UNIVERSITA
DEGLI STUDI
DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Abduction in Machine Learning

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/122311 since
Publisher:

Kluwer Academic Publishers

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

15 December 2021

196 PETER A. FLACH

[Tarski, 1936] A. Tarski. Uber den Begriff der logischen Folgering, Actes du Congrés Int. de Philoso-
phie Scientifigue 7:1-11, 1936. Translated into English as On the concept of logical consequence.
In Logic, Semantics, Metamathematics, A. Tarski, pp. 409-420, Clarendon Press, Oxford, 1956.

[Zadrozny, 1991] W. Zadrozny. On rules of abduction. IBM Rescarch Report, August 1991.

F. BERGADANO, V. CUTELLO AND D. GUNETTI

ABDUCTION IN MACHINE LEARNING

1 INTRODUCTION

Both inductive learning and abductive reasoning start from specific facts or obser-
vations and produce some explanation of these facts. Both may be described as
forms of defeasible reasoning from effects to causes. There are some differences,
but they are minor and due to different understandings of the notions of observation
and explanation (see for instance [Bergadano and Besnark, 1994]). We build on
the general notions developed in the introductory Chapter, taking what was labeled
there as the syllogistic view, in the sense that we isolate the differences between
abduction and induction based on syntactic considerations.

Briefly, induction sees examples as instances of a concept and explanations as
general concept descriptions, whereas abduction sees examples as specific obser-
vations and explanations as other specific facts that are true, and cause the observa-
tions to occur. As a typical case for induction, an example could be the description
of a specific bird, and a concept description could be a rule such as

bird(X)} « smal(X) A part_of(X,Y) A wing(Y")

with the obvious intended meaning. For abduction, an observation could be the
fact that some particular bird does not fly, and an explanation could be the fact that
that particular bird has a broken wing.

.. In both cases, the relevant logical relation is that the explanation, together with
the domain knowledge, implies the observation. This aspect is developed in depth
in the introductory Chapter.

The Machine Learning literature has largely ignored such similarities, or has
produced studies that emphasize the differences that are present [Console and
Saitta, 1993; Flach, 1992]. On the other hand, abduction has been used as an
effective technique within the underlying inductive framework of Machine Learn-
ing methods. Two different approaches, which we think are quite representative of
the Machine Learning view of abductive reasoning, can be identified.

e First, abduction has been used to guide search in top-down relational learn-
ing. The idea has evolved from explanation-based Jearning methods, re-
stricting the inductive hypotheses to be logical consequences of a given do-
main theory. This is then generalized by allowing inductive hypotheses to be
obtained from the domain theory by either deductive or abductive reasoning.

Second, abduction has been used to generate missing examples in relational

learning. In fact, it is intrinsic to the nature of induction that the input data

is incomplete: some examples are given, but not all. If some particular
197

D M. Gabbay and R. Kruse (eds.), Abductive Reasoning and Learning, 197-229.
(© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

F. BERGADANO, V. CUTELLO AND D. GUNETTI

examples are missing, existing relational learning methods may however
encounter serious problems, and abductive generation of these missing ex-
amples may be an effective solution.

Top-down relational learning algorithms suffer from the difficulty of search-
ing a space of possible inductive hypotheses that is usually very large. In the
first relational learning systems, and also in more recent approaches such as Foil
[Quinlan, 19901, the problem was addressed with heuristics of a statistical na-
ture. Top-down systems start from very general concept descriptions, and then
try to obtain consistent rules with a number of specialization steps. Typically,
heuristics would favor specializations that exclude negative examples while still
covering a large number of positive examples. Such heuristics may be mislead-
ing, and may also be insufficient for an adequate pruning of the hypothesis space.
The Explanation-Based Learning (EBL) paradigm restricts the concept descrip-
tions that may be possibly produced to the logical consequences of a so-called
domain theory, that is given as input to the learning system [Mitchell et al., 1986;
~ Bergadano and Giordana, . 1988; Pazzani and Kibler, 1992]. Abduction has been
used in this framework as follows: given the domain theory, the concept descrip-
tions that may be obtained via abductive reasoning are considered as possibly true,
and should be evaluated inductively on the basis of the available examples. Stud-
ies that follow this scheme may be found in [Bergadano ez al., 1989; Cohen, 1992;
Cohen, 1994].

A well known problem in Machine Learning is to provide a learning method
with an “adequate” set of examples of the target concept. Here “adequate” in-
formally means that the training set should contain all those examples required
to successfully complete the learning task, and no more. Obviously, this is a
very hard condition to achieve, since usually it is not possible to know in ad-
vance exactly which examples are (and which are not) significant for learning a
concept. As a consequence, the learning task may turn out to be too slow (if
too many examples are given) and/or may fail (if the examples are not signif-
icant). This problem is particularly serious for an important class of learning
methods: Relational Learning Algorithms based on an extensional interpretation
of sub-predicates and recursion [Quinlan, 1990; Bergadano and Giordana, 1988;
Pazzani and Kibler, 1992). In these methods, the learning procedure can not only
fail or be too slow, but also produce wrong results: the description of the tar-
get concept synthesized by the system may entail some of the negative examples
given to the system. ’

It is our objective to show how abduction can be used to fix the above problem.
An abductive procedure is used to query the user for any example that may be
missing, depending on the hypothesis space that has been defined and the given
examples. A similar technique has been uscd before, for example in [DeRaedt and
Bruynooghe, 1991; Shapiro, 1983], to query the user for missing values allowing a
single example to be covered. In our case, abduction will be systematically applied
over the whole hypothesis space. As a result, the learning systems turns out to be

ABDUCTION IN MACHINE LEARNING 199

correct and sufficient, in the sense that the learned description does not entail any
of the negative examples and such a description can always be found if it exists.
We also show how this technique can be adapted to the problem of program testing:
a combination of induction and abduction can be used to generate an “adequate”
test set for a program under testing.

2 ABDUCTION AND INDUCTION

Abductive and Inductive Reasoning in Artificial Intelligence are considered to be
distinct and have generated separate fields of study. After a simple analysis, one
finds in effect distinct inference schemes.

P(a)
Yz P(z)

P(z) — Q(z) Q(a)
P(a)

As stated in the introductory Chapter, a deeper analysis, however, suggests that
the difference between the two schemes is not always easy to state. For instance,
using the tautology

e For induction:

e For abduction:

& = (VzP(z)) — P(a)

one gets:

il P(a)
VzP(z)

as an abductive inference step, but it actually has the same premises and conclu-
sions of the inductive inference scheme.

It would then seem that the abductive scheme includes simple forms of induc-
tive reasoning. In [Bergadano and Besnark, 1994] the authors start from the above
considerations and then isolate some minor differences of abductive and inductive
reasoning within the same framework, that is determined by the above inference
rules. In the same paper, a formalization based on non-monotonic logic is devel-
oped. Here, we simply note that induction and abduction are indeed very similar
inference schemes. A deeper analysis is found in the introductory Chapter of the
present Book, where general similarities are noted, and syntactic, inferential and
semantic differences are considered.

- However, the Machine Learning literature has not used abduction and induction
as synonyms. The main keyword in learning is induction, and abductive reasoning
is rather used as an additional technigue for solving particular problems. We dis-
cuss in the following sections two of such uses of abduction in Machine Learning.
In particular in the next section we survey its use as a form of bias for guiding the
search in a top-down specialization. Then, we show how abductive reasoning and
queries can solve some relevant problems in relational top-down learning, of both
binary and fuzzy predicates.

F. BERGADANGO, V. CUTELLO AND D. GUNETTI

3 GUIDING SEARCH WITH ABDUCTION

One use of abduction in Machine Learning is related to the problem of guiding
search in a top-down specialization. As the number of concept descriptions that
may possibly be generated is, in general, very large, and since even the number of
descriptions that are consistent with the examples can be large, learning systems
need extra-evidential criteria to prune the search space. Deductive inference with
a domain theory has been used to this purpose in ML-SMART [Bergadano and
Giordana, 1988] and FOCL [Pazzani and Kibler, 1992]. Similarly, a domain theory
could be used abductively within the same framework as in [Bergadano er al.,
1989] and in [Cohen, 1992; Cohen, 1994]. »

Before we can suitably describe the details of abductive inference to prune the
space of possible concept descriptions, we need to define a type of analytic learn-
ing called Explanation-based Learning (EBL), which has received much attention
during the late eighties. A survey of EBL is found in [Ellman, 1989].
-.:EBL.needs-as-input-one or. more positive examples,- as: well-as-a:-so-called do-
main theory, which includes relevant prior knowledge. A resolution proof of the
positive examples is produced, and the leaves of the proof tree are generalized and
taken as the antecedent of a new rule for the target concept. Suppose, for instance,
that the domain theory is the following

C(X) :— B(X),AX,Y).
B(X) :— R(X)Y).
B(b).

