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Introduction 

A well-known result in portfolio selection is that optimal asset weights are 

multiplicatively separable into investor risk aversion and market price of risk (see, 

e.g., Tobin, 1958; Samuelson, 1970; Merton, 1973). The correctness of this statement 

can be proved for all rational investors who invest in one risk-free asset and one 

normally distributed risky asset (see Rubinstein, 1973). The motivation for this paper 

is the growing body of empirical literature that documents the inconsistency of the 

normality assumption, especially with respect to the significant skewness observed in 

asset returns (see, e.g., Peiró, 1999; Su and Hung, 2011; Xu et al., 2011). We model 

the risky return with a skew-normal distribution (see Azzalini, 1985; Adcock and 

Shutes, 2001) that has many attractive features for modeling real asset returns (see 

Adcock, 2007; Harvey et al., 2010). A skew-normal variable is defined as a Gaussian 

perturbed via the addition of a skewness shock given by a truncated Gaussian. 

The contribution of this paper is to derive the optimal allocation for a skew-normal 

portfolio which holds for all expected utility maximizing investors. The solution is 

an analog of the classical Samuelson-Merton optimal portfolio solution with the 

addition of a term dependent on the skewness shock and the agent utility function. In 

the special case, the investor has constant absolute risk aversion (CARA) a closed 

expression can be set up. We show that under feasible conditions a CARA agent 

invests more in a skew-normal asset than in a normal one if the skewness shock is 

positive, and vice versa if it is negative.  

2. The Model Set-Up 

We consider an investor with initial unitary wealth who can invest in a risk-free asset 

and in a risky asset with returns fR  and R, respectively, at the end of the period. The 

final wealth is given by ( ) ( )1
ff fW R R R R Rω ω ω= − + = − + , where [ ]0,1ω ∈  
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indicates the portion of wealth invested in the risky asset. As is typical in portfolio 

selection, we assume that the investor’s utility function u is two times differentiable, 

increasing and strictly concave. The optimal allocation problem is the choice of ω  

that maximizes the expected utility of the final wealth. The first-order condition leads 

to: 

 
( ) ( ) ( )' 0f

E u W
E u W R R

ω
∂     = − = ∂

 

or, equivalently: 

( ) ( )' ' 0fE u W R E u W R⋅ − ⋅ =              (1) 

3. The Normal Return Case 

Let R~N(µ, σ2), with fRµ >  and denote by Nω the portion of wealth invested in the 

normal asset. Using Stein’s Lemma for normal variables (see Rubinstein, 1973; 

Stein, 1973, 1981) we obtain: 

( ) ( ) ( ) ( ) ( ) 2'
' var '' N

u W
E u W R E R E u W

R
µ ω σ

∂ 
⋅ − = =       ∂ 

 

Rearranging this formula achieves: 

( ) ( ) ( ) 2' ' '' NE u W R E u W E u Wµ ω σ⋅ = +            

and substituting this in Equation (1) leads to: 

( ) ( ) ( )2'' ' 0N fE u W E u W Rω σ µ+ − =        

Solving the last formula with respect toω , the optimal allocation becomes: 

( )*
* 2

1 f

N
N

Rµ
ω

γ σ
−

=      (2.1) 

where ( ) ( )* * *'' 'N E u W E u Wγ    = −      in correspondence of the optimal wealth 

( )* *
NW W ω=  can be interpreted as the analogue of the Arrow-Pratt coefficient of 
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risk aversion. Equation (2.1) highlights the separability in optimal allocation between 

individual risk aversion expressed by*Nγ , the market premium ( )fRµ −  and the 

variance 2σ . Since the separability holds independently of the utility function u, the 

above statement holds for all expected utility investors. 

In general, *
Nγ  depends on ( )* *

NW W ω= . Therefore the value of *
Nω  can be 

computed only if the analytical expression of the utility function is given. If the 

investor has a CARA utility function, i.e., ( ) Wu W e γ−= − , where γ  is the absolute 

constant Arrow-Pratt coefficient of risk aversion, *
Nγ γ=  and Equation (2.1) gives a 

closed formula 

( )*
2

1 f

N

Rµ
ω

γ σ
−

=            (2.2) 

Due to the strictly concavity of u, the optimum *
Nω  is unique (see Samuelson, 1970); 

Merton, 1973); the seminal proof can be traced back to Rubinstein, 1973). 

