
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is
posted here by agreement between Elsevier and the University of Turin. Changes resulting
from the publishing process - such as editing, corrections, structural formatting, and other
quality control mechanisms - may not be reflected in this version of the text. The definitive
version of the text was subsequently published in JOURNAL OF BIOMEDICAL
INFORMATICS, 46 (2), 2013, 10.1016/j.jbi.2012.12.004.

You may download, copy and otherwise use the AAM for non-commercial purposes
provided that your license is limited by the following restrictions:

(1) You may use this AAM for non-commercial purposes only under the terms of the
CC-BY-NC-ND license.

(2) The integrity of the work and identification of the author, copyright owner, and
publisher must be preserved in any copy.

(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en),
10.1016/j.jbi.2012.12.004

The publisher's version is available at:
http://linkinghub.elsevier.com/retrieve/pii/S1532046412001876

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/140209

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301901089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Managing proposals and evaluations of updates to medical knowledge:

theory and applications

Luca Anselma%, Alessio Bottrighi*, Stefania Montani*, Paolo Terenziani*

% (corresponding author) Dipartimento di Informatica, Università di Torino

corso Svizzera 185, 10149 Torino, Italy

Phone: +39 011 6706769 Fax: +39 011 751603 E-mail: anselma@di.unito.it

* Dipartimento di Informatica, Università del Piemonte Orientale “Amedeo Avogadro”

via Teresa Michel 11, 15100 Alessandria, Italy

Phone: +39 0131 360174 Fax: +39 0131 360198

E-mail: {alessio.bottrighi, stefania, terenz}@mfn.unipmn.it

 2

Abstract

The process of keeping up-to-date the medical knowledge stored in relational databases is of paramount importance.

Since quality and reliability of medical knowledge are essential, in many cases physicians’ proposals of updates must

undergo experts’ evaluation before (possibly) becoming effective. However, until now no theoretical framework has

been provided in order to cope with this phenomenon in a principled and non ad-hoc (task and domain independent) way.

Indeed, such a framework is important not only in the medical domain, but in all Wikipedia-like contexts in which

evaluation of update proposals is required. In this paper we propose GPVM (General Proposal Vetting Model), a general

model to cope with update proposal\evaluation in relational databases. GPVM extends the current theory of temporal

relational databases (and, in particular, BCDM –Bitemporal Conceptual Data Model– “consensus” model), providing a

new data model, new operations to propose and accept\reject updates, and new algebraic operators to query proposals.

The properties of GPVM are also studied. In particular, GPVM is a consistent extension of BCDM and it is reducible to

it. These properties ensure consistency and interoperability with most relational temporal database frameworks,

facilitating implementation (on top of current frameworks) and their adoption in application contexts.

KEYWORDS: Temporal clinical relational databases; BCDM semantic model; Temporal data model, algebra,

proposal/evaluation operations; Proof of reducibility to standard models.

1 Introduction

Our research group has a long-term cooperation with Azienda Ospedaliera San Giovanni Battista in Turin, Italy

(henceforth called “Hospital” for short), one of the largest hospitals in Italy. Such a cooperation is part of the GLARE

(GuideLine Acquisition, Representation and Execution) project [1,2] for the development of a computer-based approach

for the management of clinical guidelines. In the Hospital, clinical guidelines are usually built incrementally either from

scratch or as an adaptation and contextualization of pre-existent guidelines and need to be kept up-to-date with new

therapeutic and\or diagnostic procedures. In practice, alternative proposals of insertion\update\deletion issued by

specialists are periodically evaluated by a team of experts who are responsible for the final result. Accepted proposals

lead to a new version of the guideline, which becomes the reference one for all the medical and paramedical personnel of

the hospital. Past versions of the guidelines must be maintained, e.g., for legal purposes. In the following we term such a

work paradigm “proposal vetting”. In fact, users cooperatively propose updates to a reference version of data\knowledge

 3

and, afterward, a team of experts evaluates such proposals. Eventually, the approved proposals lead to a new

data\knowledge reference version

We believe that the development of proper tools supporting proposal vetting can play an important role in the

definition and, even more importantly, in the dissemination of clinical guidelines, and it can improve the acceptance and

adoption of guidelines in the clinical practice. Indeed, the increasing demand for standardized and high-quality health

assistance grounded on medical evidence has lead to the definition of thousands of clinical guidelines at the international,

national or local (e.g., for a specific hospital) level. Both public and private guidelines have been developed, sometimes

pursuing different tasks (consider, e.g., public hospitals vs. insurance companies guidelines) and devising different

policies to enforce their adoption in the clinical practice. In such a heterogeneous context, tools managing proposal

vetting can support the development of new guidelines as an evolution\adaptation of pre-existent ones. In particular, in

clinical guideline contextualization [3] international and national guidelines are adapted to fit the needs, resources and

policies of a specific hospital. In such a case, proposal vetting can be exploited to allow all the physicians involved in the

guideline execution to play an active role in the adaptation. Indeed, such an active participation is very likely to facilitate

the acceptance and effective adoption of the guidelines by the physicians themselves.

Though clinical guidelines are the current application context of our approach, the problem we face and the

solutions we propose are more general. Proposal vetting finalized to cooperative modeling\update of shared

data\knowledge is an important paradigm in Computer Science, and seems to become more and more important due to

the large-scale availability of the Internet. For instance, the construction of a free encyclopedia as Wikipedia [4], and of

vocabularies like Wiktionary [5], with the contributions of hundreds of thousands of authors, is a modern phenomenon

with yet undiscovered social and cultural impacts. Among the others, the Wiki technology is also being used to build

Citizendium [6], a free encyclopedia in which experts are called to approve the piece of data proposed by contributors,

for the sake of reliability and quality.

All the above-mentioned applications take advantage of relational database management systems (henceforth,

DBMSs), exploiting their generality and efficiency. For instance, Wikipedia stores data into a relational DBMS such as

MySQL [7]. Indeed, the relational model is the most successful data model for data-processing and the vast majority of

data-processing applications (including those used in healthcare domains) are based on relational DBMSs. For these

reasons in this work we assume that data/knowledge are stored in a relational DBMS.

It is worth noticing that proposal vetting involves an explicit treatment of time. This is obviously the case, e.g., of

the clinical guideline domain. Physicians have to be compliant with the reference guidelines, and such a compliance

may be checked (e.g., for legal reasons or for quality evaluation). Thus, the history of the guidelines needs to be

 4

maintained, to grant that, even if a guideline has been changed afterwards, one has a record of the fact that a physician

was compliant with the old reference version. Moreover, in many cases, stored data is intrinsically temporal.

1.1 Structure of the paper

The paper is organized as follows. Section 2 provides a background on the relational model and on the BCDM

model. Section 3 introduces a clinical guideline example, that will be resorted to as a running example in the rest of the

paper. Section 4 clarifies our goals and methodology. Sections 5 to 7 represent the core contribution of our paper.

Specifically, Section 5 illustrates the extended data model we have introduced to deal with the proposal vetting

phenomenon. Section 6 describes the manipulation operations we have defined to allow users properly manipulate the

data. Section 7 is related to our extended relational algebra. Section 8 describes an implementation. Finally, Section 9

discusses some related works, and Section 10 is devoted to conclusions and future research directions.

2 Background

2.1 The relational model

The relational model has been proposed in 1970 by Edgar F. Codd [8]. Data are represented as a collection of two-

dimensional tables called relations. Relations are sets of “tuples”, i.e., sets of the rows of the tables. Each relation has a

schema, which includes its attributes. Information in relations is represented in the tuples of the relations by means of the

values of the attributes. For example, the tables below represent the relations FACULTY and DEPARTMENT. The

relation FACULTY has schema (Name, Role, DeptName) and it contains two tuples representing the fact that Mary is an

assistant professor at the department of computer science and that John is a full professor at the department of history.

The relation DEPARTMENT has schema (DeptName, Address) and it contains a tuple for each department, representing

its name and address.

 5

FACULTY
Name Role DeptName
Mary assist prof Computer Science
John full prof History

DEPARTMENT

DeptName Address
Computer Science 101 North Street
History 25 South Street

Notice that relations can contain a large number of tuples and that information is “broken” among different relations,

for the sake of avoiding redundancy. Therefore, a relational database must be queried in order to extract information.

Codd [8] proposed a relational algebra with operators that take one or two relations as inputs and produce a new relation

as output. Here we recall five basic relational algebraic operators: relational union (È), relational difference (–), selection

(σP), projection (πX) and natural join (⋈). Relational union and difference consider the relations as sets of tuples and

compute set-theoretic union and difference. Notice that two tuples with the same values are considered as the same tuple.

Selection picks from a relation the tuples that satisfy a logical predicate. Projection picks from a relation the chosen

attributes, possibly collapsing the tuples resulting as the same tuple. Natural join operates on two relations; it gives as a

result a relation consisting of the set of all combinations of tuples in the input relations that are equal on their common

attribute names. Since in the following we consider the extension of natural join as a bitemporal operator and as a

proposal-vetting operator, here we provide a formal definition of the standard relational natural join.

Notation. Given a tuple x defined on the schema R=(A1,...,An, B1,...,Bl), we denote with A the set of attributes

(A1,...,An). Then x[A] denotes the values in x of the attributes in A.

Given two relations r and s with schema (A1,…,An, B1,…,Bm) and (A1,…,An, C1,…,Ck) respectively, natural join ⋈

provides as an output a relation over the schema (A1,…,An, B1,…,Bm, C1,…,Ck) defined as follows (let A stand for

A1,…,An, B for B1,…,Bm and C for C1,…,Ck):

r ⋈ s = {z \ $ x Î r, $ y Î s (x[A]=y[A] Ù z[A]=x[A] Ù z[B]=x[B] Ù z[C]=y[C])} ¨

As an example of query we consider the case where we want to extract the name and work address of Mary. Such a

query can be expressed as πName,Address(σName=”Mary”(FACULTY ⋈ DEPARTMENT)). The innermost operator is the

natural join operator and it combines the tuples of FACULTY and DEPARTMENT that are equal on the common

attribute DeptName. Then, the selection operator picks only the tuple regarding Mary. Finally, only the attributes Name

and Address are retained. The result is the following relation:

 6

πName,Address(σName=”Mary”(FACULTY ⋈ DEPARTMENT))
Name Address
Mary 101 North Street

2.2 The relational bitemporal model

In clinical domains, as in many other real-world domains, time has a pervasive nature and it may be represented as a

particular kind of information. Over twenty years of research in temporal databases (henceforth, TDBs) have identified

some core concepts. It is convenient to represent time as an attribute: i.e., tuples are associated with one or more

temporal attributes. However, time is different from other attributes: in fact, the treatment of time in the relational

approach involves the solution of difficult problems, and the adoption of advanced dedicated techniques [9]. In this

spirit, many extensions to the standard relational model were devised, and more than 2000 papers on TDBs were

published over the last two decades (cf., the cumulative bibliography in [10], the section about TDBs in the Springer

Encyclopedia of Databases [11], the entry “Temporal Database” in [11], and the surveys in [12, 13, 14, 15]). In many of

such approaches two independent time dimensions have been identified, namely transaction time and valid time.