Ale,a).

R{c,d).

and a positive example for C is c. It is then easy to see that C(c) can be obtained
deductively from the domain theory, where the leaves in the proof tree are R(c, d)
and A(c, a). This produces the learned description for C:

C(X) :— R(X,Y),AX,Z)

The learned description is actually a logical consequence of the given domain
theory, and could be obtained from the domain theory even without looking at the
examples, by resolving the first two clauses in the domain theory. The role of the
example is that of suggesting some consequences of the domain theory rather than
others: the ones that are useful to deduce the positive example are chosen.

One natural question arises: what is the purpose of this form of learning, if its
output is just a logical consequence of something that was already known? The
answer is that, although nothing really new is learned, the new form of knowledge
may be more operational, that is to say either easier to use or leading to more
efficient computations. In the above case, the positive example ¢, that is to say
C(c) = true may be deduced more efficiently from the learned clause than by

ABDUCTION IN MACHINE LEARNING 201

the original domain theory, as one resolution step is saved. EBL may then be
seen as a form of pre-compilation, or partial evaluation. The effectiveness of this
form of learning speed-up depends on whether the given positive examples are
representative of future cases: if this is not true, the learned clause may turn out to
be useless, as the original domain theory would be necessary every time. Learned
clauses that are useless in this sense will only take away some memory space
without giving any computational advantage.

For this reason, systems soon started using EBL. with many positive examples,
so that only clauses that frequently proved to be useful would be kept. Other sys-
tems (e.g., [Bergadano and Giordana, 1988]) also introduced the possibility of us-
ing negative examples, in connection with the acceptance of a domain theory that
might be partly incorrect. In this case, even clauses that follow deductively from
the domain theory may be incorrect, and may cover negative examples. Clauses
covering too many negative examples may then be discarded. When used in this
way, the domain theory basically defines a hypothesis space. The concept descrip-
tions that are logical consequences of the domain theory are descriptions that may
potentially be learned. The description which is actually produced would also be
required to perform well with respect to the data, i.e. cover many positive exam-
ples and few negative examples. EBL may then be considered as a way to guide
search in top-down specialization: not all specializations are possible, but only the
ones that produce deductive consequences of the domain theory. Legal specializa-
tions are obtained by resolving the clause to be specialized against some clause
in the domain theory. Other specializations are not considered. In the previous
example, the clause

C(X) :— R(X,Y),AX, 2)
would be a legal specialization of the clause
C(X) :— B(X)AX)Y).

while, e.g., the clause
C(X) :— B(X),AX,Y),B(Y)

would not be considered. If the space of possible clauses is too large, a domain
theory can be used effectively to prune such a space and suggest preferred special-
ization steps. ML-SMART [Bergadano and Giordana, 1988], and FOCL [Pazzani
-and Kibler, 1992] adopt similar goals and techniques.

Abduction comes into place if the consequences of the domain theory are not
just taken to be deductive consequences, but are also obtained by means of an
abductive theorem prover. For instance, if the above domain theory would contain
the clause

D(X) :— A(X,Y)
then, an abductive/deductive consequence of the theory would be the clause
C(X) :— R(X,Y),D(X)

202 F.BERGADANO, V. CUTELLO AND D. GUNETTI

which would also be a legal specialization of the clause
cx) :- B(X),A(X,Y).

Such an abductive use of a domai
with

form of inductive bias, a criterion for preferring an inductive hypothesis over
another, or a rule for eliminating some description from the space of possible
i s. As such a criterion is heuristic in nature, one would

sequence of a given domain theory” is. rcp]acede:by;»ffaccept:~generalizations that
may be obtained from the domain theory via abductive reasoning”. In both cases
the obtained generalizations must in primis be consistent and complete with re-
spect to the given examples, or satisfy such requirement 70 4 degree. The no-
tion of abductive EBI, in a similar framework is introduced in [Cohen, 1992;
Cohen, 1994].

4 RELATIONAL LEARNING ALGORITHMS BASED ON
EXTENSIONALITY

Relational Learning Algorithms Iearn recursive relational descriptions from posi-
tive and negative examples, given as ground literals, Usually, a subset of the first-
order predicate calculus, Horn clauses, i

e.g. [Bimbaum and Collins, 1991; Rouy ; ;

Gunetti, 1993; Muggleton and Feng, 1990)). Learning definite clauses for multi-
ple predicates is difficult, and systems tend to be slow. Many systems, such as Foil
[Quinlan, 1990,

Focl [Pazzani and Kibler, 1992] and Golem [Muggleton and Feng, 1990] handle
this problem by evaluating clauses extensionally. In this way candidate clauses can
be generated directly from the examples one at a time and independently of one
another.

Let us now introduce the concept of extensionally defined predicate, which,
intuitively, wil) play the role of the basis case in the recursive definition of more
complex predicates.

DEFINITION 1. A predicate P(X) is said to be extensionally defined if it is
defined over a given finite collection of elements qy,. ., »@n, that is to say, if its
characteristic set is given extensionally.

203
ABDUCTION IN MACHINE LEARNING

. e 13 7 “f -
Examples of extensionally defined predicates are given by “mother” and “fa
ther” defined by the following table:

Parenthood Table

mother
Y

. . 0
Some other predicates can be intensionally defined over a collection of exte

sionally defined predicates by means of simple logical rules.
An example is given by the predicate parent.

parent(X,Y) :— mother(X,Y)
parent(X,Y) :— father(X,Y)
In this case, the extensional definition of the predicates mother and father provides

as well an extensional definition of the predlc'ate parent.)
We formalize now the meaning of “extensional evaluation”.

et i s where
be a conjunction of predicates w
ION 2. Let a(X1, X3, ..., Xa) ; cessarily disti
DEFINIT{ least one occurrence of each of the variables (not nccpssarlly dlstxnct)
t)];cre) aX We say that a(ay, @z, . .-, an) is extensionally true if and only i
1y---34in.

in case (X Xn) = Q(X4,...,Xy), for some extensionally defined
e 1N Ca lyr=vyrn) = »)

predicate @, then Q{ay, ..., a,) is a given positive example of Q);

e in case

[87 =_“~"y(Xi],...,Xih,Tl,...,T[),Q(Tl,...,E,Xj],...,Xjk),

for some conjunction v, predicate 7, [> 0 and

{Xiu"'yXih’Xjn'H:Xjk} = {Xla”-an};

then there mustexistey, . . . , e; such that both the conjunctiony(a;,, . . - , @i,

ionally true.
e1,...,e) and Q(e1, ..., e, aj,,. .., a5) must be extensionally

We say that the conjunct a(Xi,...,X,) extensionally covers a pfositi;e [r]es;i)f:
, i on
negative] example of P, P(as,...,a,) [resp. -P(a1,...,a,)] if an y

i sionally true.
afay,...,a,) is extensio . N .
The next subsection contains a simplified version of Foil, in order to illus

the extensional approach and its drawbacks.

204 F. BERGADANO, V. CUTELLO AND D. GUNETTI

4.1 The Extensional Approach: Simplified Foil

Let P be the target concept and pos.examples(P) and neg_examples(P) the given
positive and negative examples of P (in the following, o and ~ represent generic
conjunction of literals).

Algorithm 1 (Simplified Foil).
Let E* (P) = positive examples of P;
Let E~ { P) = negative examples of P;
Let IT be the empty program;
while E¥(P) # 0 do

Generate one clause P ¢ — « and add it to IT;
Let E¥ (@) be the positive examples of P covered by a;
EX(P) — E*(P)\ EM (@)

‘end while ~~ -~

Output 1T

Procedure Generate one clause
a - true;
let E~ (ex), B¥ (@) be respectively the negative and positive examples of P covered by ¢;
while E* () # 0 do
if E7 (o) = @ thenreturn(P @ — o)

else choose a predicate (@ and its arguments X

o= (J:I\Q(X')

end while

end Algorithm.

Every predicate (? can be defined by the user either intensionally by or exten-
sionally. In particular, clauses can be recursive and, in this case, @ = P, and its
truth value can only be determined by the available examples.

The choice of the literal Q(X) to be added to the partial antecedent @ of the
clause being generated is guided by heuristic information. It might nevertheless be
a wrong choice in some cases, in the sense that it may cause the procedure “Gener-
ate one clause” to fail by exiting the while loop without returning any clause. This
problem can be fixed by making the choice of Q(X) a backtracking point.

Suppose, for instance, that Foil is given the following positive and negative
examples of the relation ancestor, which is the one to be learned:

+ <rg><bg><bd><dg>
<rd><np>;

-<d,d>,<g,p>,< d,p>.

