UNIVERSITA
DEGLI STUDI
DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Functional inductive logic programming with queries to the user

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/122378 since
Publisher:

Springer-Verlag

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

15 December 2021

A e

Functional Inductjve Logic
-Programming with Queries to the User

F. Bergadano! and D. Gunett;?

'University of Catania, via A. Doria 6/A,
95100 Catania, Italy, bergadan-@mathct.cineca.it

zUniversity of Torino, corso Svizzera 183,
10149 Torino, Italy, gunetti@di.unito.jt

Abstract

The FILP learning system induces functional logic programs from pos.
itive examples. For every predicate P, the user is asked to provide a mode
(input or output) for each of jts argument, and the system assumes that
the mode corresponds to a total function, i.e., for a given input there is one
and only one corresponding output that makes the predicate true. Fanc-
tionality serves two goals: it restricts the hypothesis space and it allows the
System to ask existential queries to the user. By means of these Queries,
missing examples can be zdded to the ones given initially, and this makes
the learned programs complete and consistent and the system adequate
for learning multiple predicates and recursive clauses in a reliable manner,

1 Introduction

Recently there has been a growing interest, within the Machine Learning com-
munity, in the problem of learning logic programs from positive and hegative
examples in the form of ground literals, Th
be communicated and proposed as important tools for Logic Programming and
even for Software Engineering at large. However, this has not yet happened.
Tkhe reason is, we think, twofold, ‘

First, learning logic Programs is difficult, and systems tend to be slow and
do not always terminate successfully, even when a solution program exists. A
tommon way to handle this problem consists in restricting the hypothesis space
by means of strong constraints of various kinds. In this paper we follow the
same idea, and restrict the inductive hypotheses to logic programs that are
functz'onai, ie. such that each D-ary predicate can be associated to a total
function as follows: m of its arguments are Jabeled as input, while the remaining
B-m are labeled as output, and for every given sequence of input values, there

Acknowledgement: This work was partiaily supporied by ESPRIT project BRA 6020
on Induective Logic Programming.

is one and only one sequence of output values that makes the predicate trye,
Functionality constraints have been used before [9, 7, 8, 3); in the present paper
we employ them to query the user for missing examples and explicitly address
the problem of consistency and completeness.

Second, the kinds of Programs that are learned are usually very simple and
often limited to clauses defining just one predicate. Few systems [8, 2, 5] are
able to Jearn programs for multiple predicates, while even beginning Prolog
programmers write programs with different clause consequents. This is due,

raing clauses one 2t a time and independently of
each other. If we want to learn a program for predicates P and Q, and we
try to conmstruct a clayse antecedent for P where Q occurs, then Q must have
been defined by the user, or determined extensionally, by means of all of its
relevant examples. Something similar occurs with recursion, i.e. for the case
when Q=P. We will show in this paper that, as a consequence of the extensiona]
interpretation of recursion apd sub-predicates, systems may be unable to learn
2 program, even when an allowed inductjve hypothesis that is consistent with
the examples exists. Even worse, it may happen that a program is learned that -
computes wrong outputs even for the given examples. ' :

The FILP system, presented here, solves this problem by querying the user
for any example that mazy be missing, dependin g on the hypothesis space that
has been defined. The queries that are asked to the user are of the type of
the existential queries of CLINT [5] and MIS [8], because they contain unbound
variables. However, in FILP learning is one-step and example completion is done
in a preprocessing phase. - B

2 The FILP System

Since FILP learns functional relations, it really only needs positive examples.
Negative examples are implicitly assumed to be al] the ones having the same
input values as the Ppositive examples but different output values. In the sequel,
by ezample we usvally mean positive ezample, while e and & represent generic
conjunctions of lterals.

It is wel] known that ip logic programming variables have not a fixed role:
A€y can act as input or output variables ac desired. For example, the predicale
append(X,Y,Z) can be used with mode append(in.in,out) to append two lists, or
with mode append(out,out,in) to split a list in two sublists.
On the other hand, if we want to learn functional logic programs (logic programs
whose input-output behavior is functional} we need to specify a (funclional)
mode for every variable of every literal used in the learning task, in order to
employ and learn only functional relations. For example append(in,in,out) would
be a legal way 1o use append, but append(out,out,in) would not, because it does
not represent a function. Op this ground, in our system we ask the user 10
provide a functional mode for all predicates, and then we use it for constraining
the allowed clauses as follgws:
1) Suppose Q and P have mode Q(in,out) and P(in.out); the literal Q(W,Z) can

7Y simple ay
3 [Sr 2; 5]

g the same=

. thesequel,—‘%‘
sent genericiage

© programs
unctional) :
n order_'to
sut) would
use it does
he user to =iy
nstraining "?

e

N

325

occur in an intermediate clause P(XY) = aq, Q(W,Z), v iff either (a) W=X (je.
the input is bound because it is Passed as input in the head of the clavse} or (b)
Woceursin a (ie., it is computed before Q is called) [10];
2) A clause is in an acceptable final form only if the output variables of its head
occur in the body, i.e., only if the output is not left unbound.