Transaction time represents the time when a tuple is present in the database. Valid time represents the time when the fact

described by a tuple holds in the modeled world. Let us consider the following example.

Example 2.1. The human resources division has inserted in the database at time 1 and deleted from the database at

time 10 (transaction time) the following information: Mary works as an assistant professor from time 2 to time 20 (valid

time). Then the human resources division has inserted in the database at time 10 and this tuple is still in the database

(transaction time) the following information: Mary works as an associate professor from time 15 to time 40 (valid time).

BCDM (Bitemporal Conceptual Data Model [16]) is a unifying data model developed in order to isolate the “core”

notions underlying many temporal relational approaches including the “consensus” TSQL2 one [17]. To identify such a

“core”, BCDM does not face issues such as data representation and storage optimization, aiming at a “semantic”

approach. Please note that, as BCDM, also our approach operates at the semantic level (not to be confused with the

“conceptual” -e.g., Entity-Relationship- level). In BCDM tuples are associated with valid time and transaction time. For

both domains, a limited precision is assumed and the chronon is the basic time unit. Both time domains are totally

ordered and isomorphic to the subsets of the domain of natural numbers. The domain of valid times DVT is given as a set

DVT={t1,t2,…,tk} of chronons, and the domain of transaction times as DTT={t’1,t’2,…,t’j}È{UC} (where UC –Until

Changed– is a distinguished value). In general, the schema of a bitemporal conceptual relation R=(A1,...,An|T) consists of

an arbitrary number of non-timestamp attributes A1, …,An, encoding some fact, and of a timestamp attribute T, with

domain DTT´DVT. Thus, a tuple x=(a1,…,an|tb) in a bitemporal relation r(R) on the schema R, henceforth called a BCDM

 7

bitemporal tuple, consists of a number of attribute values associated with a set of bitemporal chronons tbi=(cti, cvi), with cti

Î DTT and cvi Î DVT. The intended meaning of a bitemporal BCDM tuple is that the recorded fact is true in the modeled

reality during each valid-time chronon in the set, and is current in the relation during each transaction-time chronon in

the set. Valid-time, transaction-time and non temporal tuples are special cases, in which either the transaction time, or the

valid time, or none of them are present.

Notation. Given a tuple x defined on the schema R=(A1,...,An | T), x[T] denotes the set of bitemporal chronons

constituting the timestamp of x, x[Tv] and x[Tt] denote the valid and transaction time of a valid-time and transaction-time

tuple respectively.

Terminology. As in BCDM (and TSQL2) will call A1,...,An explicit attributes, and Tv and Tt implicit attributes. We

will call value-equivalent two (or more) tuples having the same values for the explicit attributes. ¨

It is important to stress that the BCDM model explicitly requires that no two value-equivalent are allowed in the

same temporal relation [17]. This choice is essential in order to enhance the semantic clarity of the model, since it grants

that the full time history of a fact is recorded in a single tuple (instead of being scattered between different tuples). As a

consequence, BCDM is a not-ambiguous data model, in the sense that, in BCDM, there is a unique way of coding any

temporal information (see the Uniqueness Property of BCDM [17]). On the contrary, allowing value-equivalent tuples

would lead to ambiguous representations, i.e., to alternative semantically equivalent representations for the same content

(consider, e.g., the notion of snapshot-equivalence in TSQL2 [17]).

A special routine makes explicit the semantics of the special value UC: as time passes, at each clock tick for each

bitemporal chronon (UC,cv), a new bitemporal chronon (ct,cv) is added to the set of chronons, where ct is the new

transaction-time value.

Notation. A bitemporal BCDM tuple x is current if it is present at the current time (“now”) in the database (i.e., it

has not been updated or deleted yet). Formally, this means that the bitemporal chronons of x contain UC as a transaction

time, i.e., current(x): $cv \ (UC,cv)Îx[T]. ¨

Example 2.1 can be represented in BCDM relations as following. For the sake of brevity, in the attribute T we

represent the bitemporal chronons as the Cartesian product between the interval of the transaction time and the interval of

the valid time, i.e., [1,UC]´[1,10000] represents the set of bitemporal chronons {(1,1), (1,2), …, (1, 10000), (2,1), …,

(2,10000), …, (UC,1), …, (UC,10000)}.

 8

FACULTY
Name Role DeptName T
Mary assist prof Computer Science [1,9]´[2,20]
Mary assoc prof Computer Science [10, UC]´[15,40]
John full prof History [1,UC]´[1,100]

DEPARTMENT

DeptName Address T
Computer Science 101 North Street [1,UC]´[1,100]
History 25 South Street [1,UC]´[1,100]

Insertion and deletion of tuples are directly defined in BCDM. Insertion in a relation r of values (a1,…,an) valid at

time tv results in the fact that relation r will include a tuple with the provided values and valid time and with UC as a

chronon in the transaction time. Deletion concerns the logical removal of a tuple from the current state. In order to retain

the history, the tuple is not physically deleted, but only logically removed. Thus, BCDM deletes from the tuple all

bitemporal chronons (UC, cv), where cv is any valid-time chronon.

Terminology. In the paper, we will call “closure” the operation of removing chronons containing UC, and we will say

that the corresponding tuple is “closed”.

Algebraic operators are defined on the bitemporal model as a temporal extension of Codd's operators. As in most

approaches in the TDB literature (see, e.g., the survey in [12]), in BCDM such extensions behave like standard non-

temporal operators on the explicit attributes, and involve the application of set operators on the implicit attributes for

value-equivalent tuples. This approach ensures that the temporal algebraic operators are a consistent extension of Codd's

operators and are reducible to them when the temporal dimension is removed. This definition can be also motivated by

the sequenced semantics [18]: the results of algebraic operations should be valid independently at each point of time.

More precisely, bitemporal relational union performs the union on the temporal attributes, bitemporal relational

difference performs difference, selection does not alter tuples, and projection performs union on the temporal attributes.

Bitemporal natural join operates as the non-temporal natural join on the explicit attributes and intersects the implicit

attributes on value-equivalent tuples. More formally, given two relations r and s with schema (A1,…,An, B1,…,Bm|T) and

(A1,…,An, C1,…,Ck|T) respectively, bitemporal natural join ⋈ provides as an output a relation over the schema

(A1,…,An, B1,…,Bm, C1,…,Ck|T) defined as follows (let A stand for A1,…,An, B for B1,…,Bm and C for C1,…,Ck):

r⋈B s = {z \ $ x Î r, $ y Î s(x[A]=y[A] Ù x[T]Çy[T]¹Æ Ù z[A]=x[A] Ù z[B]=x[B] Ù z[C]=y[C] Ù

z[T]=x[T]Çy[T])} ¨

As an example of bitemporal query we consider the case where we want to extract the name and work address of

Mary. Such a query can be expressed as πB
Name,Address(σ

B
Name=”Mary”(FACULTY ⋈B DEPARTMENT)). The result is the

following relation. The bitemporal attribute is the result of the intersection of the bitemporal values of the tuples

 9

regarding Mary in relation FACULTY and regarding Computer Science department in relation DEPARTMENT, and in

the union of the chronons of the resulting two tuples.

πName,Address(σName=”Mary”(FACULTY ⋈ DEPARTMENT))
Name Address T
Mary 101 North Street [1,9]´[2,20] È [10, UC]´[15,40]

Property. Reducibility [17].

BCDM algebraic operators behave like the corresponding non-temporal relational algebra operators: with identical

arguments, they always return identical results. ¨

Such a property is essential in order to grant that, when time is disregarded, BCDM algebraic operators behave like

standard SQL one. This property grants “continuity” for users and, above all, interoperability with pre-existent non-

temporal approaches. As a remarkable side-effect, this also grants for the fact that BCDM can be implemented as an

additional layer on top of the SQL model (and, indeed, several prototypical implementations have been already devised

following such a strategy).

In summary, the BCDM model is, from the one side, a general unifying semantic model for several TDB approaches,

including TSQL2; from the other side, it is a “consistent extension” of the standard (non temporal) relational algebra.

Moreover, as we will see in Section 5, substantial extensions to BCDM are needed to cope with proposal vetting. Such

extensions will be studied in the rest of the paper.

3 Case study: proposal vetting about clinical guidelines

We consider the guideline for the management of suspected acute pulmonary embolism [19, 20] adopted by the

Hospital.

The guideline indicates some diagnostic investigations to confirm or discard the suspect of acute pulmonary

embolism and, in case such suspect is confirmed, it dictates the proper set of therapeutic actions. The first action of the

guideline is pulmonary embolus detection. In the initial version of the Hospital guideline, such an action had to be

executed through pulmonary ventilation perfusion scintigraphy, performed using isotope lung scanning (VQS). The

estimated cost of such operation is about 100 €, and image acquisition lasts about 15 minutes.

In Figure 1, we show a fragment of the Entity-Relationship (ER) model of the guideline’s clinical actions. For

simplicity, in the figure we use a standard ER diagram, augmented with the use of transaction time (Ts and Te stand for

the start and the end of the transaction time respectively) and valid time (Vs and Ve stand for the start and the end of the

valid time respectively). The use of four atomic-valued timestamp attributes to represent bitemporal chronons is derived

from the TSQL2 representational approach [17]. A more accurate treatment of temporal aspects at the conceptual level

could be obtained using, e.g., ST-USM [21]; however, such a conceptual treatment is outside the goals of this paper.

 10

Notice, in particular, that all the entities and the relationships have a transaction time, since we need to model the full

history of the evolution of the guideline into the database. The valid time associated with the “CLINICAL_ACTION”

entity models the time when the action is to be executed, expressed as a temporal distance from the beginning of the

execution of the guideline to which the action belongs1.

Figure 1: a fragment of the conceptual model for the guideline for suspected acute pulmonary embolism.