ABDUCTION IN MACHINE LEARNING 205

Let us suppose as well that we have the intensional definition for the relation par-
ent given above along with the Parenthood Table which extensionally defines the
predicates mother and father. Finally, we know that the logic program for ancestor
depends on parent and on itself (i.e. it may be recursive). As there are at most 3
variables to be used, these are the possible literals:

parent(X,Y’), parent(Y, X), parent(X, W),

parent(W, X), parent(Y, W), parent(W, Y

ancestor(X, W), ancestor(W, X), ancestor(Y, W), ancestor(W, Y') L

The learning algorithm starts to generate the first clause - the antecedent « is ini-
tially equal to “true”. We need to choose the first literal Q()Z) to be added to c.
As we have left the heuristics unspecified, we will choose it so as to make the
discussion short.

Let a = parent(W,Y); then all positive examples and the second and third
negative examples are covered, so more literals need to be added.

Let o = parent(W,Y’) A parent(W, X); in this case no positive examples are
covered and the negative example < d, p > is covered. Clause generation fails and
we backtrack to the last literal choice.

Let o = parent(W, Y') A ancestor(X, W); no negative example is covered, and
the first 3 positive examples are extensionally covered. A clause is generated and
the covered positive examples are deleted.

We proceed to the generation of another clause; ¢ is empty again. If we choose
the first literal as parent(X,Y’), the remaining positive examples are covered and
the final solution is obtained:

ancestor(X,Y) :— parent(W,Y), ancestor(X, W).
ancestor(X,Y) :— parent(X,Y).

Notice that the obtained definition of the relation “ancestor” is complete and con-
sistent when completeness and consistency are characterized as follows.

DEFINITION 3. A definition IT of P is complete with respect to the positive
examples E* of P if and only if

(Ve € ENILE Pe).

A definition I1 of P is consistent with respect to the negative examples E~ if and
only if
(Ve € E7)II P(e).

lancestor(X, Y') and ancestor(Y, X) are not listed because they may produce looping recursions

iiiadiitiint it

206 F. BERGADANO, V. CUTELLO AND D. GUNETTI

4.2 Problems of extensionality

The independence of the clauses in the generation of the definition of “ancestor”
is given by the extensional interpretation of recursion and sub-predicates: when
a predicate () occurs in a clause antecedent o, it is evaluated as true when the
arguments match one of the positive examples. For instance, the clause

ancestor(X,Y} : — parent(W,Y), ancestor(X, W).

was found to extensionally cover the positive example < b,g > of ancestor be-
cause parent(d, g) is true (see Parenthood Table) and < b,d > is also a positive
example of ancestor. The previously generated logical definitions of @ are not
used. The method is (partially) justified by the following result (see {Bergadano
and Gunetti, 1993])

THEOREM 4. Suppose Foil successfully exits its main loop and outputs a logic
program 11, that always terminates for the given examples.

Let Q(X) : — a be a generated clause of 11, then, for any e positive example
of Q, if o extensionally covers e then I1 - Q{e).

However, extensionality forces us to include many examples, which would oth-
erwise be unnecessary. In fact other desirable properties, similar to the one given
by Theorem 4, are not true, and two fundamental problems arise:

PROBLEM 5. For a logic program II, it may happen that IT - Q(e), but none
of its clauses extensionally cover e. As a consequence Foil would be unable to
generate I

Consider for instance the program II:

ancestor(X,Y) : - parent(W,Y), ancestor(X, W).
ancestor(X,Y) :— parent(X,Y).

Let < 7,g > be the only positive example of ancestor. As it is easy to see, by
using resolution on II and the Parenthood Table this example logically follows
from II (II ancestor(r, g)). However, is not extensionally covered. Indeed, by
inspecting the Parenthood Table, we can see that the second clause does not cover
it because parent(r, g) is false and the first clause does not cover it extensionally
because parent(d, g) is true, but < r,d > is not given as a positive example of
ancestor.

PROBLEM 6. Foil may generate definitions which are not consistent. In details,
even if no clause of a definition IT extensionally covers a negative example e of Q,
it may still happen that IT - Q(e).

Consider for instance the following definition IT for “ancestor’

ABDUCTION IN MACHINE LEARNING

ancestor(X,Y) :— parent(W, X), ancestor(W,Y’)
ancestor(X,Y) :— parent(X,Y).

It follows that IT | ancestor(g, p). Nevertheless, < g,p > is not extensionally
covered by the first clause: parent(d, g) is true, but < d,p > is not a positive

example of ancestor.
Since d is not an ancestor of p, it could not possibly be added as a positive

example, and < g,p > would not be extensionally covered even if all positive

examples were given.
The solution for this problem differs from the one of problem 1: in this case IT

will be ruled out by adding a negative example, namely < d,p >.

5 PROBLEMS OF INTENSIONAL METHODS

Giving up the extensional interpretation of predicates while keeping the basic com-
putational structure of Foil produces unsolvable problems. In fact, the truth values
of the missing examples could be obtained by means of the partial program gener-
ated at a given moment. But if the inductive predicates occurring in a clause being
generated are evaluated by means of the clauses that were learned previously, then
the order in which the clauses are learned becomes a major issue.

Suppose, for instance, that we are given as family tree the following subset of

the Parenthood Table:
parent(i, T)’ parent("': d)’ parent(d, g), Pafem(fy g)
as well as the following positive and negative examples of ancestor:

+ <i,d>,<i,r> <10 >
- <i,f>.

Suppose also that the following clauses are generated, with the given order:
(1) ancestor(X,Y) : — parent(X, W), parent(W,Y).
(2) ancestor(X,Y) : — parent(Y, W), ancestor(X, W).
(3) ancestor(X,Y) : — parent(X, W), ancestor(W,Y).

Clause (1) does not use any inductive predicate and immediately covers the
positive tuple < i,d >. Clause (2) contains ancestor(X, W), and this literal is
‘evaluated with the clauses available at this stage, ie. (1) and (2). With this kind
of intensional interpretation, the only example covered is < 2,7 >, a positive
example. When clause (3) is generated, it will cover the positive example < 1,9 >.

208 F. BERGADANO, V. CUTELLO AND D. GUNETTI

But clause (2) will now cover the negative example < z, f >, since parent(f, g) is
true, and ancestor(z, g) may now be deduced by using the third clause.

Rules that seem consistent and useful at some stage may later be found to cover
negative examples. We must then backtrack to the generation of the clause causing
the inconsistency, e.g. clause (3), and to the generation of the clause that was
later found to be inconsistent, e.g. clause (2). In general, we must give up our
former assumption that clauses may be learned one at a time and independently.
Alternatively, we may number the predicates occurring in the learned clauses every
time an inconsistency is detected. For instance, the former program would be
rewritten as

ancestor1{(X,Y) parent(X, W), parent{ W, Y).
ancestor2(X,Y) parent(Y, W), ancestor2(X, W).
ancestor3(X,Y) parent(X, W), ancestor3(W,Y').
~-ancestor(X,Y) - — -ancestor2(X, YY)
ancestor2(X,Y) ancestorl(X,Y).
ancestor(X,Y) ancestor3(X,Y).

ancestor3(X,Y) ancestor1(X,Y).

Nevertheless, this technique does not totally avoid the need for backtracking,
and explodes the number of possible clanses by multiplying the number of induc-
tive predicates by the number of generated indexes. A solution based on abduction
is presented in the next section, so that the advantages of extensionality are pre-
served, i.e. so that previously generated clauses do not need to be reconsidered.

6 COMPLETING EXAMPLES VIA ABDUCTION BEFORE LEARNING

There is no reason why particular positive (problem 1) or negative (problem 2)
examples should have to be present. After all, the whole motivation of induction
is that some information is missing. The important points are that

(1) if a definition II consistent with the given examples exists, then it must be
found; and

(2) the induced definition II must not cover any negative examples.

The extensional approach guarantees neither, unless some specially determined
positive and negative examples are given.

Here we show how abduction can be used to query the user for the missing
examples, in order to preserve the computational advantages of extensional ap-
proaches, while guaranteeing that a correct solution be found.

ABDUCTION IN MACHINE LEARNING 209

Suppose that a learning system has to cover the positive example P(a,b) and
that the following candidate clause has been generated:

P(X,Y) : — X,Y),Q(Y. Z).

