EC uncoupling could be an event previous to 

activation of proteolytic processes in catabolic conditions. Indeed, the factors implicated in EC uncoupling 

are strictly related to SR and mitochondrial disruption. This condition can activate proteolytic and 

apoptotic signals, leading to muscle atrophy in cachexia. The therapeutic implications of understanding 

the commented assembly and the energy dissipation pathways involved, such as SERCA and ANT1 are 

very obvious and deserve future research and could well lead to new approaches for the treatment of 

cancer cachexia. 
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FIGURE LEGENDS 

Figure 1 

A: EDL muscle weight from control (C) and tumor-bearing (AH-130) rats. B: graph showing the reduction of 

total SDH activity in AH-130 vs C rats. C: micrographs (4x and 20x magnification) of EDL cross sections 

stained for SDH activity. Scale bar: 200 µm. D: fiber CSA independently measured in oxidative and glycolytic 

fibers. Statistical significances were analyzed using one-way ANOVA (* p<0.05; *** p<0.001). 

 

Figure 2 

Electron micrographs depicting morphological mitochondrial differences between extensor digitorum 

longus (EDL) muscles from control and tumor-bearing rats. 

A-F: EDL from control rats. G-L: EDL from tumor-bearing rats. Scale bar: indicated. Graphs are showing 

differences in intermyofibrilar mitochondria’s area and number between control and tumor groups. 

Mitochondrial counting was performed from 25-30 micrographs, which were fields randomly taken at 

20000x magnification, from three different areas of one grid. Statistical significances were analyzed using 

one-way ANOVA (*** p<0.001).  

 

Figure 3 

Electron micrographs depicting morphological mitochondrial differences between gastrocnemius (GSN) 

muscles from control and tumor-bearing rats. 

A-F: GSN from control rats. G-L: GSN from tumor-bearing rats. Scale bar: indicated.  Graphs are showing 

differences in intermyofibrilar mitochondria´s area and number between control and tumor groups.  

Mitochondrial counting was performed from 25-30 micrographs, which were fields randomly taken at 

20000x magnification, from three different areas of one grid. Statistical significances were analyzed using 

one-way ANOVA (* p<0.05; *** p<0.001). 



 

Figure 4 

Ultraestructural changes in mitochondrial morphology in gastrocnemius and EDL 

muscles from control and tumor-bearing rats. 

A. Pictures A-B: EDL muscle; and C-D: Gastrocnemius muscle. A,C: Control. B,D: 

Tumor. White arrows are pointing to swelling mitochondrias. Magnification 20000x. 

B. Percentage of unchanged and altered (including electro-lucent and swelling 

alterations) mitochondrias. Statistical significance of the results was determined using 

one-way ANOVA (* p<0.05; ** p<0.01). 

 

Figure 5 

A, SERCA1 protein content in extensor digitorum longus (EDL) muscles. B, SERCA1 protein content in 

gastrocnemius (GSN) muscles from control and tumor-bearing rats. C, SERCA2 protein content in extensor 

digitorum longus (EDL) muscles. D, ANT1 protein content in EDL muscles. E, ANT1 protein content in GSN 

muscles from control and tumor-bearing rats. Na+, K+-ATPase alpha subunit was used as invariant control. 

F, Differences of ATP content in GSN muscle between control and tumor-bearing rats. Results are 

expressed as µM ATP/g of GSN muscle. For further details, see Materials and Methods. Columns, mean of 

four animals in each group; bars, SE. The results are expressed as a percentage of controls. Statistical 

significances were analyzed using one-way ANOVA (* p<0.05; ** p<0.01). 

 

Figure 6 

Hypothetical involvement of sarcoplasmic reticulum and mitochondria alterations in energy inefficiency 

and muscle wasting during cancer cachexia. SERCA, sarco/endoplasmic reticulum Ca2+-ATPase. ANT1, 

adenine nucleotide translocator. MFN2: mitofusin 2. PTP, permeability transition pore. ATP, adenosine 



triphosphate. EC uncoupling, excitation contraction coupling. OXPHOS: Oxidative phosphorilation system. 

Ca2+, calcium. ADP, adenosine diphosphate. Pi, inorganic phosphate. 

 

 

 

 

 



 

 



 

 



 