In Figure 2 we show three relations modeling such a fragment of a conceptual model. The transaction time start (i.e.,

2/20/2001, i.e., chronon 0) denotes the timestamp when the tuples were entered into the database (i.e., when the

guideline was acquired). In the relation CLINICAL_ACTION, Vs is 0 to denote the fact that the action has to be

executed as soon as the guideline about suspected acute pulmonary embolism is started.

INSTRUMENT
Name Description TT
VQS ventilation perfusion

scintigraphy
[0,UC]

RESOURCE

INSTR_name Action_ID TT
VQS 101 [0,UC]

CLINICAL_ACTION

Action_ID name Description goal cost T
101 pulmonary

embolus
detection

detection by
imaging
techniques

diagnosis of
pulmonary
embolism

100€ [0,UC] ´ [0s,3000s]

Figure 2: three relations modeling the fragment of conceptual model in Figure 1.

In 2002, the guideline was modified to reflect the availability of a more sophisticated tool to detect pulmonary

emboli: the computed tomographic pulmonary angiography (CTPA). Although the estimated cost of the action increases

to about 300 €, the use of CTPA has several advantages: the execution time is much shorter (about 15 seconds), CTPA

is relatively more available than VQS and, moreover, it is advantageous in terms of sensitivity, specificity, positive

predictive value, negative predictive value and accuracy [20].

1 It is worth noticing that, in this example, we adopt a non-standard notation for the valid time, since we represent it as a displacement

from the starting point of the guideline instead of a displacement from a standard reference point (such as, e.g., the birthday of

Christ in the Gregorian calendar) as, e.g., in BCDM.

 11

Now we show how the guideline can be updated through a session of cooperative work in which the proposers P1,

P2, P3 and P4 propose some updates and the evaluators E1 and E2 incrementally accept\reject such proposals. While the

previous part of the example is real (although, for the sake of brevity, simplified), the working session we describe below

is hypothetical, and aims at presenting the different possible operations of proposers and evaluators. The working session

is introduced as a sequence of steps (figure 3).

Step 1. Proposer P1 proposes to insert CTPA into the INSTRUMENT relation.

Step 2. Evaluator E1 accepts the proposal of P1.

Step 3. Proposer P2 proposes:

(1) to update the relation RESOURCE to store the fact that now CTPA is the instrument to be used for

pulmonary embolus detection.

(2) to update the relation CLINICAL_ACTION to modify the cost of action 101 (pulmonary embolus

detection) from 100 € to 1000 €.

Step 4. Proposer P3 proposes:

(1) to update the relation RESOURCE as suggested by P2.

(2) to update the relation CLINICAL_ACTION to modify the cost of action 101 (pulmonary embolus

detection) from 100 € to 300 € and its duration from 3000 seconds to 60 seconds.

Step 5. Proposer P4 proposes:

(1) to update the relation RESOURCE, as suggested by P2.

(2) to update the update proposal about the relation CLINICAL_ACTION issued by Proposer P3 to modify

the duration of action 101 from 60 seconds to 15 seconds.

Step 6. Evaluator E2 asks a query about the current proposals about resources, time and costs to perform pulmonary

embolus detection (action 101).

Step 7. Evaluator E2 accepts the proposal issued at step 5.

4 Goals, methodology, and main results

Given the wide diffusion and increasing relevance of proposal vetting, as well as the deep impact it has on data

semantics, we strongly believe that, once again, a general solution is needed here.

4.1 Main challenges

Coping with proposal vetting in the relational context involves addressing many new challenges.

 12

First of all, we have to support two different classes of users (proposers and evaluators), providing them with suitable

manipulation operations.

Entirely new operations (with respect to relational model and BCDM) must be introduced to allow evaluators to accept

or reject the proposals. On the other hand, proposers can propose changes to the current (reference) status of the

database, or to other proposals. Proposals may be complex, in the sense that a proposer may suggest a sequence of

changes (insertions, deletions, updates) as a whole. We indicate this sequence macroproposal. Through a

macroproposal, the proposer underlines that some single operations have to be considered as elementary steps of a

more complex change at the data level and that the overall change has to be seen as atomic, because it would make no

sense to implement only some steps of it. It is worth noting that also elementary changes at the data level (e.g., a single

insertion) can be managed in our framework, by issuing macroproposals containing a single operation. Of course, users

may issue more than one macroproposals.

The treatment of time is an intrinsic part of coping with the new data model and algebra since the history of the

reference database, and of the different proposals, must be supported. This demands for the treatment of transaction

time (and, optionally, of valid time of the stored data).

 13
Figure 3: the sequence of operations in our running example

 14

Therefore, proposal vetting demands for a substantial extension of the data model of BCDM. The new data model

must be extended to support two types of data: (i) reference data (approved by evaluators) and (ii) proposals (issued by

proposers). Querying such a new model requires the definition of a new query language.

The notion of alternatives is an intrinsic part of the proposal vetting phenomenon. Indeed, if users propose different

updates of the same tuple, such updates are alternative, because evaluators can accept only one of them. However, to

the best of our knowledge no relational data model in literature supports disjunctive pieces of information such as

alternatives. Therefore, proposal vetting requires the definition of a new data model and a new semantics for it,

allowing one to represent alternative data, and to properly operate on them. As an example of the problems that must be

tackled, let us consider the case where an evaluator accepts an update to a given tuple. This fact should automatically

trigger the rejection of all the alternative updates to those tuples. Furthermore, since we support macroproposals, also

the macroproposals containing the rejected updates must be considered as rejected as a whole (in fact, it would make no

sense to allow the execution of only part of them).

Defining a general and principled treatment of alternative proposals in the relational context is one of the main

challenges of our approach. It requires a substantial departure from existing SQL and TDB approaches. First of all, in

SQL and TDB approaches, updates are usually modeled (at least at the semantic level) as a pair of operations, i.e., a

deletion followed by an insertion. Since we aim at modeling directly alternative updates, we introduce a primitive

semantic notion – the Update-proposal – to explicitly cope with disjunctions of pieces of information and to allow

proposers/evaluators to recall what macroproposals are to be interpreted as alternatives. An Update-proposal groups

together all the alternative proposals concerning a given tuple (thus resembling, e.g., the notion of Design Object in

[22]). Defining such a primitive notion also provides several advantages. In fact, it simplifies the definition of

manipulation and algebraic operators (e.g., it allows to automatically discard all mutually exclusive alternatives, once

a specific proposal of update has been accepted).

4.2 Methodology

Instead of directly extending a specific TDB model (such as, for instance, TSQL2 [17]), for the sake of generality

and clarity, we have chosen to operate at the semantic level, proposing GPVM (General Proposal Vetting Model), an

extension of BCDM unifying semantic model.

Consistency with the relational model and implementability are fundamental goals of our approach. In fact, we

define our new model as a consistent upper layer upon temporal relational models in order to provide proposal vetting

facilities. It is worth noticing that the same methodology has been exploited in BCDM, which can be regarded as a

consistent upper layer upon standard relational model to support valid and transaction time.

 15

The main original contributions of our approach lie in extending BCDM to support proposals and evaluation of

updates. Specifically, we propose:

1. a new data model to cope with both reference (accepted) and proposed (to be evaluated) data; in particular, we

support alternative data proposals, while in BCDM relations are defined as conjunctive sets of tuples only;

2. new manipulation operations to provide proposer with the operations of insertion, deletion and update and

evaluators with the operations of accept and reject of proposals;

3. new algebraic operations to query data represented in the extended data model.

4.3 Main results

We propose a general and implementable theoretical support to proposal vetting consistent with the relational model. In

fact, we have proved that:

i. GPVM data model is reducible to BCDM one (see Section 5);

ii. GPVM manipulation operations are a “proposal vetting” consistent extension to BCDM ones (see Section 6);

iii. GPVM algebraic operations are reducible to BCDM ones (see Section 7).

By proving properties i-iii, we grant that our approach can be added on top of any of the relational TDB approaches

grounded on the BCDM semantics. This fact enhances the generality of our work, as well as its implementability (see

also Section 8). Concerning implementability, it is worth noting that Oracle Database, since version 10g, supports both

transaction time and valid time consistently with BCDM [23].

5. Extending the data model

To cope with the issues outlined above, in our data model we need to distinguish between accepted data and

proposals that still need to be evaluated.

To this end, we introduce a two-layered approach. In it (1) we define two categories of users: a set of proposers,

who issue proposals, and a set of evaluators, who can accept/reject them. Moreover, (2) we split the data in two levels:

evaluator data level and proposer data level.

The two categories of users are formally defined as below:

Definition 5.0.1: Proposers and Evaluators. We term Proposers={p1,…,py} and Evaluators={e1,…,ez} the sets of

proposers and evaluators respectively. ¨

Our approach is independent of whether Proposers and Evaluators are disjoint sets or not (so that different policies

can be implemented).

 16

As for the two data levels, we split our database into two parts: DB_Reference and DB_Proposers. DB_Reference is

a set of relations meant to maintain all validated data, accepted by evaluators. Current (i.e., not deleted, having UC as

the transaction time end, see section 2 on BCDM) data in the evaluator data level constitute the reference (accepted)

version of data.

On the other hand, we store all the proposals, generated by any proposer, in DB_Proposers. DB_Proposers

maintains three sets of proposals (i.e., proposals of insertion, deletion and update with respect to the content of

DB_Reference). Proposals supposed to be evaluated as an indivisible set are grouped into a single macroproposal, as

explained in Section 4.1. The two definitions below formalize these concepts.

Definition 5.0.2: Macroproposals. We term Macroproposals={id_mp1,…,id_mpx…} the set containing the

identifiers of the macroproposals. ¨

Definition 5.0.3: We define a database as a pair <DB_Reference, DB_Proposers>. DB_Reference is a set of

relations {r1(R1),...,rk(Rk)} where ri (1≤i≤k) is an instance of the schema Ri. DB_Proposers contains the following sets2:

pi(ri), containing proposals of insertion into riÎDB_Reference,

pd(ri), containing proposals of deletion of tuples in riÎDB_Reference,

pu(ri), containing proposals of update (concerning tuples in ri, pi(ri) and pu(ri) with riÎDB_Reference).¨

Both in DB_Reference and in DB_Proposers we deal with different types of implicit attributes (see section 2). First,

we consider the valid time of tuples and/or their transaction time. Specifically, while transaction time is necessarily

always present (since it copes with the history of operations on the database), valid time (which provides the time when

the facts represented in the relational tuples hold in the real world) may be required in some relations and not in others.