Moreover, we know that a:(a, b) is true (for example because every literal in o is
extensionally evaluated to true). Then, that clause will extensionally cover P(a,b)
only if there exists some value ¢ such that Q(b, ¢} is a positive example (known to
the system) of). Suppose that all such examples are missing. From the classical
abductive inference rule:

a«—f

B

P(a,b) : — 3Za(a,b),Q(b, Z). P(a,b)
AZQ(b, Z)

and then the user can be queried for a value of Z such that Q(b, Z) is true. The
new example of is added to the set of positive examples and P(a,b) can now
be covered. This is a controlled form of abduction, in the sense that the result of
abductive inference is not asserted as true, but only proposed as a possible truth,
which is then queried to the user. It is clear that if there is no value Z such that
Q(b, Z) is true then the clause must be discarded.

The above basic idea of generating abductive queries can be applied in a system-
atic way. That is, we may build chains of abductive queries, or chains of controlled
abductive inference steps. A backward reasoning from an initial example that we
know to be true (and that must be extensionally covered), up to what must be true
in order for that initial example to be covered. The chain of abductive steps can be
depicted as in Figure 1.

That is, a chain is produced because the queried examples are treated in the
same way as the starting one. The added examples are used to generate other
abductive queries again and again until no more examples can be added, and the
backward reasoning can stop. We show this on a very simple example.

Let the following hypothesis space HS be given, containing only the correct
clauses for the append concept (or program):

{cl =app(X,Y.Z):- head(H,H),tail(X,T),app(T,Y,W),cons(H,W.Z).
¢2 = app(X,Y.Z) :- null(X),equal(Y,Z). }

Where all the predicates (except for app) are intensionally defined as usual.
Let the only given positive example be: e} = “app([a,bl,[cl.{a,b,c])”. A correct
program for append cannot be extensionally learned from HS using only this ex-
ample. However, let us apply the abductive queries as described above. Example
e; is matched against the head of c1 producing the query “app([b],[c],W)?”. That

F. BERGADANGO, V. CUTELLO AND D. GUNETTI

o« o

Figure 1. A chain of abductive steps

is, the user is queried for a value of the variable W such that app({bl,[c],W) is a
positive example of append. Since the answer is “W = [b,c]”, the new example
ez = “app(Ibl,[c],[b.c])” is added to the set of known examples of append and
treated in the same way. It is matched against c1 producing the new example e; =
“app([1.[c],[c])”. Now, e3 is handled in the same way, but it cannot be extension-
ally covered by cl, as the evaluation of “head([],H)” fails. So, it is matched with
the head of clause c2 that is found to cover the example. Since no more examples
are added and all the examples are extensionally covered by some clause in HS,
the abductive reasoning can stop and so also the learning task. Clauses ¢l and c2
have been learned. '

In fact, the effect of building a chain of controlled abductive steps is that of
producing a derivation tree in reverse order for the starting example e. That is, from
e to the leaves of the tree, that will be clauses from the background knowledge,
known (or queried) examples, and clauses from the hypothesis space (i.e. learned
clauses).

If the same is done for each positive example given initially, and recursively for
each queried positive example, then the first problem of extensionality is solved.
If there exists a derivation tree for a positive example in the set {hypothesis space
+ background knowledge + known examples} such a tree is found, and together
with it also the clauses necessary to the derivation. The found clauses belonging
to the hypothesis space will be part of the description of the target concept.

ABDUCTION IN MACHINE LEARNING 211

However, the second problem of extensionality still remains. How can we avoid
a (known) negative example to be derived by a learned description? In fact, the
same strategy can be used, but in a complementary way. For each negative ex-
ample, we test the existence of a derivation tree for it. If such a tree is found,
clauses from the hypothesis space involved in the derivation will not be part of any
description of the target concept. Let us show this with an example.

Consider the following (wrong) program P for reverse:

¢l =reverse(X,Y) :- head(X,H), tail(X,T1), head(Y,H), tail(Y,T2), reverse(T1,T2).
¢2 = reverse(X,Y) :- null(X), null(Y).
¢3 = reverse([X,Y,ZLIZ, Y, X]).

that can be learned by using this set of examples:

e1 =reverse+([1,{1), ez = reverse+([11,{1]), e3 = reverse+([3,2,1],[1,2,3]).
eq = reverse-([3,2,11,13,2,1D).

Then P F reverse([3,2,11,[3.2,1]), however, P is extensionally consistent with the
provided examples. We can avoid learning P by means of a chain of abductive
queries as follows: ey is matched against the head of cl generating the query
“reverse([2,11,[2,1D?” that is classified as a negative example (let call it es) by
the user. Then, es is matched against c1 and the clause is found to extensionally
cover this example, since “reverse([1},[1])” is a known positive example. As a
consequence, c1 extensionally covers a negative example (a queried one, indeed)
and is rejected.

On the ground of the above examples, we have devised the following strategy.
Every legal, i.e. permitted by the constraints of the learning scheme, clause of type

P(X,Y) il a(X,Y,Zl,...,Zk).

is processed with the following Abductive Completion Procedure:

ACP

for every example P{a, b) of P do

(1) ask the user for a set of values ci,...,cx for Zi,..., Z, such that
afa, b, c1, ..., cr) istre;

(2) forevery Q{-) occurring in ccasa conjunct, add the obtained cxample to the collection
of its positive examples.

end Algorithm.

Notice that adding one example may cause the request of others. As a conse-
quence, the procedure must be repeated for every clause, over and over, until no

more examples are added.
Consider, for instance, the example about the ancestor relation given above, and

the following two clauses:

F. BERGADANO, V. CUTELLO AND D. GUNETTI

relative(X,Y) :— ancestor(X,Y).
ancestor(X,Y) :— parent(W,Y), ancestor(X, W).

where
< b, g > is the only positive example of “relative”,
< d,d > is the only negative example of “relative”, and
< f, f > is the only negative example of “ancestor”.

By using the first clause, the user is queried for ancestor(b, g), and this is added
to the positive examples of “ancestor”. Using the second clause, the user is asked
for a value of W such that parent(W, g) and ancestor(b, W) are both true. By
inspecting the Parenthood Table we have the answer W = d.
The second clause can be used again with X = band Y = d, and we obtain the
“completed set of positive examples for “ancestor™ S

+ <bg>,<bd>

Not all possible examples have been added, only the ones that were useful for
those two clauses, given the initial examples. If this is done for all the clauses that
are possible a priori, i.e. that satisfy the given constraints, then problems 1 and 2
no longer hold:

THEOREM 7. Suppose the examples given to an extensional learning system are
completed with the ACP. If the learning system successfully exits its main loop and
outputs a definition 11 (for a concept P,) then 11 - P(a, b) implies that P(a,b) is
extensionally covered by some clause in I1.

Proof. Suppose by contradiction that (c1) I + P(a,b) but (c2) P(a,b) is not
extensionally covered.

Let P(X,Y) : — a(X,Y,Z1,..., Z;) be the clause resolved against P(a, b)
in a refutation of : —P(a, b). Suppose that P + 3(g,7) Ay and P F R(r), but
no such r is a positive example of R. There must be one literal R(Y'} having this
property, because of assumptions (c1) and (c2). Since the tuples of R must have
been completed with the given procedure, the user has been queried for R(r),
and this must have been inserted as a negative example. Therefore, it cannot be
extensionally covered. We could now repeat the same argument for . This would
produce a non-terminating chain of resolution steps, and a finished proof of Q(g)
would never be obtained, contradicting the hypothesis that P - Q(g). |

As an immediate corollary of the above theorem we have

COROLLARY 8. If the examples given to an extensional learning system are
completed with the ACP, and the learning system successfully exits its main loop
and outputs a definition P, then P is consistent.

ABDUCTION IN MACHINE LEARNING 213

It should be noted that this abductive completion is done as a preprocessing
step. Then, it guarantees that a solution consistent with the examples is found if
it exists. Moreover, it does not require reconsideration of previously generated
clauses, as do systems (e.g. MIS [Shapiro, 1983]) that ask for new examples only
when they are needed and during the learning process.

7 DEALING WITH FUZZY RELATIONS

It is quite interesting to notice that the relational learning framework described in
the previous sections can, to some extent, be extended to the case where fuzzy
relations are present. We recall that a fuzzy relation or a fuzzy predicate P(-)
no longer has a binary value true or false, but can take on any value, denoted
with 7(P(-)) from the interval [0, 1]. Historically, the semantic of vague (or fuzzy)
predicates was introduced in [Zadeh, 1965]. Since it is way beyond our scope to
provide here a complete formalization of fuzzy logic, for complete details refer
to now classical texts such as [Dubois and Prade, 1980; Klir and Folger, 1988;
Zimmerman, 1984] and to {Léa Sombé, 1990] for an interesting and in depth dis-
cussion of formalism for uncertain reasoning, including fuzzy logic.

In order to be able to deal with fuzzy predicates or relations we need to appro-
priately extend all the definitions introduced in the previous sections.