4. The Skew-Normal Return Case 

We now model the risky asset with the extended version of a skew-normal 

distribution proposed by Adcock and Shutes (2001). We denote the skew-normal 

return by R Y Uλ= +  with Y~N(µ, σ2) and independently U~ ( ),1N τ ;  means 

truncation from below at zero. The four parameters, ,µ σ τ , and λ  are unrestricted 

and we use the notation R~ ( )2, , ,SN µ σ λ τ . If 0λ = , R collapses in Y~N(µ, σ2). We 

call Uλ  skewness shock.  

Denoted by Φ  and φ  the cumulative distribution and the density function of a 

standard normal variable, the mean and the variance of R are, respectively 

( ) ( )
( )E R

φ τ
µ λ τ

τ
 

= + +  Φ 
; ( ) ( )

( )
( )
( )

2

2 2
2

'
1var R

φ τ φ τ
σ λ

τ τ

 
= + + − 

Φ Φ  

; see Adcock and 
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Shutes (2001). Since R is the sum of two independent variables, the skewness is just 

the sum of the skewness of addenda, so ( ) ( )3Sk R Sk Uλ= . Since ( )Sk U is 

positive (the proof is available from the authors upon request), it follows that 

( )Sk R has the same sign of λ . 

We compute the optimal allocation for R~ ( )2, , ,SN µ σ λ τ . As in the normal case, we 

assume ( ) fE R R> . Using Stein’s Lemma for the extended multivariate skew-

normal (see Adcock, 2007, Corollary 4.1 (b)) we prove the following. 

Proposition 1. Let R~ ( )2, , ,SN µ σ λ τ . The optimal allocation is given 

( )
( )

( )( ) ( )
( ) ( )

( )
( )

* *

*

* 2 2 * 2 2 *

' '

'

Nf
SN

SN SN

Eu W Eu WE R R

Eu W

φ τ
ω λ

τγ σ λ γ σ λ

−−
= +

Φ+ +
    (3) 

where ( ) ( )* * *'SN E u W E u Wγ    ′′= −     and ( )
* * *

SNNW W Uλ ω= − . 

Proof. See the Appendix. Since Stein’s Lemma holds independently on the utility 

function u, the optimal allocation (3) holds for all expected utility investors. That is 

given by a term multiplicatively separable into investor risk aversion *
SNγ  and the 

market premium ( )( )fE R R−  that is analog to the classic Samuelson-Merton result; 

and, an addendum that is a function of the skewness shock Uλ  and the agent utility 

function u. If 0λ = , solution (3) reduces to (2.1). As in the normal case, *
SNω  

appears in the both hand-sides of (3), so its closed expression is achievable only if 

the utility function is specified. 

5. Normal versus Skew-Normal for CARA utility 

We now investigate how the optimal risky allocation varies as the risky asset moves 

from normal to skew-normal. To compare Equations (2.1) and (3) we assume that the 

agent is endowed with constant risk aversion * *
SN Nγ γ γ= = . 
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Proposition 2. Let R~ ( )2, , ,SN µ σ λ τ  and CARA utility function 

( ) Wu W e γ−= − with 0γ > . It follows that 

( )
( ) ( )

( )
( ) ( )2* *

* 12
* * 2

2 2 22 2

SN SNSN

SN N e
γω λ τ γω λφ τ γω λ τσ λω ω τ

σ λ τγ σ λ
+ Φ +

 = + +
+ Φ+   

  (4) 

where *
Nω  is defined in (2.2). 

Proof. See the Appendix. Formula (4) highlights the fact that the direction of change 

is not only driven by λ , but also by the location parameterτ  and risk aversion γ . At 

first let’s intuitively tackle the problem. The skewness shock Uλ  induces a shift of 

the probability mass on the right partd of the support if 0λ > , and on the left one if 

0λ < . That implies that the all first three central moments are perturbed. 