Referring to our running example, the INSTRUMENT relation, which describes the available instruments, is a

transaction-time relation (i.e., no valid time is reported). On the other hand, the CLINICAL_ACTION relation, which

provides the time when a certain action has to be executed with respect to the guideline start, needs a valid time

attribute, to cope with this information.

Moreover, we associate every tuple in DB_Reference with one (or more) elements in the Evaluators set,

corresponding to the evaluators who accepted the tuple after a proposal-vetting session. Similarly, we associate all

tuples in DB_Proposers with one (or more) elements in the Proposers set. Finally in DB_Proposers we associate the

tuples with the respective macroproposal. Evaluators, proposers and macroproposals are implicit attributes as well.

As in BCDM, value equivalent tuples are no admitted in the same relation.

A detailed description of the contents of DB_Reference and DB_Proposers is provided in the following subsections.

Examples are also given to illustrate the definitions.

2 In this section, we present an abstract data model; in section 8 we will discuss a possible relational implementation.

 17

5.1 DB_Reference

We denote as Teval the attribute with domain Evaluators´DTT´DVT.

Definition 5.1.1: DB_Reference. We denote with R=(A1,…,An|Teval) the schema of a relation rÎDB_Reference,

with Teval defined as above. (Condition 5.1.2): We do not admit value-equivalent tuples in the same relation

rÎDB_Reference. ¨

5.2 DB_Proposers

In this section, first we briefly introduce the definitions concerning proposals of insertion and of deletion. Then we

move to one of the main contributions of our approach, namely the definition of proposals of update.

We denote as Tprop the attribute with domain Macroproposals´Proposers´DTT´DVT.

5.2.1 Proposals of insertion

Definition 5.2.1.1: pi(r).

Given a relation rÎDB_Reference with schema R=(A1,…,An|Teval), we define pi(r) as the set containing the tuples x

which are proposed for insertion into r. The schema of pi(r) is R’=(A1,…,An|Tprop). (Condition 5.2.1.2): We do not

admit value-equivalent tuples in the same set of proposals of insertion. ¨

Figure 4: A representation of our running example after Step 1 (left) and after Step 2 (right). In this figure, we group all

macroproposal identifiers and all proposer/evaluator identifiers in the form of a set (e.g., {p1}). We number the macroproposals

according to the step at which they were issued (see Section 3) and assume that step n occurs at the transaction time n. In each figure,

the upper part represents the relation INSTRUMENT in DB_Reference and the lower part represents the content of DB_Proposers. In

 18

this figure, pi(INSTRUMENT) is reported, which contains a proposal of insertion. Observe that INSTRUMENT is a transaction-time

relation; therefore, valid time is missing in the proposals referring to INSTRUMENT.

Example 5.1. Figure 4 reports a proposal of insertion, referring to steps 1 and 2 of our running example (see

Section 3). In particular, on the left side of the figure, the content of set pi(INSTRUMENT) at step 1 is reported. The

set contains a proposal of insertion referred to relation INSTRUMENTÎDB_Reference. The explicit attributes of the

proposal provide the name and the description of the new diagnostic instrument CTPA. The implicit attributes provide

the identifier of the macroproposal (mp1), the proposer (p1) and the transaction time. In particular 1 represents the time

at which the alternative has been issued by p1. Notice that, actually, a calendar time should be provided. UC denotes the

fact that the proposal is current. In this specific proposal, it was not required to represent also valid time .

5.2.2 Proposals of deletion

Definition 5.2.2.1: pd(r). Given a relation rÎDB_Reference with schema R=(A1,…,An|Teval), we define pd(r) as the

set containing the tuples x which are proposed for deletion from r. The schema of pd(r) is R’=(A1,…,An|TTprop), where

TTprop has domain Macroproposals´Proposers´DTT. (Condition 5.2.2.2): We do not admit value-equivalent tuples in

the same set of proposals of deletion. ¨

A tuple in pd(r) identifies the tuple in r to be deleted. Since we do not admit value equivalent tuples in

DB_Reference relation, the explicit attributes are sufficient to univocally identify the tuple in r to be deleted.

Therefore, its valid time is not needed, and it is not stored in pd(r).

5.2.3 Proposals of update

Proposals of update record the tuple which should be modified, and the specific changes that should be made to it

(i.e., they consist of a pair <old tuple, new tuple>). In principle, we could model each proposal of update independently

of the others. However, the underlying semantics we want to assign to our model is that all the proposals of

modification concerning the same tuple must be interpreted as mutually exclusive alternatives. In fact the acceptance of

one proposal implicitly involves the rejection of all the others (and of the macroproposals containing them; see the

discussion in Section 4.1).

On the other hand, a proposer might issue different proposals referring to the same tuple, and store them into

different macroproposals (but we explicitly disallow a proposer to propose two alternative updates to the same tuple in

the same macroproposal, for the sake of coherency). Observe that this does not mean that the same proposer cannot

issue two alternative updates to the same tuple. Simply, s/he is forced to store them into two different macroproposals.

 19

Indeed, we believe it would be quite meaningless to propose two contradictory elementary steps within an atomic, more

complex proposal of change to the data.

Following these considerations, we have introduced a primitive semantic notion – the Update-proposal – to

explicitly group all the alternative updates concerning the same tuple.

 Definition 5.2.3.1: Update-proposal. An Update-proposal may concern a tuple x which may be either (i) a tuple in

an evaluator-level relation r, or (ii) a proposal – related to an evaluator relation r – already issued by some proposer.

Let [A1, …,An] be the explicit attributes of tuple x. An Update-proposal upÎpu(r) concerning x can be defined as up

= <o, Alt(alt1,…,altm)>, where o=x[A1, …,An] and alti (1≤i≤m) are tuples defined on the schema (A1,…,An|Tprop). o is

used in order to identify the tuple x to be updated and Alt(alt1,…,altm) is a non-empty set of alternative tuples referring

to the tuple x, representing the different alternative proposals of update concerning x. ¨

Terminology (type of an Update-proposal). Given the Definition 5.2.3.1, we call the pair <(A1, …,An), (A1,

…,An|Tprop)> the type of the Update-Proposal up. ¨

Terminology (origin, alternatives of an Update-proposal). Given the Definition 5.2.3.1, we call x the origin of

the Update-proposal and {alt1,..,altm} its alternatives. Since o is used in order to uniquely identify x, in the following,

we call both x and o “origin”. ¨

Definition 5.2.3.2: origin(up) and alternatives(up). Given an Update-proposal up = <o,Alt(alt1,alt2,..,altm)>,

origin(up) = o, and alternatives(up) = {alt1,alt2,..,altm}.¨

We can finally define the set pu(r) of update proposals.

Definition 5.2.3.3: Set of Update-proposals pu(r). Given a relation rÎDB_Reference with schema

R=(A1,…,An|Teval), we define pu(r) (henceforth called set of Update-proposals) as the set containing the Update-

proposals up=<o, Alt(alt1,…,altm)> whose origin o identifies a tuple in r or a proposal related to r, already issued by

some proposer. The type of pu(r) is <(A1, …,An), (A1, …,An|Tprop)>. (Condition 5.2.3.4): Different Update-proposals

having the same origin are not admitted in the same set of Update-proposals. (Condition 5.2.3.5): We do not admit

value-equivalent alternatives to the same origin. ¨

By means of Condition 5.2.3.5, we uniquely identify each Update-proposal in a set of Update-proposals with its

origin. Then, proposals of update concerning a preceding Update-proposal upÎpu(ri) are directly referred to the origin

of up (which may be either a tuple in r or in pi(r)). This does not mean that we do not admit proposals of update

regarding other proposals. Indeed, chains of proposals of update are managed in our framework, even though not

explicitly. Our solution relates each proposal to the original tuple to be modified (and not to the alternative proposal it

directly modifies). This somehow collapses the chain of updates, because we do not explicitly capture the notion of

 20

“what update depends on what other update”, as we could have done by storing the dependencies between updates by

means of, e.g., a tree structure. However, our choice does not lead to any information loss, as the acceptance of an

update in the more complex representation would lead to the very same result, at the evaluator data level, than the

corresponding acceptance in the simpler representation we propose in this paper. Moreover, we have proved that, using

the more complex representation, the property of uniqueness of model, inherited from BCDM (see Section 2) does no

longer hold. This seems to us a relevant drawback, since it would lead to ambiguous representations, i.e., to alternative

semantically equivalent representations for the same data content. Additionally, the definition of the algebraic operators

on the more complex data model would be far from clear and intuitive. We thus believe that our choice is advantageous

in practice.

Example 5.2. Considering our running example (see Section 3), figure 5(C) shows the Update-proposals

representing all the alternative update proposals issued until step 5. Only the Action_id and Cost explicit attributes in

relation CLINICAL_ACTION are reported in the figure, for the sake of brevity. Considering the proposals concerning

the CLINICAL_ACTION evaluator tuple “(101, 100)”, in the first alternative, the Cost explicit attribute is changed

from 100 to 1000. As for the implicit attributes, mp2 identifies the macroproposal the update belongs to; p1 identifies

the proposer; 4 is the transaction time start (i.e., the time at which the alternative has been issued by p1), and UC is the

transaction time end (i.e., the proposal is current); 0 is the valid time start, and 3000 is the proposed valid time end,

expressed in seconds. Observe that figure 5(C) groups all the alternative update proposals issued with respect to the

evaluator tuple “(101, 100)”. In particular, the second and third alternatives don’t differ for the explicit attribute values,

but for the proposed valid time. Moreover, despite the fact that the third alternative was issued as an update to the

second alternative (see Section 3), all the update chaining is not explicitly maintained in our framework (but both

proposals are referred to the same origin, i.e., the original evaluator tuple they aim at modifying).

It is also worth noting that the following key result holds:

 21

Figure 5: A representation of our running example after Step 3 (A), after Step 4 (B), after Step 5 (C), and after Step 7 (D). In

each subfigure, the upper part represents the relations RESOURCE and CLINICAL_ACTION in DB_Reference and the lower part

represents the content of DB_Proposers. Both pu(RESOURCE) and pu(CLINICAL_ACTION) contain an Update-proposal,

represented – for the sake of readability – as a two-level tree. The origin of the Update-proposal is the root (on the left) (e.g.,

(101,100) is the origin of Update-proposal in pu(CLINICAL_ACTION)) and the alternatives are its children (on the right).