7.1 Fuzzy operators

1n order to define a form of fuzzy abduction useful for our discussions we need to
recall a few definitions.

o The standard logical operators can be extended in many ways, one possibil-
ity is the following

Fuzzy Logic Operators

-D PvQ PAQ P—-Q
1 — 7(P) max(r(P),7(Q)) min(r(P),7(Q)) min(r(Q) -~ 7(P) +1,1)

e The extension of Modus Ponens in fuzzy logic can be explained as follows
7(Q) > min(r(P — Q),7(P))
We can then propose the following fuzzy abductive inference rule

a—f o

8
7(8) < 7(e)

214 F. BERGADANO, V. CUTELLO AND D. GUNETTI

7.2 Learning fuzzy relations from examples

1t is clear that when we talk about learning fuzzy relations from examples, we are
not going to consider positive or negative examples, but instead examples with
a“degree of positivity”, i.e. the label is a number between zero and one. As a
subcase, we can also have binary relations whose definitions depend upon fuzzy
predicates as well.

The concept of“‘extensional definition” of a predicate is not affected by its
fuzzyness. As in the binary case, a predicate is extensionally defined if all its
values are given. For instance, the unary predicate“old(x)” can be extensively de-
fined over the universe where the parenthood table is defined. The meaning of
extensional evaluation, though, needs some new formalization.

DEFINITION 9. Let a(X;, X2,...,X,) be a conjunction of (possibly fuzzy)
predicates where there is at least one occurrence of each of the variables (not nec-
essarily distinct) X1,...,X,. Let 0 < § < 1. We say that a(a1,a2,...,a,) is

predicate @, then Q(ay, . . . , a,) is an example of @ with degree of positivity
at least .

e in case
=3 Xy Xin Tro e T, QT T X - X)s
for some conjunction -y, predicate ¢, [> 0 and
{(Xiy oo Xins Xy o X = { X4, -, X0)
then there must exist e1, . . . , &; such that both the conjunction y(a;,, - . - , @i, ,
er,...,eyand Qes,. .., e, a5,...,a;) must be extensionally §-true.

We say that the conjunct &(X, ..., X,) extensionally 8-covers an example of P,
P(ay,...,a,) if and only if a(a., . . ., a,) is extensionally &-true.

Given the above definition and a collection of examples for P of type < z,y >,
7(P(z,y)) >, we can act as follows:

o Sort in non-decreasing order 0 < 6; < --- £ 8, < 1 the values of the
examples;

e for each value 8; > O apply Algorithm 1 (Simplified Foil) by using the
f;-covering definition. Basically ¢; is used as a threshold value. All exam-
ples with value at Jeast 8; will be considered as "positive” and the others as
negative;

e if for some value 6; the program terminates and outputs a logic program II;
we check whether I1; is also a“good” output for any ; with j # 1.

ABDUCTION IN MACHINE LEARNING

o If so the final output will be 11; otherwise there will be no output.

Basically, we are looking for a program I1 such that for any example of type
(< x,y >,0), with § > 0 the following two conditions are satisfied

(C1) there exists a threshold value g’ < 6 for which < z,y > is ¢ -covered;

(C2) for any threshold value ¢’ > 0, < z,y > is not §'-covered.

Since, by fixing a threshold value, we reduce the fuzzy learning problem to the
binary one we can extend definition 3 as follows

DEFINITION 10. Let 0 < ¢ < 1 and let E+9 and E-? be respectively, t‘hC set
of examples whose value is at least 6 and the set of examples whose value is less

than 6. i '
A definition IT of P is 8-complete with respect to the examples EH? of P if

and only if
(Ve € ETO)IF P(e).

A definition I of P is @-consistent with respect to the examples £ if and only
if
(Ve € ET)IIH P(e).

Therefore, we can formalize our learning goal by saying that we are looking for
a definition I1 of P which is #-consistent and g-complete for any @ in the range of

values of the given examples.

For instance, suppose we want to learn the target concept TA Tgil Ancestor.
We use again the parenthood table as example. We also need to provide the truth
values of the predicate tall(z) defined over the universe of the parenthood table.

For instance suppose such values are

'Tall Table

Suppose also that the set of examples is the following

>0 (< r,g >,.6),(< byg >,.5), (< b,d >,.5),(< d,g >,.7) (< b >
,5), (< yd >,.6),(<1,p >, 6);

=0 (< d,d >v0)’ (< a,p >?O)(< d,p >:0)~

216 F. BERGADANO, V. CUTELLO AND D. GUNETTI

Then by using #; = .5, Foil will output the following program

TA(X,Y) :— paremt{W,Y), TA(X,W).
TA(X,Y) :— parent(X,Y),tall(X).

2]

It is easy to see that for any 8 > 0 such a program covers all the "positive’
examples and no*‘negative” examples. However, differences in the given data may
cause our new algorithm to fail producing an output. If for instance, we have
as example (< r,d >,.5) then the second clause will #-cover it as a "positive”
example for § = .5 but it will also cover it as a "negative” example for § = .6
since tall(r) = .6 and parent(r, d) has value 1.

7.3 Using the fuzzy abduction rule

Obviously, the same problems that we described when dealing with binary rela-
tions are also present in the case of fuzzy relations. Moreover, we have some other
problems related to the fuzzyness of some of the relations or predicates involved.
Indeed, the user may have provided fuzzy truth values for such relations or pred-
icates which are somehow inconsistent with the values attached to the examples.
In this case, completing the set of examples using the proposed fuzzy abduction
rule will also force the user to change if necessary the values which he/she has
provided for the fuzzy predicates or relations. Indeed, suppose the system has to
#-cover the example P(z,y) = 6 for some x, y and that the following candidate
clause has been generated:

P(X)Y) P a(X1Y)1 Q()/) Z)'

Moreover, suppose that oz, y) is extensionally &'-true for every ' > 6. Then,
that clause

(case 1) will extensionally #-cover P(z,vy) if there exists some value z such that
@y, z) is an example (known to the system) of (@ with value 8; and

(case 2) it will not #'-cover P(z,y) for & > 8 only if there is no value z such
that Q(y, z) is an example (known to the system) of Q with value §' > 0

Three cases are possible
(a) there exists one z such that Q(z, y) has value 8;

(b) there exists w such that Q(w, z) has value less than 6 and greater than zero
but there is no z such that Q(z, y) has value 8,

(c) for any z Q(z,y) has value greater than 6.

If (a) holds, using our fuzzy abduction rule we can ask for an example z for which
Q(z,y) has value § and will add it to the list of examples. If (b) holds, the clause

ABDUCTION IN MACHINE LEARNING 217

can never #-cover P(z,y). Therefore, we would have a definition which is not 6-
complete. However, the example might be covered at a lower threshold and for no
threshold value a “negative” example will be covered. The user must decide at this
point whether there is an inconsistency in the data given to the system or whether
to discard the clause

If instead (c) holds, our fuzzy abduction rule will not return any value therefore
the clause will be discarded.

8 CLASSIFICATION RULES WITH NON BINARY PREDICATES

Abductive completion of collection of examples during a learning process can be
quite useful even when dealing with non-fuzzy classification rules that contain
non binary predicates and more generally, fuzzy predicates or sets. A model for
learning classification rules in such a setting has been proposed in [Bergadano and
Cuttello, 1993; Bergadano and Cutello, 1995; Bergadano and Cutello, 1995]. The
main goal of this model is to introduce a theoretical framework for tuning mem-
bership functions inside a non-fuzzy classification system so to make the classifi-
cation system probably, approximately correct as defined in [Valiant, 1984]. We
recall that the learning process in such a case requires that the learned classifica-
tion system is approximately correct with high probability and that the induction
procedure is polynomial.

Under the requirement that the membership functions of the fuzzy predicates
to be learned occur in a structurally given classification system, some interesting
results were obtained. Though the general Jearning problem is computationally
hard, under meaningful restrictions either on the underlying probability distribu-
tion or on the syntactic structure of the classification systems, fuzzy membership
functions can be quickly learned by observing positive and negative examples.
The obtained membership functions are probably approximately correct within a
particular classification problem. Therefore, with respect to such a classification
problem future examples will be correctly classified with high probability.

8.1 The learning model

Let C be a given concept class over a universe Y. For the time being we will
suppose that 4 C R* for some integer k. Therefore, each element of { is a k-tuple
of real numbers whose intended meaning is to characterize specific subparts of the
system under study. Therefore, k is the global dimension of the problem.

Let C € € and suppose a system S,,, of classification rules for C is given in the
following form:

C@) = Qilpgi(2)) -, Qn,(Poy, (=)

C@) :— QMpor@)---,, QL. (pog, (2))

218 F. BERGADANO, V. CUTELLO AND D. GUNETTI

where

e the predicates Qf are taken from a set P={Q;, ..., @, } of given unary pred-
icates;

e for all @;, pg, is a projection function that returns the parameter which is
of significance for).