Specifically, if 0λ >  the mean, the variance and the skewness increase with respect 

to the normal case. If 0λ < , the mean decreases, the variance increases and the 

skewness turns to negative. 

We now conjecture how the optimal allocation changes as a skewness shock occurs. 

We assume that the agent exhibits preference for odd order moments (as mean and 

skewness) and dislike even order moments (variance, kurtosis); see for example 

Scott and Horvath (1980). If 0λ >  the first three moments move to desirable 

directions, however due to the favourable probability mass shift it seems reasonable 

to expect an increase in the risky asset allocation under possible restrictions on the 

                                                 

d  It is worthwhile noting that 
( )
( )E U

φ τ
τ

τ
  = +  Φ

 is positive. If 0τ ≥ the proof is trivial. If 

0τ <  that follows from the Theorem of the Mean ( ) ( )φ τ
τ

τ
Φ <

−
. The fact that ( ) 0E U >  is 

not surprising, since the support of U is non-negative. 
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tradeoffs among the higher central moments and risk aversion. Vice versa if 0λ < , 

the mean, the variance and the skewness move to undesirable directions and we 

expect a decrease in the risky allocation under possible restrictions. Above is 

confirmed in the following. 

Proposition 3. Let ( ) Wu W e γ−= − with 0γ >  and R~ ( )2, , ,SN µ σ λ τ . Denote by *
SNω  

and *
Nω  the optimal solutions in (4) and (2.2), respectively. Then, if 0λ ≠ there  

exists a threshold   

( ) ( )
( )

( )
( )

( ) ( )2* *
* 1

* 2
1

, , ,
SN SNSN

SNT T e
γω λ τ γω λγω λ τφ τ

λ τ γ ω τ
λγ τ τ

+ Φ +
 = = + ⋅ ⋅

Φ Φ  

 such that 

If 0λ > : the investor increases the investment in the risky asset, if and only if 

*
N Tω < ;        (5.1) 

If 0λ < : the investor decreases the investment in the risky asset, if and only if 

*
N Tω > .        (5.2) 

If *
N Tω = no change occurs. 

Proof. See the Appendix.  

If 0λ <  and 0τ ≥ , condition (5.2) is always fulfilled. Note the key role played by 

the risk aversionγ . The higher the risk aversionγ , the lower the threshold T and the 

more the properness to reduce the risky allocation, no matter the sign of the 

skewness. That confirms the fact that for the given level of γ  a CARA agent may 

choose risky assets with lower preferable moments (also see the counter-examples in 

Peel, 2012). 

6. Conclusion 

A positive skewness shock thus induces CARA investors to allocate more in a skew-

normal asset than in a normal one, and vice versa if the skewness shock is negative. 
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Our work may suggest different avenues for future research. Using extended versions 

of Stein’s Lemma further solutions for the classical Samuelson-Merton model can be 

set up. See the extended version in Söderlind (2009) for assets which are a mixture of 

bivariate normal distributions and that in Gron et al. (2012) for assets with stochastic 

volatility. Another interesting aspect would be to extend the classical farm manager’s 

land allocation problem to incorporate the skewness of the crop yields (see Haley, 

2012). 

Appendix  

Proof of Proposition 1. 

Adcock (2007, Corollary 4.1 (b)) proved the Stein’s Lemma for the extended 

multivariate skew-normal; in one dimension it reduces to  

( ){ } ( ) ( ) ( ) ( ){ } ( )
( )

2 2cov , 'R h R E h R E h Y E h R
φ τ

σ λ λ
τ

= + + −           Φ
  

where ( )2~ N ,Y µ σ . Substituting ( ) ( )( ) ( )' 1 'SN f SNh R u R R u Wω ω= − + = , so 

( ) ( )' SNh R u W ω′′= . It follows that  

( )( ) ( )( ) ( ) ( )' cov ' , 'E u W R u W R Eu W E R⋅ = + ⋅  

= ( ) ( ) ( )( ) ( ){ } ( )
( ) ( ) ( )2 2 '' ' ' 'SN NEu W Eu W Eu W Eu W E R

φ τ
ω σ λ λ

τ
+ + − + ⋅

Φ
 where 

( ) ( ) * *

ff SN SNNW Y R R W Uω λ ω= − + = − . Then, substituting above in Equation (1), 

we obtain: 