Property 5.2.3.6: Reducibility of GPVM data model to BCDM data model. The GPVM data model reduces to

the BCDM data model in case no proposals are proposed/evaluated. ¨

The property of reducibility to BCDM holds, since the pair <DB_Reference, DB_Proposers> trivially reduces to a

BCDM database in case we take into account only one level of data (i.e., DB_Reference), and we disregard evaluators’

 22

information. This case models the “non-proposal vetting” context in which users can directly operate

insert/delete/update operations on the data and no evaluation is needed.

6 Manipulation Operations

In this section we define the manipulation operations of GPVM. In particular, in our model we introduce two levels

of operations: proposer operations and evaluator operations. As regards proposer operations, we allow to define

macroproposals; on the other hand, evaluators can either accept or reject macroproposals.

6.1 Proposer operations

Proposer operations allow a proposer to define a macroproposal, i.e. to suggest a set of changes (insertions, deletions,

updates) to DB_Reference as a whole. We define the operation that allows the user to define a macroproposal as below:

Definition 6.1.1 create_macroproposal. The operation to create a macroproposal is defined as:

create_macroproposal(op1… opn, pnew)

where the arguments are an ordered set of operations (op1... opn) and the proposer who suggests them (pnew

ÎProposers). ¨

We allow three types of operations: (i) proposal of insertion, (ii) proposal of deletion, and (iii) proposal of update

(propose_update). Storing a proposal of insertion usually leads to the insertion of a new tuple in the set of proposals of

insertions. Sometimes it simply requires an update of the implicit attributes of an existing proposal (if such an old

proposal is value equivalent to the new one). A proposal of deletion operates similarly.

 In the following, we will concentrate on proposals of update, since they are the most complex operation.

Definition 6.1.2: propose_update. Given a relation rÎDB_Reference with schema R=(A1,…,An|Teval), let

<(A1,…,An), (A1,…,An|Tprop)> be the type of pu(r). We define propose_update as follows:

propose_update(r, (a1,...,an), (a1’,...,an’), tvt_new)

where the arguments are the DB_Reference relation r, which contains the tuple to be updated, the explicit attributes of

the tuple to be updated (a1,...,an), the newly proposed explicit attributes (a1’,…,an’), and the newly proposed valid time

(tvt_new).¨

Note that in the proposal of update the proposer has to specify only the explicit attributes of the tuple to be updated.

Indeed, they are enough to univocally identify it. We interpret a macroproposal as an indivisible set of proposals. To this

 23

end, its definition is embedded within a DBMS transaction [24]. This choice grants for the maintenance of the well-

known “ACID” (i.e., atomicity, consistency, isolation and durability) transaction properties.

Example 6.1 The macroproposal at Step 3 by proposer p2 can be expressed as follows:

create_macroproposal(

propose_update(RESOURCE,(101,VQS), (101,CTPA)),

propose_update(CLINICAL_ACTION,(101, 100), (101, 1000),[0,3000]),

p2)

In the first propose_update, proposer p2 proposes to update the tuple identified by the explicit attributes (101,VQS) in

the RESOURCE relation as follows: (101,CTPA). Note that the valid time is not required in this case: since the relation

RESOURCE in DB_Reference is a transaction-time relation. In the second propose_update, proposer p2 proposes to

update the tuple identified by the explicit attributes (101,100) in the CLINICAL_ACTION relation as follows:

(101,1000). Moreover the proposed valid time is summarized by the interval [0,3000]. Observe that the proposer

parameter (p2 in the example) is only provided once (implicitly it applies to all the operations in the macroproposal).

Macroproposals need to be stored, waiting for evaluation. Storing a macroproposal consists in storing all its

proposals. In our approach we do not control whether the operations are valid with respect to the current status of

DB_Reference (i.e., if all the operations, if accepted, could be successfully executed to update the current status of

DB_Reference). We only check their admissibility (i.e., if they are not redundant or contrasting). The control of validity

is postponed at execution time (i.e., at the time the macroproposal is accepted), since the state of DB_Reference can

evolve between macroproposal definition and macroproposal acceptance. In this way, our approach is more flexible and

some unnecessary check , which would become obsolete if the database state changes, are avoided.

Admissibility is checked in order to verify that some minimum data consistency criteria are met: redundant and

incoherent situations should be avoided. Moreover, the technical choices we made when defining the data model (see

Section 5.2.3) have to be respected.

Specifically, a macroproposal is admissible if its set of proposals does not contain: (i) two or more deletions of the

same tuple, (ii) two or more insertions of value equivalent tuples, (iii) two or more alternative updates to the same

DB_Reference tuple.

Condition (i) avoids redundant (and useless) deletion proposals.

Condition (ii) avoids redundancy as well. Moreover, it forbids the proposal of insertion of two or more tuples sharing

the explicit attributes, but with a different valid time. Observe that such kind of insertions would be admissible if issued

within different macroproposals.

 24

Condition (iii) explicitly disallows a proposer to propose two or more alternative updates to the same tuple in the

same macroproposal, for the sake of coherency, as already discussed in Section 5.2.3.

In the case that conditions (i-iii) hold, the macroproposal is admissible; only in this situation, it is assigned a unique

identifier mpi, and all its operations are stored in DB_Proposers.

For what concerns the storage of a proposal of update, we have two cases: (i) there is no Update-proposal in pu(r)

having as an origin the tuple the proposer wants to modify; or (ii) an Update-proposal having such an origin is already

present in pu(r).

In the first case, propose_update(r, (a1,...,an), (a1’,...,an’) , tvt_new) creates a new Update-proposal in pu(r), whose origin

is (a1,...,an) and whose only alternative is (a1’,...,an’). As for its implicit attributes, the proposer is proposer who issued

the create_macroproposal, the valid time value is tvt_new, and the current transaction time and the macroproposal identifier

mpi are provided by the system.

In the second case, propose_update(r, (a1,...,an), (a1’,...,an’), tvt_new) modifies an Update-proposal already present in

pu(r). (a1,...,an) is the origin of this Update-proposal to be considered. We can then further distinguish between two

situations. If no value equivalent alternative, with respect to the newly proposed one, exists in this Update-proposal, a

new alternative is added. Specifically, its explicit attributes are (a1’,...,an’). As for its implicit attributes, they are set as

above. On the other hand, if the identified Update-proposal already contains an alternative which is value equivalent to

the newly proposed one, only its implicit attributes are properly updated. This allows to account for the new

macroproposal identifier, the new proposer, the new valid time and the new transaction time.

Example 6.1 (continued). In the example above, since the two propose_update operations fulfill the conditions

described above (in particular condition (iii)), the macroproposal can be stored in DB_Proposers as shown in Fig 4(A): a

new Update-proposal is inserted in pu(RESOURCE) and a new Update-proposal is inserted in

pu(CLINICAL_ACTION). The new Update-proposal in pu(RESOURCE) has the origin defined by the propose_update

second parameter while the alternative explicit attributes are taken from the propose_update third parameter

(101,CTPA). For what concerns implicit attributes, the proposer (p1) is taken from the create_macroproposal parameter,

the transaction time ([3,UC]) and the macroproposal identifier (mp2) are provided by the system. The new Update-

proposal in pu(CLINICAL_ACTION) has the origin defined by the propose_update second parameter (101,100), while

the alternative explicit attributes (101,1000) are taken from the propose_update third parameter. For what concerns

implicit attributes, the proposer (p1) is taken from the create_macroproposal parameter, the valid time value ([0,3000]) is

taken from the propose_update fourth parameter , the transaction time ([4,UC]) and the macroproposal identifier (mp2)

are provided by the system. The situation after storing macroproposal mp2 is shown n Fig. 4(A).

 25

6.2 Evaluator operations

In our approach, evaluators can reject or accept macroproposals stored in DB_Proposers. Thus, we provide them with

the operation reject and the operation accept. Both operations have the same input: the macroproposal indentifier, on

which the operation will be performed, and the evaluator, who evaluates the macroprosal.

Accepting or rejecting a macroproposal means to accept or to reject all of its operations, in an atomic way, and it is

not possible to accept or to reject just a subset of the macroproposal operations. To this end, the acceptance and the

rejection of a macroproposal are embedded within a DBMS transaction [24].

First, we present the reject operation.

Definition 6.2.1: reject. We define the reject operation as reject(mp, eval), where mp Î Macroproposals and eval Î

Evaluators; mp indentifies the macroproposal, while eval identifies the evaluator who wants to make the rejection. ¨

The rejection of a macroproposal mp consists of the rejection of all its operations (i.e., all the proposals of insertion,

deletion, and update which are contained in mp). The rejection of a proposal consists in its deletion. However, since we

want to retain the whole database history, including the history of macroproposals, such proposals are not physically

deleted from DB_Proposers. Conforming to BCDM, they are logically deleted (see section 2). Thus, all operations in mp

are “closed” (i.e., UC as a transaction time has to be removed from the implicit attributes, and has to be substituted with

the time of rejection).

 See for example Fig. 4(D) where the transaction-time end is set to “9” for the alternatives of the Update-proposal in

the pu(RESOURCE)).

Definition 6.2.2: accept. We define the accept operation as accept(mp, eval), where mp Î Macroproposals and

eval Î Evaluators; mp indentifies the macroproposal, while eval identifies the evaluator who wants to make the

acceptance. ¨

The acceptance of a macroproposal is used by evaluators to make a given macroproposal effective, i.e., to execute all

the proposals it contains on the DB_Reference. Since in our approach a macroproposal must be interpreted as an

indivisible set of proposals, if even only one of such proposals cannot be executed, the execution of all the operations in

the set has to be stopped / rolled back.

Example 6.2. The acceptance of macroproposal mp4 issued at Step 7 by evaluator e2 in the running example consists

in the operation accept(mp4, e2) .It means to accept every operation in mp4.

The acceptance operation will be performed as:

begin_transaction

accept(propose_update(RESOURCE,(101,VQS), (101,CTPA)),e2),

 26

accept(propose_update(CLINICAL_ACTION,(101, 100), (101, 1000),[0,3000]),e2)

end_transaction

The macroproposal mp4 contains two proposals of update, which are accepted. We embed the two accept operations

within a DBMS transaction.

Operatively, we check if each proposal in the macroproposal can be executed, by following the order in which they

are listed. Each checked proposal is immediately executed (even if, as observed above, rollback may be later required).