¢ for every component 4, the predicates Q1, ..., @, corresponding to ¢ (i.c.
such that pg; returns the value of the i-th component for ali 1 < j < m;)
define a linguistic order.

Notice that
e it is possible that the same predicate occurs in different rules;

s concerning linguistic orders we have that the membership functions must be

relation.

The intuitive meaning of the rule system is that a given individual z is classified
as a positive example for the concept C if one or more of the rule antecedents are
true for z.

Therefore we can say that £ € U/ is a member of the concept C i.e. C(z) is true
if and only if

m N

|V A\ @Qpg) | =1

j=1i=1

where 7 is the the truth function. Since we are allowing some predicates in P to
be fuzzy whereas C is not we make the following assumptions:

» A security parameter 0 < @ < 1 is given;
o C(z) is O-true if and only if

m Rj

TV \Qipy)] >0

j=11=1

and where the truth value above is computed according to the min-max se-
mantic, i.e.

m N

TV AQipy (@) | = max (min (Q](pg;())-

j=1i=1 7=l

ABDUCTION IN MACHINE LEARNING 219

Givenaset F={ui, ..., ftn } of membership functions associated to the predicates
in P, the fuzzy classification system (FCS for short) (1) will be denoted by SZ.
The notation S,, will then denote the collection of all possible FCS’s SE, whichin
turn can be characterized as the collection of ail sets F' of membership functions.

We will suppose that the unknown membership functions we are trying to learn
are convex. In particular, the above implies that membership functions do not have
local maxima. Moreover, concerning the linguistic order the convexity hypothesis
implies that for every predicate Q the set {z|Q(z) > o} is an interval of the real
line for every cv. So, we can suppose that the order relation < is the standard order
relation on real intervals:

[a,b] < [c,d]iffa < cand b < d.

Such FCS’s will be called convex fuzzy classification systems.

By definition, Sy, is connected to a non fuzzy predicate, i.e. non fuzzy con-
cept C. Our goal is to learn the membership functions from positive and negative
examples of the concept C, in the hypothesis that a classification system SZ, will
be used with respect to the fixed threshold value 6. The obtained truth value will
be denoted by SZ (z). In the end, z is classified as a §-positive example of Cif
SE(x) > 6.

8.2 Learnability of FCS

As proven in {Bergadano and Cuttello, 1993; Bergadano and Cutello, 19951, the
problem of PAC-learning the class of convex FCS can be approached as follows:

e given ¢ and § draw at least

4
max(; In 2 El_nl In Ee?,-),

]

examples from the distribution I);

e determine the hypercubes of R* where there are §-positive examples only
(the positive hypercubes); suppose the hypercubes are m' < my

e use one rule of S, to cover each 8-positive hypercube.

e project the m’ positive hypercubes on the ¢-th component, obtaining m] <
m; positive intervals {[a1,b1], ..., [@m., bm,]}

e define Q; as a trapezoidal fuzzy set using the above defined intervals.

The following result holds (see [Bergadano and Cuttello, 1993; Bergadano and
Cutello, 1995)). '

THEOREM 1. The general learnability problem is NP-hard.

220 F. BERGADANO, V. CUTELLO AND D. GUNETTI

Similarly to any The theorem is proven by using the result proven in [Pitt and
Valiant, 1988] that learning a K -term DNF by a K-term DNF is A/P-hard. We
recall that a X -term DNF is a boolean formula of type:

K
v

=1

where the M; are monomials, i.e. foralli =1,2,..., K

My =24, Tiy - Tiy Ty, Tiy,

In details the problem of learning K -term DNF by K-term DNF is reduced to the
problem of learning Sk by Sk.

PAC learnability results are obtained by imposing some restrictions. In partic-
vlar, if we assume that the underlying distribution is such that every rule fires at

rule is given by an expert who will not include a rule in S, if it is totally useless
relatively to the world (i.e. the probability distribution of events) he/she lives in.

8.3 Completing the set of examples

All the results above cited were obtained under the following assumptions:

(al) The teacher (i.c. the experts who provides the structure of the classification
system and the labels for the examples) does not need to justify the rules in
the system;

(a2) the classification system may not be minimal, i.e. there may be“redundant
rules’™;

(a3) for each component the lingnistic order is given.

In order to bypass the hardness result it is obvious that more power must be given
to the leamer. In particular, in [Bergadano and Cutello, 1995] it was introduced
the notion of“‘equivalence query”. The learner was allowed to guess and ask for
counter examples. Using this powerful tool and still nnder assumptions (al)-(a3),
PAC-learnability was achieved.

‘We now propose a way to extend the results obtained and get rid of conditions
(al)-(a3). In details, the abductive completion procedure (ACP, section 6) in such
a framework can be adjusted as follows:

for each rule
Q1(p.(z)) A+ A Qr(pg,(2)) — C(x)

ABDUCTION IN MACHINE LEARNING

occurring in the system, we ask for a positive example = such that

max (min (Q](pg; (=) = min (Qi(pa,(z))-

j=1l,....m

1f no such a tuple z exists then the rule is dropped from the classification system.
It is then clear that

o by forcing the teacher to justify the given rules, the system obtained is“minimized”,

that is to say rules which have no influence in the classification process (no
matter what the value of € is) are eliminated.

e using a polynomially bounded number of examples, we are able in polyno-
mial time to produce a probably approximately correct classification system,
i.e. we achicve PAC-learnability;

e finally, the learner no longer needs to be given the linguistic orders for each
component.

9 AUTOMATIC ABDUCTION OF KNOWLEDGE: TESTING

We have seen as abduction can be used in conjunction with induction, in order to
alleviate the intrinsic weaknesses of this learning paradigm. However, one may
reasonable wonder at which conditions such approach is practical. There are two
main issues to consider. First, the abductive procedure terminates only if there is
a finite number of answers to each question. This is the case if we are in a finite
domain, as in the case of the ancestor relationship. In the case of infinite domains,
the approach is still acceptable if we work with functional relations. By imposing
adequate input/output constraints [Bergadano and Gunetti, 1993], it is possible to
work only with positive examples. For each input tuple of the target relation, there
is only one positive example matching the tuple, and infinite negative examples.
the system can be instructed to work only with the positive examples, assuming
the negative examples being all the examples with the same input as the positive
ones and different output values. As a consequence, for each query, the user must
provide exactly one positive example, and no more.

- Second, the number of queries to the user must not only be finite, but also quite
small, unless a databasc of examples is available, and the queries can be handled
automatically. This depends mainly on the size of the hypothesis space, ie. on
the number of clauses that can be used to generate queries. In fact, it is becoming
more and more clear as learning complex first order theories is quite difficult, and
a lot of knowledge must be used. As a consequence, the user must not be a passive
agent, just providing the examples of the target relation. She must also be able to
design a restricted hypothesis space on the basis of the sought relation [Bergadano
and Gunetti, 1996; Van Laer et al., 1994]. Also the number of examples provided
initially may influence the number of queries. Experiments based on the presented

222 F. BERGADANO, V. CUTELLO AND D. GUNETTI

approach have shown as it is possible to learn complex relations by using very few
representative examples of the target concept, and letting the abductive procedure
asking for the missing ones. For example, it was possible to learn a program for
inserting a key into a balanced tree (rebalancing the tree if necessary) by using
an extensional approach and just one well chosen initial positive example. With a
hypothesis space of 224 clauses the user was queried for 15 more examples, and
the program could be learned in 1831 seconds on a Sun Sparcstation 5. The pro-
gram was composed of 9 clauses, eight of them recursive [Bergadano and Gunetti,
1996]. In general, it can be shown that an initial positive example is sufficient to
learn all the clauses necessary to derive it, if the abductive completion is applied.

In this section we illustrate an interesting application of this combination of
abduction and induction, outside the field of Machine Learning. We present a
technique to test the correctness of a given program where, moreover, (some of)
the test cases are automatically generated by the Abductive Completion Procedure
through queries made to the program being tested.

The learning procedure described in-Algorithm 1-outputs a set of Horn clauses.
As well known, this can be regarded as a logic program. As a consequence, in
the rest of this section we will use the term Inductive Program Learning (IPL) in
place of concept learning, and we will speak of Logic Programs instead of concepts
described through a set of Homn clauses.