( ) ( ) ( )( ) ( ){ } ( )
( ) ( ) ( )( )2 2 '' ' ' ' 0SN fNEu W Eu W Eu W Eu W E R R

φ τ
ω σ λ λ

τ
+ + − + ⋅ − =

Φ
 

Solving with respect to SNω , the optimal allocation becomes: 

( )( )
( )

( )( ) ( )
( ) ( )

( )
( )

* *

*

* 2 2 * 2 2 *

' '

'

Nf

SN

SN SN

Eu W Eu WE R R

Eu W

φ τ
ω λ

τγ σ λ γ σ λ

−−
= +

Φ+ +
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where ( ) ( )* * *'SN E u W E u Wγ    ′′= −    .  

Proof of Proposition 2. 

We write (3) for the CARA utility function with *SNγ γ= . Then, 

( )( ) ( ) ( )* *1*' SN f SN
R Y

NEu W e E e
γ ω γωγ − − −=   

( ) ( ) ( ) ( )* **1*' SN f SNSN
R UYEu W e E e E e

γ ω γω λγωγ − − −−=  

thene 

( )( )
( ) ( ) ( )*

*

*

*

' 1

'
SN

SN

N U

U

Eu W
E e

Eu W E e

γω λ

γω λ−
= =  

That coincides with the moment generator functions of Uλ  at *
SNt γω= . Therefore 

( )( )
( )

( ) ( )
( ) ( ) ( )

( )
2* *

* * *1

2
*

'

'

SN SNN SN SN

U

Eu W
e g t

Eu W

λγω τ λγω λγω τ λγω τ
λ

τ τ
+ Φ + Φ +

= ⋅ = ⋅
Φ Φ

  

where Ug  is the moment generator function of ( ),1U N τ∼ . Substituting above into 

Equation (3), we obtain:  

( ) 2
*

2 2 2

1 f

SN

Rµ σω
γ σ σ λ

 −= + +

   

( )
( )

( )
( )

( ) ( )2* *
* 1

2
2 2

SN SNSN
e

γω λ τ γω λγω λ τφ τλ τ
σ λ τ τ

+  Φ + 
 + ⋅ ⋅ + Φ Φ  

 

Denoting
( )*

2

1 f

N

Rµ
ω

γ σ
−

= , solution (4) follows. And that concludes the proof.  

Proof of Proposition 3. 

                                                 

e  Note that 
( )( )

( )
*

*

'
1

'

NEu W

Eu W
≥  if 0λ ≥  and 

( )( )
( )

*

*

'
1

'

NEu W

Eu W
<  if 0λ < . 
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We rewrite *
SNω  as a function of *

Nω . From (4) 

( )* * 2
2 2 2

1 1f

SN N

Rµ
ω ω λ

γ σ σ λ

 −= + − + +

 

( )
( )

( )
( )

( ) ( )2* *
* 1

2
2 2

SN SNSN
e

γω λ τ γω λγω λ τφ τλ τ
σ λ τ τ

+  Φ + 
 + ⋅ ⋅ =+ Φ Φ  

 

{* *
2 2N N

λω λω
σ λ

= + − +
+

 

( )
( )

( )
( )

( ) ( )2* *
* 1

21 SN SNSN
e

γω λ τ γω λγω λ τφ τ
τ

γ τ τ
+  Φ + 

 + ⋅ ⋅ Φ Φ  

 

If { } is positive, the sign of change in optimal allocation is the same as that of λ . 

Denoting with ( ) ( )
( )

( )
( )

( ) ( )2* *
* 1

* 2
1

, , ,
SN SNSN

SNT T e
γω λ τ γω λγω λ τφ τ

λ τ γ ω τ
λγ τ τ

+ Φ +
 = = + ⋅ ⋅

Φ Φ  

 

the results follow. 
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