A proposal of insertion can be executed if there are no current value equivalent tuples to it in the DB_Reference

relation r at hand. In this case, we insert a new tuple in r, where the explicit attributes and the valid time are set to the

values specified in the proposal, the evaluator is taken from the accept operation parameter, and the transaction time is

set (current) by the system. Otherwise, if a current value equivalent tuple with respect to the proposed one already exists

in r, two cases are possible: (i) such a tuple shares the same valid time of the proposed one, and (ii) such a tuple has a

different valid time with respect to the proposed one. In case (i), the state of DB_Reference conforms the intended

meaning of the proposal (i.e., that a tuple with the explicit attributes and valid time at hand is current in DB_Reference).

In this situation, we perform no operations and the execution of the macroproposal can continue. Otherwise, in case (ii),

the state of DB_Reference is not consistent with the goal of such a proposal (indeed, only an update to the existing

DB_Evaluator tuple would be acceptable), and the operation (and therefore the whole macroproposal) fails. If the

execution of the proposal of insertion is successful, the tuple in pi(r) is closed, since such a proposal is no longer active.

A proposal of deletion can always be executed. Indeed, two cases are possible: (i) the tuple is current in r, thus the

execution of its deletion means to close such a tuple; (ii) the tuple is not current, thus no actions are required (in fact, the

database state is already coherent with the deletion goal).

A proposal of update can be executed if there are no current tuples in the DB_Evaluator relation r value equivalent to

the chosen alternative (see third parameter in propose_update). The execution of a proposal of update consists in the

execution of a deletion followed by the execution of an insertion in an atomic way, as in BCDM. In our case, the

operation of deletion refers to the origin of the Update-proposal (see second parameter in propose_update) and the

insertion refers to the selected alternative. The explicit attributes and the valid time are set to the values specified in the

proposal, the evaluator is taken from the accept operation parameter, and the transaction time is set (current) by the

system. If the execution of the proposal of update is successful, we close all the alternatives in the Update_proposal at

hand (i.e., both the selected one and the mutually exclusive others). Moreover, the rejection of the mutually exclusive

alternatives with respect to the accepted one implies the rejection of the entire macroproposals they belong to. This

rejection is implemented as a logical deletion, i.e., the tuple is not physically removed, but all bitemporal chronons (UC,

cv), where cv is any valid-time chronon, are deleted from the tuple itself (as in BCDM).

 27

Example 6.2 (continued). Fig 4(D) shows the result of execution of these operations. The acceptance of

propose_update(RESOURCE,(101,VQS)) at step 7 consist in the logical deletion of tuple (101,VQS) in the relation

RESOURCE (the transaction time end is set to 9), and in the insertion of the new tuple (101, CTPA | {e2} × [10,UC]) in

RESOURCE. Such acceptance produces the rejection of the macroproposal mp2 and mp3 issued at Step 3 and Step 4

respectively, since they have current alternatives to the accepted Update-proposal. Note that all operations in mp2 and

mp3 are “closed” (i.e., UC as a transaction time end is be removed, and is set to 9). Similar actions are performed for the

acceptance of propose_update(CLINICAL_ACTION,(101, 100)). The tuple (101,100) is logically deleted and a new

tuple (101, 300| {e2} × [20,UC] × [0,15]) is inserted and its alternatives in Update-proposal are closed. Moreover, the

macroproposals, which are alternative to the macroproposal mp4, i.e. the macroproposals, are rejected.

6.3 Properties of manipulation operations

In most cases (consider, e.g., TSQL2) temporal approaches have been devised in such a way to be a consistent

extension of conventional ones [17]. This guarantees their interoperability with pre-existent approaches. Since our

approach is an extension of BCDM, we might aim at providing a consistent extension of BCDM manipulation operators.

However, GPVM manipulations operations cannot be a consistent extensions of BCDM, since in the GPVM context

direct insertion/deletion/update operations are not supported.

 Nevertheless, we have developed our approach so that the following (less strict than consistent extension) property

holds:

Property 6.3.1: “General Proposal vetting” consistent extension of BCDM. If all users are both evaluators and

proposers, our model is a “general proposal vetting” consistent extension of the BCDM model (considering only data in

DB_Reference, and neglecting the “Evaluator” implicit attribute). ¨

As a matter of fact, in our approach, we can perform each manipulation operation OpB in BCDM as an atomic pair of

operations <create_macroproposal; accept>. In this pair, the macroproposal contains only the proposal corresponding to

OpB . The accept operation refers to such a macroproposal. The result we obtain is the same we would have in BCDM, if

we just focus on DB_Reference.

 7 Relational Algebra

Besides manipulation operation, we had to provide also query operators, in order to support the possibility of

querying data, selecting and joining them. This helps evaluators in taking their acceptance/rejection decisions, as well as

proposers in proposing updates to data. For example, selection can be used in order to focus the attention only on a

subset of proposals that satisfy some conditions. Moreover, the data of interest can be stored into more than one relation.

 28

Therefore, join operations can be useful for proposers and evaluators, e.g., in order to have a global view of all the data

concerning the same action.

For instance, in step 6 of the running example, evaluator E2 requires joining the relations RESOURCE and

CLINICAL_ACTION, followed by a selection on the clinical action “pulmonary embolus detection”. This allows to

“reconstruct” proposals concerning the resources and the clinical actions regarding pulmonary embolus detection.

Additionally, since the evaluator requires that only current proposals are taken into account, also a form of temporal

selection on the transaction time is involved in the query at step 6.

Since in this paper we operate at the semantic level, the query language for our extended data model is provided at

the algebraic level, as an extension of BCDM temporal algebra.

For the sake of brevity, we do not report the exhaustive listing of all our extended algebraic operators and we focus

on operators on sets of Update-proposals. However, it is worth mentioning that in our extended algebra we also provide:

(i) operators on DB_Reference relations, (ii) extended versions of algebraic operators to cope with “mixed” cases in

which sets/relations have different types (e.g., natural join between a set of Update-proposals and DB_Reference

relations); (iii) slicing operators, that remove proposers, macroproposals, valid time and/or transaction time; (iv)

temporal selection operators (σt). In all cases, we follow the general methodology applied in the TDB area. In particular,

we define our operators so that they behave as the standard relational non-temporal operators on non-temporal attributes,

and we use set operators on the temporal components (e.g., intersection for Cartesian product and union for relational

union).

Example 7.1. The query at Step 6 in the Example can be expressed as follows:

σt
 P
TT=UC(pu(RESOURCE) ⋈P sP

Action_id=101(pu(CLINICAL_ACTION)))

where ⋈P is a natural join between the sets of Update-proposals RESOURCE and CLINICAL_ACTION, σP is the

selection operator on non-temporal attributes for selecting the action “pulmonary embolus detection”, and σt is the

temporal selection operator, used to select only current tuples.¨

7.1 Relational Algebra on sets of Update-proposals

The treatment of proposals demands for the definition of new algebraic operators operating on sets of Update-

proposals. As an example, we present here the natural join operator on sets of Update-proposals. We characterize the

output of natural join as a set of Update-proposals z of the general form <origin(z), alternatives(z)>, that can be defined

by alternative cases. In the formula, we assume the standard “nesting” policy for the scope of the variables in the

conditions.

 29

Definition 7.1.1: natural join ⋈P. Given the sets of Update-proposals s1 and s2 corresponding to relations

r1ÎDB_Reference and r2ÎDB_Referencewith schema (A1,…,An, B1,…,Bm| Teval) and (A1,…,An, C1,…,Ck | Teval)

respectively, let the types of s1 and s2 be <(A1,…,An,B1,…,Bm), (A1,…,An, B1,…,Bm| Tprop)> and <(A1,…, An, C1, …, Ck),

(A1,…,An, C1,…,Ck| Tprop)> respectively. Natural join ⋈P provides as an output a set of Update-proposals defined as

follows (let A stand for A1,…,An, B for B1,…,Bm and C for C1,…,Ck):

s1 ⋈P s2 = { <origin(z),alternatives(z)> :

if $up1Îs1, $up2Îs2 : origin(up1)[A]=origin(up2)[A] Ù$alt1Îalternatives(up1), $alt2Îalternatives(up2):

alt1[A]=alt2[A] Ù alt1[Tprop]Çalt2[Tprop]¹Æ then

origin(z)[A]ß origin(up1)[A]; origin(z)[B]ß origin(up1)[B]; origin(z)[C]ß	origin(up2)[C]

alternatives(z) = {alt :

 if alt1[Tprop] Ç alt2[Tprop] ¹ Æ then

 alt[A]	ßalt1[A]; alt[B]	ßalt1[B]; alt[C]	ßalt2[C]

 alt[Tprop] ßalt1[Tprop]Ç alt2[Tprop] }} ¨

The result of natural join on Update-proposals is a set of Update-proposals built as follows. Two Update-proposals

up1 and up2 with origins value-equivalent on the common attributes A1,…,An are merged into one Update-proposal

having as origin the standard natural join of the origins. The alternatives of the new tuple are built by performing the

standard natural join on the explicit attributes and the intersection of the implicit attributes. Only if this intersection is not

empty the alternative is stored as an output.

For Update-proposals, we also define the temporal selection operator. It allows one to select tuples that satisfy a

temporal selection predicate.

Definition 7.1.2: temporal selection σt
P
j. Given a set of Update-proposals s with type <(A1,…,An), (A1,…,An |

Tprop)>, temporal selection σt
P
j provides as an output a set of Update-proposals over the type <(A1,…,An), (A1,…,An |

Tprop)> defined as follows (let T stand for the bitemporal attributes):

σt
P
j(s)= { z : zÎs Ù j(z[T]) }.¨

 30

Example 7.2. The result of the query σt
 P
TT=UC(pu(RESOURCE) ⋈P sP

Action_id=101(pu(CLINICAL_ACTION))) is the

set of Update-proposals in Figure 6, with type <(Action_id, INSTR_name, name, Description, goal, cost), (Action_id,

INSTR_name, Description, goal, cost | Tprop)>3.

Figure 6: The result of the query in step 6 of the running example. We report only the explicit attributes Action_id, Cost and

INSTR_NAME.

We have defined our algebraic operators on sets of Update-proposals in such a way that the property of reducibility

[17] with respect to BCDM algebraic operators holds. Proposals of update cannot be directly modeled within BCDM,

mainly due to the fact that they model proposers and macroproposals (as implicit attributes). Thus, the reduction to

BCDM involves the choice of a macroproposal and of a proposer. After this choice, each resulting Update-proposal

(having just one alternative) can be easily mapped onto a BCDM tuple in a relation with the proper schema. The

macroproposal/proposer-slice operator hidm,p is used for selecting a specific macroproposal idm and proposer p.