Moreover, all clauses are required to be function-free. This can be achieved
by means of a flattening procedure (7]. A basic version of FILP without queries
(BFILP) follows the algorithmic scheme of FQIL [4:

Basic FILP:

For 2ll inductive predicates p do

while examples(P) £ ¢ do
Generate one clayse “P(X) :a”
examples(P) « examples(P) ~ covered(a)

Generate one clause:
a — troe
while covered(a) % ¢ do
if consistent(a) then return(P(X) . o)
~ else choose a predicate Q and its arguments Args
such that the functionaljty constraini is satisfied
if no such Q is found then backerack
o — a A QArgs)

Where every predicate Q can be defined by the user (intensionally) by means of
logical rules or (extensionally) simply giving some examples of its input-output
behavior. In particular, clauses can be recursive and, in this case, Q = P, and
its truth value can only be determined by the available examples. .

Definition 1: We say that the clause P(X.Y} - a(X,Y) eztensionally covers
P(ab)iff o(a,Y) eztensionally computes Y = b, where extensional computation
is defined as follows:

* o = Q(a,Y) with functiona) mode Q(in,out). Then Q(a,Y) extensionally
computes Y = b iff Q(a,b) is derivable from the definition of Q or is 2
given example of Q. ,

¢ o= 4(X,T), Q(T.Y) with functional mode y(in.out) and Q(in,out). Then
7(a,T), Q(T)Y) extensionally computes Y = b iff v(a,T) exlensionally
corriputes T == & and Q(e,b) is derivable from the definition of Qorisa
given example of Q.

In the algorithm, an example P(a,b) belongs to covered(e) iff a(a,Y) extension-

_&lly computes Y=b, and consistent(a) is true iff. for no such example, a(a,Y)

extensionally computes Ye=c and ¢#b. The choice of the literal Q(Args) to be

added to the partial antecedent o of the clause being generated is guided by

heuristi¢ information, It might nevertheless be a wrong choice in some cases,
in the sense that it causes the procedure “Generate one clause” to fail by exit-
ing the while loop without returning any clause. This problem is remedied by
Mmaking the choice of QArgs) a backtracking point.

T

326

In the worst case, all possible literals will be tried every time, and the com-
plexity is exponential in the number of these literals. We view this problem as
intrinsic of induction and unavoidable - the only thing we can do is reduce the
number of possible clauses by means of strong constraints given a priori by the
user. An advantage of extensional methods is that clauses are generated ingde.
pendently of each other. As a consequence we must search the space of possible
clauses (exponential in the number of possible literals), not the space of possible
logic programs (= sets of possible clauses). This independence of the clauses
is made possible by the extensional interpretation of recursion and of the other
inductive relations: when a predicate Q corresponding to an inductive relation
occurs in a clause antecedent e, it is evaluated as true when the arguments match
one of the positive examples. The method leads to a fundamental property of
extensional methods (proofs are found in f1]).

Definition 2: A program P is complete w.r.t. the examples E iff (¥ Qo) €
E) P F Q(i,0). A program P is consistent w.r.t. the examples E iff { 3 Qli,0) €
E) P F Q(i,0") and oo o .

Lemma 1: Suppose BFILP successfully exits its main loop and cutputs a logic
program P, that always terminates (w.r.t. SLD-resolution) for the given exam-
ples. Let Q(X,Y) :- a(X,Y) be any clanse of P, then -

(vQ(2,b)EExamples(Q)) a{a,Y) ext. computes Y=b ~s P - Q(a,b).

Theorem 1: If BFILP terminates successfully, then it outputs a complete pro-
gram P,

The above proof is also valid for systems such as FOIL, and is a partial
justification of the extensional evaluation of the generated clauses. However,
extensionality forces us to include many examples, which would otherwise be
unnecessary. In fact other desirable properties, similar to the one given by The-
orem 1, are not true:)

1) For a complete and consistent logic program P, it may happen that P +:
Q(a,b), but none of its clauses extensionally cover Q(a,b). As a consequence
BFILP would be unable to generate P, and would not terminate successfully.
Consider this program P:

reverse(X,Y) - null(Y), null(X).
reverse{X.Y) - head(X H), tail(X,T), reverse(T.W), append(W,[H],Y).

Let reverse([a,b),[b,a]) be the only given example. This exzample follows from P
{P I reverse([a,b},[b,a))) but is not extensionally covered: the first clause does
not cover it because null([a,b]) is false, and the second clause does not cover it ex- "
tensionally because head([a,b),a) and tail([a.b],[b]) are true, but reverse([b).[b)}

is not in examples(reverse).

ive relation =g

-2nts matéé%—

property of:

uts a Iogic—-—;.;__‘:m_._
iven ex_a_n{:ﬁ

that P-H
nsequence
cessfully.