9.1 Induction and Testing

Testing is the field of Computer Science concerned with the problem of detecting
the presence of errors in programs by executing them on specific and well-chosen
input data. A set of test data allowing us to discover all the errors in the program
is called adequate. Though it can be formally proved that no algorithm exists to
generate an adequate set of test data for an arbitrary program, testing is necessary
and widely used in software development. It is practical and (relatively) easy to
apply, and can give some (even very precise) information about the correctness o

a program. ’

Testing can be seen as a way of distinguishing a program from all the possible
(syntactically correct) alternatives to that program. This is very similar to IPL,
where a program in the hypothesis space must be identified from among all the
other possible programs on the basis of the given examples. More precisely, testing
and IPL are, in some way, symmetric. The latter goes from examples to programs,
whereas the former goes from programs to exampies (input values).

Most of the time, a program is tested on the basis of the “correct program the
user has in mind”. It is common in this case to assume that although the cor-
rect program is unknown, there is a known set of programs that can be seen as
alternative implementations and should contain at least one correct solution. This
concept of program correctness leads to a practical definition of meaningful test
data ([DeMillo and Offutt, 1991]): '

ABDUCTION IN MACHINE LEARNING 223

DEFINITION 12. ([Howden, 1976]) A test set T for a program P is reliable (with
respect to a correct program F,) iff Vz € T' P(z) = P.(z)] - P= P.
If P contains errors, this will be shown by the test cases in T.

DEFINITION 13. Let there be given a test set T for a program P and a set P of
alternative programs. We say that T is adequate with respect to P if and only if it
is reliable with respect to every program in P.

As a consequence, if P contains at least one correct program P, then the test
set will also be reliable for P. Many different testing techniques are based on a
relation between the program P to be tested and a set of possible alternatives P..
In particular, fault-based methods [DeMillo and Offutt, 1991; King and Offutt,
1991] use a set of typical programming errors defined a priori, and alternative
programs are obtained by inserting some of these errors (that is, possible program
mutations) in P.

Testing based on the inductive learning of logic programs also relies on defini-
tion 13 of adequateness of a test set. As noted above, an intuitive symmetry be-

" tween induction and testing can almost immediately be noticed [Weyuker, 19831;

induction is the inference from examples to programs; testing is the inference from
programs to input values. Given a test set T of input values for a program P, the
examples of P for T are defined as E(P,T)={<i,0> | i € T and P(i)=0}. This notion
is formalized by Weyuker as follows [Weyuker, 1983]:

DEFINITION 14. A test set T is program adequate for a program P if and only if
Fy is inductively inferred from E(P,T) and P; = P.

The intuitive meaning of the above definition is as follows: If, given a set E(P,T)
of input/output examples, we inductively infer a program P; = P, then T is likely
to be useful for testing the program P.

In the previous sections we have described a a basic learning method which
is terminating and explicitly make use of a finite set of legal programs. More
precisely, the hypothesis space is made of Horn clauses, and every possible subset
of such Horn clauses is a program that could be learned by the induction procedure,
on the basis of the given examples. We will call P the set of all possible programs.
If there are n Horn clauses, there are 2™ possible legal programs in P.

The learned program Py must belong to P. This is consistent with the fact that
all the test case generation procedures that are not specification based refer (some-

- times implicitly) to a set P of alternative programs. As a consequence, definition

14 can then be stated in terms of “sound and complete® IPL”: T is adequate for P if
and only if P is the only program that can be learned from E(T,P) with a sound and
complete IPL method. The restriction to a finite set of alternative programs (hy-
pothesis space) P seems to be acceptable for testing; for instance, all approaches

, zForma]ly, a system is defined to be sound if it only outputs programs that are consistent w.r.t. the
given examples. It is complete if it is able to find a consistent program whenever such a program exists
in the given hypothesis space. As an instance, the learning procedure of Algorithm 1 (Simplified Foil),
is neither sound nor complete, by virtue of Problems 1 and 2.

224 F. BERGADANO, V. CUTELLO AND D. GUNETTI

to fault-based testing such as mutation analysis, are based on this assumpfion.

The intuitive symmetry between induction and testing can now be made clear:
induction is an inference from the pair <E(T,P), P> to a program P in P, whereas
testing is an inference from <P, P> to the test set T. In the next subsection this
symmetry will be used in actually generating the adequate test cases for a (not
necessarily logic) program.

9.2 Abductive Test Case Generation

Let us call SFOIL (Simplified Foil) the iearning procedure of Algorithm 1. Let us
call SFOIL scp the SFOIL algorithm angmented with the Abductive Completion
Procedure and with input/output constraints, as discussed at the beginning of this
section. A sequence of inductions of programs from examples is used to generate
test cases. Initially, there are no examples and, in the end, the generated set of
examples will be adequate in the sense of definition 13.
Let P be the program to be tested. At any given moment, the examples generated
- so'far are"used to induce a"program P’. New examples that distinguish P from P’
are added, and the process is repeated until no program P’ that is not equivalent to
P can be generated. This procedure is described in more detail below.

Test case generation procedure:

Input: a program P to be tested,
a finite set 7 of alternative programs
Output: an adequate test set T

T« @
loop:
<P T> + SFO[LACP(E(T,P),P)
if P’ = “fail” then return T
if (31) P'() # P()
then T — T U {i}
elseP —P-P
goto loop

In order for the above procedure to work, the leamning algorithm SFOIL z¢ p
must be sound and complete, as it is proved by theorem 7 and corollary 8. In the
test case generation procedure, the test set T is initially empty. The main step in
the loop consists of using SFOIL s¢p to learn a program P’ that is consistent with
the examples generated so far. P’ is then ruled out either by (1) adding an input
value to T or by (2) removing it from P. As a consequence, P’ will not be learned
again. When SFOIL 4¢ p cannot find a program P'e P that is consistent with the
examples, then the only programs with this property are P and those equivalent to
it, i.e., the test set T is adequate. This is proved by the following:

ABDUCTION IN MACHINE LEARNING 225

THEOREM 15. Let equivalence be decidable for programs in P. Then the above
test case generation procedure outputs an adequate test set T for P.

Proof. Since equivalence is decidable for programs in P, the procedure terminates,
as the condition (3 i) P'(i) # P(i) always produces an answer. Suppose, by contra-
diction, that the obtained test set T is not adequate. This means that there is P/ €
P and an input i ¢ T such that P/(i) # P(@), but (V v) € T, P'(v) = P(v). However,
just before termination, SFOIL s p failed to induce a program Py. Moreover, P/
is complete and consistent with respect to E(T,P), because (V v) € T, P/(v) = P(v).
Then, just before termination, and because SFOIL 4¢ p is sound and complete, it
must be the case that P’ ¢ P. As a consequence, P’ must have been removed from
‘P at some previous iteration. But, in that case, there must have been an input value
i such that P’(i) # P(i), and this value would have been added to T. This contradicts
the assumption that i ¢ T and T is not adequate.]

If a decision procedure is available for finding an input i such that P(i) # P'(i),

* this is used directly in the above test generation method. As this is not true in

general, examples are found by enumerating (in some random or ad hoc order)
the possible inputs i, and stopping when an i is found such that P(i)=0#P’'(i)=0'.
This enumeration could also be guided by other test case generation techniques,
such as path or functional testing. The requirement of decidable equivalence is
of course not easily verified or accepted. is a major theoretical and practical is-
sue in program testing. In the implementation of our test case generation method,
we approximate it by means of its time-bounded semi-decision procedure. Ex-
cept for this approximation, the system produces adequate test sets with respect to
any finite class of programs 7. The reader may find all the details of this testing
technique in [Bergadano and Gunetti, 1996b].

9.3 Anexample: testing a merge program

Consider the problem of merging two ordered lists, where we allow them to con-
tain repeated elements. The output list must be ordered and should contain every
element of the input lists only once. This problem requires a procedure for remov-
ing the elements that are repeated. Suppose we are given the following:

. remove(X,[X[Y1],Z) :- |, remove(X,Y,Z).

remove(,,Y,Y).

B This does just as much as necessary: it removes the initial occurrences of an el-
ement in a list, e.g., remove(a,[a,a,b],[b]), but remove(a,[b,a],[b,a]). Let the pro-
gram to be tested be the following:

P:
1) merge(X,Y,Z) :- null(X), Y=Z.

226 F. BERGADANO, V. CUTELLO AND D. GUNETTI1

2) merge(X,Y,Z) :- null(Y), X=Z.
3) merge(X,Y,Z) :- head(X,X1), tail(X,X2), head(Y,X1), tail(¥,Y2),
merge(X2,Y2,W), remove(X1,W,T), cons(X1,T,Z).
4) merge(X,Y,Z) :- head(X,X1), tail(X,X2), head(Y,Y1), tail(Y,Y2),
X1<Y1, merge(X2,Y,W), remove(X1,W,T), cons(X1,T,Z).
5) merge(X,Y,Z) :- head(X,X1), tail(X,X2), head(Y,Y1), tail(Y,Y2),
X1>Y1, merge(Y2,X,W), remove(Y1,W,T), cons(Y1,T.,Z).