Definition 7.1.3: macroproposal/proposer-slice operator on sets of Update-proposals. Given a set of Update-

proposals s defined over the type <(A1,…,An), (A1,…,An|Tprop)>, the result of the macroproposal/proposer-slice operator

hidm,p(s) is a BCDM relation defined over the schema (A1,…,An, A1’,…,An’|T) (where the attributes A1’,…,An’ are a

renaming of A1,…,An respectively) built as follows: each tuple in s is examined and, if the value of its implicit attributes

match idm and p, a tuple with the same explicit values and bitemporal chronons becomes a tuple of the result.

hidm,p(s)={z	:	$xÎs	:	z[A]=x[A]	Ù	z[T]={(t,v)	:	(idm,p,t,v)Îx[Tprop]}	Ù	z[T]¹Æ}.	¨

Now we can give the reducibility property on algebraic operators over sets of Update-proposals. This property grants

that, if we remove from our approach the treatment of macroproposals and proposers (i.e., if we reduce our approach to

the treatment of bitemporal relations only), then our relational algebraic operators behave exactly as BCDM relational

algebraic operators. Thus, the reducibility property grants interoperability with BCDM.

Property 7.1.4: Reducibility of GPVM algebra on sets of Update-proposals to BCDM algebra. GPVM algebraic

operators on sets of Update-proposals are reducible to BCDM algebraic operators. This means that, for each algebraic

unary operator OpP in our model, and indicating with OpB the corresponding BCDM operator, for each set of Update-

proposals s, the following holds (the analogous holds for binary operators):

3 Since the relation Resource has no valid time, for performing natural join, we considered a modified version of the natural join

operator in Definition 7.1.1. In it, we consider a set of Update-proposals with transaction time and a set of Update-proposals with
both valid time and transaction time, and preserve the valid time in the resulting set of Update-proposals.

(101,100,VQS) (101,1000,CTPA | {mp2}´{p1}´[4,UC]´[0,3000])
 (101,300,CTPA | {mp3}´{p2}´[6,UC]´[0,60],
 {mp4}´{p3}´[8,UC]´[0,15])

 31

hidm,p(OpP(s)) = OpB(hidm,p(s))

where idm is an arbitrary identifier of a macroproposal and p is a proposer in Proposers.¨

Finally, given the fact BCDM algebraic operators reduce to relational algebra operators [17], also Corollary 7.2.5

trivially holds. It states that if we remove from our approach both the treatment of macroproposals and of proposers, and

the treatment of temporal information, then our relational algebraic operators behave as standard relational algebraic

operators.

Corollary 7.1.5: Reducibility of GPVM algebra to relational algebra. The GPVM algebraic operators are

reducible to relational algebra operators. ¨

8 Implementation

As a proof of concept, we have developed a prototypical implementation of our approach [25]. Since GPVM data

model and algebra are reducible to the BCDM one, and since GPVM manipulation operations are a consistent

extension to BCDM ones, we have developed our prototype as an upper layer on a relational TDB grounded on the

BCDM semantics. In particular, our prototype is implemented on top of TIMEDB [26], a TSQL2-like database based on

BCDM semantics. TIMEDB is implemented in JAVA [27] and supports both IBM Cloudscape 10 [28] and Oracle 10g

[23]. Our prototype is implemented in PHP 5 [29] and stores data in Oracle 10g. The architecture of our prototype –

focusing on the treatment of Update-proposals – is shown in figure 7.

Figure 7: the architecture of our prototypical implementation.

In our prototype, we have mapped the GPVM data model to TIMEDB structures. First, a set of Update-proposals has

been converted into a set of tuples in TIMEDB (i.e., a set of tuples in the BCDM model). Observe that these tuples still

need to be interpreted as “disjunctions” (while in a standard BCDM relation in TIMEDB they would be interpreted as

conjunctions). It is the role of the underlying operations (properly converted to TSQL2 in our upper layer) to provide the

correct interpretation. To use the object-oriented programming terminology, we could say that the manipulation and

 32

algebraic operations, working at the BCDM semantic level, act as methods operating on an object, which is similar, but

not identical to a BCDM relation (since its tuples may be in disjunction). By means of these methods, users can correctly

manipulate or query the data, having preserved the correct semantics.

The operations are taken in input via a simple web interface (i.e., a HTML [30] page). Then, a parser manages the

input. In case no proposal vetting facility is used, thanks to the reducibility and consistent extension properties, standard

TIMEDB operations are provided, without any additional cost. On the other hand, proposal-vetting operations are

implemented by mapping the GPVM operation to the corresponding TIMEDB operation(s).

Our prototype also supports DDL (Data Definition Language) commands (i.e., the commands which allow to create a

relation, to remove a relation, and to alter a relation). The interpretation of such commands has been extended to link

each relation to three additional relations. Such additional relations implement the set of proposals of insertion, of

proposals of deletion and of Update-proposals. Observe that they are stored as TIMEDB temporal relations, but are

managed by the additional layer.

The proposer and the evaluator operations are defined and managed in the additional layer too. The additional

computational complexity of our implementation (with respect to TIMEDB) is quite limited.

In our prototypical implementation [25], we have implemented a simpler version of the data model described in the

current paper, in which only transaction time is considered, and only manipulation operations are provided. The

realization of algebraic operators in such a tool is one of the goals of our future work.

Moreover, it is worth stressing that, since TSQL2 is a “consistent extension” of SQL, our approach may be conceived

as a further layer on top of a SQL database, too.

 9 Related works

In this paper, we have discussed our extensions to the BCDM model, to cope with proposal vetting in a relational

environment, in which both valid time and transaction time can be supported.

We are not aware of any other approach in the literature coping with such an issue. However, we think that it might

be important to compare our approach with other approaches that share at least some of our goals. In particular, in the

area of database versioning, many object-oriented approaches have been devised to face changes to a database, due to the

proposals of different versions, evolving in time. In general, a main difference between object-oriented approaches and

relational approaches has been pointed-out by Sciore [31, page 425]: “The relational model has a limited modeling

capacity, and so researchers in historical relations have all being forced to extend the relational model in some way. On

the other hand, object-oriented models are able to encapsulate the notion of time in classes. Thus there is no need to

 33

develop a new historical object-oriented model; what we need is a methodology for using these classes in our existing

model”.

Specifically, in [31, 32], Sciore has proposed an approach coping with transaction and valid time, and alternative

versions. Issues such as physical strategies to store versions, change notification and schema evolution are explicitly

outside the scope of that approach. Transaction and valid time, and alternative versions are dealt with using the notion of

annotated variables (roughly speaking, annotated variables in [31, 32] are variables whose intension can be addressed by

time and\or version indexes), and introducing proper methods to access and manipulate them. Separate annotations and

methods are defined to cope with the different aspects (valid time, transaction time and alternative versions). On the

other hand, as in BCDM (and, in general, in all relational approaches to bitemporal data), in our approach we explicitly

cope with valid and transaction time in an integrated way. Through the definition of Update-proposals, we give an

explicit data model for data in which both bitemporal aspects and alternative version are considered.

 The approach in [33] implements bitemporal databases using database versions expressed with Database Version

model (DBV) [34]. Branching alternatives are expressed using alternative identifiers managed at the application level.

The approach has been implemented on top of O2 object-oriented DBMS. In [33] the main goal is that of providing

minimal extensions to DBV in order to cope with transaction and valid time, but neither the underlying semantics of the

interplay of time and alternative versions, nor the formal properties of the extension being built are taken into account.

More recently, another object-oriented data model has been proposed for dealing both with valid and transaction time

and with versions, the Temporal Versions Model (TVM) [35, 36, 37]. However, although in [37] an operational

semantics of (an extension of) TVQL is given, the treatment of the temporal aspects is not explicitly stated. Last, but not

least, no property of being a consistent extension of any previous model is provided.

In the recent years most approaches supporting changes in databases focused on schema evolution and schema

versioning [38, 39, 40]. Roddick in [41] surveyed the main issues involved with schema versioning and evolution. When

changes to the schema are performed, two main problems have to be dealt with: maintaining the consistency of the

schema, and handling the consistency of data with regard to the modified schema. Several approaches have been

proposed regarding the various data models: for the relational model (see, e.g., [42]), for the object-oriented model (e.g.,

[43, 44]) and for conceptual models such as ERM (e.g., [45]). Such approaches seem to us only loosely related with our

one, since we operate at the level of data (tuples), not at the level of schema. Specifically, our approach aims at

managing the change to data values. On the other hand, in the schema versioning approaches, data change is usually not

managed as a “primitive” notion, but as a (possibly automatically managed) process induced by changes to the schema.

 34

10 Discussion and future work

In this paper we face the problem of storing in a relational database and evaluating (accepting/rejecting) proposals of

updates to clinical knowledge. While medical data (and, specifically, clinical guidelines) constitute our current

application context, the approach we propose is general. We can apply it to wider application context, including

emerging phenomena such as the collaborative definition of encyclopedias (such as Wikipedia [] and Citizendium[]).

Specifically, we have proposed GPVM, a semantic framework supporting proposal vetting (i.e., proposal and evaluation

of update) about data in a relational environment, in which transaction time and (possibly) valid time have to be

managed.

In our approach we have defined a new data model, manipulation operations and algebra. We have based our

approach on the “unifying” BCDM semantic model, extending it to support cooperative sessions of work. Specifically,

the most relevant extensions to the BCDM model are:

(1) the treatment of mutually exclusive alternatives of relational tuples. We faced this phenomenon with the introduction

of the basic notion of Update-proposal, which is the core of our approach. Notice that, while the notion of alternative

versions of data has been already explored by some database data versioning approaches (based on the object-

oriented paradigm – see, e.g., [34]) this notion is, to the best of our knowledge, new in the relational environment. In

this context, in fact, relations are usually interpreted as sets (i.e., conjunctions) of tuples. The extension to BCDM to

cope with alternative (and mutually exclusive) tuples has involved substantial changes to BCDM itself at the level of

(i) data model, (ii) manipulation language, (iii) algebra;

(2) the treatment of two levels of data (the evaluator and the proposal levels) and of users (evaluators and proposers),

each one with its manipulation operations;

(3) the treatment of sets of proposals as “macro” operations, to be executed as an atomic operation.