327

2) Let P be a program to compute a function Q and Q(i,o) € examples{Q}. Even
if. for all clauses Q - o in P, consistent(a) is true, it may still happen that P
 Q(i,0’) with o # o'. In other words BFILP might generate a program that
is not consistent even for the given examples. Consider the following program P:.

reverse(X,Y) - head(X H), fail(X,T1), head(Y.H), tail (Y, T2}, reverse(T1,T2).
fCt'frse(X\Y) - n'u”(X), Tlu”(Y). ’
!‘El‘ffse([sziz]'[ZvY'sX])‘

which can be learned by BFILP with this set of examples:

reverse([],0), reverse([1),{1}), reverse([3,2,1).[1,2,3]).

Then P t reverse{[3,2,1],{3,2,1]). Nevertheless, reverse([3,2,1],(3,2,1]) is not
extensionally covered by the first clause. In fact, reverse([2,1],(2,1]) is not given
as an example. In order to prevent BFILP from generating that inconsistent
program, in this case we must tell the system that reverse([2,1],[2,1]) is wrong.
This is done by adding a positive example, namely reverse([2,1],1,2]).

To overcome the above problems, FILP queries the user for some of the miss-
ing examples. Every legal clause (= permitted by the constraints) of the type
PIXY) - AXW), Q(X,W,Z), a” where Q is an inductive predicate with
mode Q{in,in,out), is processed with the following procedure:
for every example P(a,b) do _

“extensionally compute A2, W), obtaining a value W = ¢

ask the user for the value Z computed by Q(a,e,Z)

add this example to examples(Q)

This procedure must be repeated for every clause, again and again, until no more
examples are added for the inductive predicates.- Both for making the above
procedure terminate and for guaranieeing the termination of learned programs,
we require that any recursive cal]l within a'generated clause matches the following
pattern: “P{X1, .., Xiy ooy Xn) = o, QALY 00, P(X, 0 Y, o X)), 0 T
where Q(X,Y) is known to define a well ordering between Y and X (Y <X).
A similar technique is found in [4], but does not guarantee termination on new
examples. Tt is possible to show that, if every recursive clause in P satisfies the
above constraint, then the example completion procedure terminates.

As an instance, suppose that we want to learn reversé. Consider the clause
reverse{XY) - tafl(X,T), reverse(T,W). It satisfies the consiraint on recursive
calls because, when tail{X,T) is true, then T'is a shorter list than X and thisis a
well order relation. Consider the example reverse(fa,b,c].fc,b,al). By using the
clause, the user is queried for the value of reverse([b,c],¥), and this is added
to examples{reverse). This new example causes the repetition of the procedure,
and the user is queried for reverse([c],W), and at the next step for reverse([],\V).

Lemma 2: Suppose the examples given to an extensional learning system are
completed with the above completion procedure. Suppose also that some pro-

328

gram P belongs to the hypothesis space and Q(a,b)Eexamples(Q) after the com-
pletion.

If P F Q(a,b) then the first clause in P resolved against Q(a,b) extensionally
-covers Qfa,b).

Theorem 2: If a complete and consistent program P exists, then FILP wil]
terminate suceessfully.

Theorem 3: If FILP terminates successfully, then it outputs a consistent pro-
gram P. : .

By virtue of Theorem 1, this program will also be complete,

References

[1] F. Bel:ga.dano and D. Guoétti. Sufficient and Correct Induction of Fune.
tional Logic Programs. Tech. Rep. §2.9.2, C5 Dept., Univ. of Torino, 1992.

{2} J. U. Kietz and S. Wrobel. Controlling the Complexity of Learning in
Logic through Syntactic and Task-Oriented Models. In Proc, Workshop on
Induetive Logic Programming, pages 107-126, 1991,

[3] N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning nonrecursive defini-
tions of relations with Jinus. In Y. Kodratoff, editor, Proc. of the Mackine
Learning-EWSL 91, pages 265-281, Porto, Portugal, 1991. Springer-Verlag.
R. Quinlan. Knowledge Acquisition from Structured Data. JEEE Ezper,
6(6):32-37, 1991.) -

L. De Raedt and M. Bruynooghe. CLINT: a Multistrategy Interactive

Concept-Learner and Theory Revision System. In Proc. Workshep on Mul-
listrategy Learning, pages 175-190, 1891,

L. De Raedt and Maurice Bruynooghe.. Belief - Updating from Integrity
Constraints and Queries. Artificial Inielligence, 53:291-307, 1992.

C. Rouveirol. Flatiening: a Representation Change for Generalization. Ma-
chine Learning, 1993. Special issue on Evaluating and Changing Represen-
tation, K. Morik, F. Bergadano and W. Buntine (Eds.).

E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

1. Stahl, B. Tzusend, and R. Wirth. General-to-specific Jearning of horn
clauses from positive examples. In P. Dewilde and J. Vanderwalle, editors,
Proc. of the CompEuro, 1992, pages 436-441, The Hague, Netherlands,
1092. 1IEEE Comp. Soc. Press,

R. Wirth and P. O’Rorke. Censtraints on predicate invention. In L. A.

Birnbaum and G. C. Collins, editors, Proc. of the &ih Int. Workshop o=
ML, pages 457-461, Evanston, llinois, i991. Morgan Kaufmann.