Our extensions have been devised in such a way that GPVM can be regarded as an upper layer built upon BCDM, i.e.,

we have proved that (i) GPVM data model and (ii) algebra are reducible to the BCDM one, and that (iii) GPVM

manipulation operations are a consistent extension to BCDM ones.

By proving properties i-iii, we grant that our approach can be added as a support for update proposal and evaluation on

top of any of the temporal relational database approaches grounded on the BCDM semantics. This fact enhances the

generality of our work, as well as its implementability.

As proof of its implementability, we have developed a prototypical implementation of our approach on the top of

TIMEDB [26] (a prototype implementing –an extension of– TSQL2). Since our prototype implements only

 35

manipulation and DDL operations, we plan to complete it with algebraic operations. Observe that the data model and

algebraic level, at which our approach operates, is suitable for clearly defining the specifications of the work, and for

providing the semantic basis of the implementation. However, they are not directly usable by proposers and evaluators.

A higher-level interface, exploitable to execute SQL-like queries, is thus required, and is the goal of our future work.

References

[1] P. Terenziani, G, Molino, M. Torchio A Modular Approach for Representing and Executing Clinical Guidelines.

Artificial Intelligence in Medicine 23, 249-276, 2001.

[2] P. Terenziani, S. Montani, A. Bottrighi, G. Molino, M. Torchio, Applying Artificial Intelligence to Clinical

Guidelines: the GLARE Approach, in Computer-based Medical Guidelines and Protocols: A Primer and Current Trends,

Volume 139 Studies in Health Technology and Informatics, Edited by: A. Ten Teije, S. Miksch and P. Lucas, July 2008.

[3] A. Bottrighi, P. Terenziani, S. Montani, M. Torchio, G. Molino, Clinical Guidelines Contextualization in GLARE,

Proc. AMIA’06, Washington, November 2006.

[4] http://www.wikipedia.org Wikipedia, the free encyclopedia (URL last accessed on 02/09/2012)

[5] http://www. www.wiktionary.org Wiktionary, the free dictionary (URL last accessed on 02/09/2012)

[6] http://www.citizendium.org/, Citizendium, a citizens' compendium of everything (URL last accessed on 12/07/2011).

[7] http://www.mysql.org (URL last accessed on 02/09/2012)

[8] E. F. Codd, "A Relational Model of Data for Large Shared Data Banks", in Communications of the ACM, 1970.

[9] R.T. Snodgrass, Developing Time-Oriented Database Applications in SQL, Morgan Kaufmann Publishers, Inc., San

Francisco, July, 1999.

[10] Y. Wu, S. Jajodia, X. Sean Wang: Temporal Database Bibliography Update. Temporal Databases, Dagstuhl: 338-

366, 1997.

[11] L. Liu, M. Tamer Özsu (Eds.), Encyclopedia of Database Systems. Springer US, 2009.

[12] L. Edwin McKenzie, Richard T. Snodgrass: Evaluation of Relational Algebras Incorporating the Time Dimension in

Databases. ACM Comput. Surv. 23(4): 501-543, 1991.

[13] A. Tansel, J. Cliffor, S. Gadia, S. Jajodia, A. Segev and R.T. Snodgrass (eds), Temporal databases: theory, design

and implementation, Benjamin/Cummings, 1994.

[14] G. Özsoyoglu, R. T. Snodgrass: Temporal and Real-Time Databases: A Survey. IEEE Trans. Knowl. Data Eng.

7(4): 513-53, 1995.

 36

[15] C.S. Jensen, R.T. Snodgrass: Temporal Data Management. IEEE Trans. Knowl. Data Eng. (TKDE) 11(1):36-44,

1999.

[16] C.S. Jensen, R.T. Snodgrass, Semantics of Time-Varying Information, Information Systems, 21(4), 311–352, 1996.

[17] R. T. Snodgrass (Ed.), The TSQL2 Temporal Query Language. Kluwer 1995.

[18] J. Dunn, S. Davey, A. Descour, and R.T. Snodgrass, Sequenced Subset Operators: Definition and Implementation,

proc. ICDE'02, 2002.

[19] British Thoracic Society guidelines for the management of suspected acute pulmonary embolism, Thorax 2003, 58,

470-483, 2003.

[20] W.B.G. Macdonald, A.P. Patrikeos, R.I. Thompson, B.D. Adler, and A.A. van der Schaaf, Diagnosis of pulmonary

embolism: Ventilation perfusion scintigraphy versus helical computed tomography pulmonary angiography, Australasian

Radiology 49, 32-38, 2005.

[21] V. Khatri, S. Ram and R.T. Snodgrass, Augmenting a Conceptual Model with Geospatiotemporal Annotations,

IEEE Transactions on Knowledge and Data Engineering 16(11), 1324-1338, November 2004.

[22] K.R. Dittrich, R.A. Lorie, Version Support for Engineering Database Systems. IEEE Trans. Software Eng. 14(4):

429-437, 1988.

[23] Oracle Database 10g Workspace Manager Overview. An Oracle White Paper

http://www.oracle.com/technology/products/database/workspace_manager/pdf/twp_AppDev_Workspace_Manager_10g

R2.pdf (URL last accessed on 05/05/2012).

[24] R. Elmasri, S. Navathe. Fundamentals of Database Systems, 6/Ed. Addison-Wesley, 2011

[25] A. Vigo. Estensioni alle basi di dati temporali per il supporto alla proposta ed alla valutazione di modifiche di dati,

laura degree thesis in computer science, Università del Piemonte Orientale, 2009.

[26] http://www.timeconsult.com/Software/Software.html (URL last accessed on 13/09/2012).

[27] www.java.com (URL last accessed on 13/09/2012)

[28] http://www.ibm.com/developerworks/data/library/techarticle/dm-0408anderson/ (URL last accessed on 14/09/2012)

[29] http://www.php.net/ (URL last accessed on 14/09/2012)

[30] http://www.w3.org/html/ (URL last accessed on 18/09/2012)

[31] E. Sciore, Using Annotations to Support Multiple Kinds of Versioning in an Object-Oriented Database System.

ACM Trans. Database Syst. 16(3), 417-438, 1991.

[32] E. Sciore, Versioning and Configuration Management in an Object-Oriented Data Model VLDB J. 3(1), 77-106,

1994.

 37

[33] S. Gançarski, Database Versions to Represent Bitemporal Databases. In Proceedings of the 10th international

Conference on Database and Expert Systems Applications (August 30 - September 03, 1999). T. J. Bench-Capon, G.

Soda, and A. M. Tjoa, Eds. LNCS 1677. Springer-Verlag, London, 832-841, 1999.

[34] W. Cellary and G. Jomier, Consistency of Versions in Object Oriented Databases. In Proc. 16th VLDB, pages 432-

441, 1990.

[35] M. M. Moro, S.M. Saggiorato, N. Edelweiss and C.S. Santos, Adding Time to an Object-Oriented Versions Model.

In Proceedings of the 12th international Conference on Database and Expert Systems Applications. H. C. Mayr, J.

Lazanský, G. Quirchmayr, and P. Vogel, Eds. LNCS 2113. Springer-Verlag, London, 805-814., 2001.

[36] M.M. Moro, N. Edelweiss, A.P. Zaupa and C.S. Santos, TVQL - Temporal Versioned Query Language. In

Proceedings of the 13th international Conference on Database and Expert Systems. A. Hameurlain, R. Cicchetti, and R.

Traunmüller, Eds. LNCS 2453. Springer-Verlag, London, 618-627, 2002.

[37] R. Machado, Á. F. Moreira, R. de Matos Galante and M. M. Moro, Type-safe Versioned Object Query Language;

Journal Of Universal Computer Science JUcs, volume 12, issue 7, september 2006, Pages: 938-957, ISSN: 0948-695X.

[38] Second International Workshop on Evolution and Change in Data Management, in M. Genero, F. Grandi, W.J. van

den Heuvel, J. Krogstie, K. Lyytinen, H.C. Mayr, J. Nelson, A. Olivé, M. Piattini, G. Poels, J.F. Roddick, K. Siau, M.

Yoshikawa, E.S.K. Yu (Eds.): Advanced Conceptual Modeling Techniques, ER 2002 Workshops: ECDM, MobIMod,

IWCMQ, and eCOMO, Tampere, Finland, October 7-11, 2002, Revised Papers. L 2784 Springer 2003.

[39] Third International Workshop on Evolution and Change in Data Management, in S. Wang, D. Yang, K. Tanaka, F.

Grandi, S. Zhou, E.E. Mangina, T. Wang Ling, I.Y. Song, J. Guan, H.C. Mayr (Eds.): Conceptual Modeling for

Advanced Application Domains, ER 2004 Workshops CoMoGIS, COMWIM, ECDM, CoMoA, DGOV, and ECOMO,

Shanghai, China, November 8-12, 2004, Proceedings. LNCS 3289 Springer 2004.

[40] 4th International Workshop on Evolution and Change in Data Management, in J.F. Roddick, V.R. Benjamins, S. Si-

Said Cherfi, R.H.L. Chiang, C. Claramunt, R. Elmasri, F. Grandi, H. Han, M. Hepp, M.D. Lytras, V.B. Misic, G. Poels,

I.Y. Song, J. Trujillo, C. Vangenot (Eds.): Advances in Conceptual Modeling - Theory and Practice, ER 2006

Workshops BP-UML, CoMoGIS, COSS, ECDM, OIS, QoIS, SemWAT, Tucson, AZ, USA, LNCS 4231 Springer 2006.

[41] J.F. Roddick, A survey of schema versioning issues for database systems, Information and Software Technology,

37(7),383-393, 1995.

[42] C. De Castro, F. Grandi and M.R. Scalas, Schema versioning for multi-temporal relational databases. Information

Systems 22(5), 249-290, 1997.

[43] F. Grandi, F. Mandreoli and M.R. Scalas, A Generalized modeling framework for schema versioning support.

Proceedings of the Australian Database Conference (ADC 2000),Canberra, Australia, Maria Orlowska (Ed.), 33-40, 2000

 38

[44] F. Grandi, F. Mandreoli, A formal model for temporal schema versioning in object-oriented databases. Data Knowl.

Eng. 46(2), 123-167, 2003.

[45] C.T. Liu, S.K. Chang and P.K. Chrysanthis, An entity-relationship approach to schema evolution. Proceedings of

the International Conference on Computing and Information. Abou-Rabia, 0., Chang, C. K., and Koczkodaj, W. W.

(Ed.), 575-578, 1993