In this program the first two clauses are wrong. In fact, any repeated element in the
nonempty list will be present in the output. Let P be defined as any program made
of any clause that can be built by using as head merge(X,Y,Z) and whose body
is zpade of a subset of the literals occurring in P. As a consequence, P contains
22" alternative programs, i.e., all possible subsets of the space of clauses. Among
the subsets there are versions of the correct implementation of merge. A concise
representation of P will be given as input to SFOIL 5scp. Of course, P is not
generated explicitly. See {Bergadano and Gunetti, 1996b] for the implementative
GGG o e L e G

The test case generation procedure starts with an empty test set T of input val-
ues, and calls SFOILscp. As E(To,P) contains no examples, the empty program
Py is an acceptable output of SFOIL 4 p(E(Ty,P),P).

Pairs of lists X and Y are then enumerated, so that

Po - merge(X,Y,Z'), P+ merge(X,Y,Z) and Z # Z’

The first such pair that is found is <X,Y>=<{],[]>; for this input, Py produces no
output and P outputs Z={]. The new test set is then T = {<[L[]>}.

SFOIL sc p(E(T1,P),P) is called again, yielding P;:

merge(X,Y,2) :- Y=Z.

This program is an acceptable ontput of SFOIL 4¢ p because merge([],[1,[]) is de-
rived from it, and the output is the same as that of P.

Pairs of lists X and Y are enumerated, so that

P; F merge(X,Y,Z"), P+ merge(X,Y,Z) and Z # Z’. The first such pair that
is found is:

<X, Y>=<[1],[]>; for this input, P; outputs Z=[] while P outputs Z=[1]. The new
test set is then Ty =T U {<[1],[1>}.

SFOIL 4o p(E(T2,P),P) is called again, yielding Ps:

merge(X,Y,Z) :- X=Z.

This program is an acceptable output of SFOIL 4¢ p because merge([1,[],[]) and
merge(f11,{],{1]) are derived from it.

The test case generation goes on in this way generating new test cases and learn-
ing new programs, until no new program can be discovered and SFOIL 4 p fails,

ABDUCTION IN MACHINE LEARNING 227

ending the test generation process. The complete set of learned test cases, with the
corresponding outputs, is the following:

: merge({],[1.11)

: merge([1L11,01])

: merge([2],{11.[1,2])

: merge([2],[],[2]) - abduced by SFOIL scp from P

: merge([1,[11,[11) - abduced by SFOIL scp from P

s merge({11,[11,[1D)

: merge([1,1,2],{11,[1,2])

: merge([1,1,2],[],[1,1,2]) - abduced by SFOILacPp from P, it shows the error
: merge([1],(2],[1,2])

O 00 =2 QN s N e

Only nine examples have been required to locate the error, whereas many more
would have been necessary in random testing, if there are many possible element

_ values with respect to the average list length.

We see that some of the examples (one of them showing the error) are added as
a consequence of the ACP. Consider, e.g., example 7. When SFOILacp is learn-
ing a program Py consistent with examples 1-7, it has to find a clause covering
example 7. During its construction, it comes to the (partial) clause:

merge(X,Y,Z) :- head(X,X1), tail(X,X2), head(Y,X1), tail(Y,Y2), merge(X,Y2,W)

There is no example discovered so far covering literal merge([1 ,1,21,[1,W) and, as
consequence, the ACP queries the program P (that is, it runs it) for a value o such
that merge([1,1,2],{],0) is true, getting the answer o=[1,1,2] and producing the new
testing case represented by example 8 above.

1t should also be noted that P does not belong to the hypothesis space P; actu-
ally, this is not required by the test case generation system. In fact, the program
to be tested could be used as a black box and could, in principle, be written in any
programming language.

10 CONCLUSION
The relation between induction and abduction is briefly discussed in this paper.

Our main goal was then to show the specific uses of abductive reasoning in Ma-
chine Learning. On one hand, it has been used to guide search in a top-down

* specialization framework related to Explanation-based Learning. On the other
" hand, we have also shown how abduction can be used to query the user for ex-

amples that may be missing. This means that the user must not provide all the
needed examples to learn one definition at a time. He/she can forget some ex-
amples, and the abductive procedure will ask for them. Observe that only the

- examples really needed are queried, so it will not waste time trying to cover

228 F. BERGADANO, V. CUTELLO AND D. GUNETTI

useless examples. In many extensional systems [Muggleton and Feng, 1990,
Quinlan, 1990} the user must provide all the examples at one time, and usually
a superset of the examples needed is given, resulting in a lot of time wasted in
covering useless examples. We have also highlighted a possible extension of such
a learning framework to the case where fuzzy predicates occur. In such a case, the
user not only must provide all the missing example but must also provide consis-
tent fuzzy values for all the predicates involved.

ACKNOWLEDGEMENTS

The authors thank esprit project DRUMS II which supported part of this research.

F. Bergadano and D. Gunetti
Computer Science Department, University of Torino, Italy.

Mathematics Deptartment, University of Catania, Italy.

REFERENCES

{Bergadano and Besnark, 1994] F. Bergadano and P. Besnard. Abduction and induction by non-
monotonic logics, Workshop on Mathematical and Statistical Methods in Artificial Intelligence,
Udine, Italy, 1994,

{Bergadano and Cuttello, 1993] F. Bergadano and V, Cutello. Learning membership functions. Pro-
ceedings of ECSQARU’93, 2nd European Conference on Symbolic and Quantitative Approaches to
reasoning and uncertainty, Granada, Spain, 1993. Lecture Notes in Computer Science, Springer-
Verlag, Vol. 747, pp. 25-32, 1993,

[Bergadano and Cutello, 1995] F. Bergadano and V. Cutello. Learning fuzzy sets. In Proceedings of
EUFIT'95, G. J. Zimmermann, ed. Aachen, Germany, 1995.

{Bergadano and Cutello, 1995) F. Bergadano and V. Cutello. Probably approximate correct (PAC)
learning in fuzzy classification systems. JIEEE Transactions on Fuzzy Systems, 3, 473478, 1995,

[Bergadano and Giordana, 1988] F. Bergadano and A. Giordana. A knowledge intensive approach to
concept induction. Proceedings of the Fifth International Conference on Machine Learning. pp.
305-317, Ann Arbor, MI, 1988.

[Bergadano et al., 1989] F. Bergadano, A. Giordana and S. Ponsero. Deduction in Top-down Inductive
Learning, Proceedings of the Sixth International Conference on Machine Learning. pp. 23-25,
Ithaca, NY, 1989.

[Bergadano and Gunetti, 1993] F. Bergadano and D. Gunetti. An interactive system to learn functional
logic programs. In Proceedings of the International Joint Conference on Artificial Intelligence,
Chambery, France, 1993. Morgan Kaufmann.

[Bergadano and Gunetti, 1996) F. Bergadano and D. Gunetti. Inductive Logic Programming: from
Machine Learning to Software Engineering. MIT Press, Cambridge, MA, 1996.

[Bergadano and Gunetti, 1996b] F. Bergadano and D. Gunetti. Testing by means of inductive program
learning. ACM Transactions on Software Engineering and Methodology (ACM TOSEM), 5, 1996.

[Bimbaum and Collins, 1991] L. Birnbaum and G. Collins, eds. Proceedings of the International ML
Conference, part VI: Learning Relations. Morgan Kaufmarnn, 1991.

[Cohen, 1992] W. Cohen. Abductive explanation-based learning: a solution to the multiple inconsis-
tent explanation problem. Machine Learning, 8, 167-219, 1992,

[Cohen, 19941 W. Cohen. Incremental abductive explanation-based leaming. Machine Learning, 15,
5-24, 1994.

ABDUCTION IN MACHINE LEARNING 229

[Console and Saitta, 1993} L. Console and L. Saitta. Generalization in learning and abduction. tech-
nicai report, University of Torino, 1994.)

fDeMillo and Offutt, 1991] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data gen-
eration. IEEE Trans. on Software Engineering, 17, 900-910, 1991.)

fDeRaedt and Bruynooghe, 1991] L. DeRaedt and M. Bruynooghe. CLINT: A Mulustmlc_gy Interac-
tive Concept-Learner and Theory Revision System. In R. S. Michalski and G. Tecuci, eds. Pro-
ceedings of the Workshop on Multistrategy Learning, pp. 175-190, Harpers Ferry, VA, 199_ I. ’

[Dubois and Prade, 1980] D. Dubois and H. Prade Fuzzy Sets and Systems: Theory and applications.
Academic Press, NY, 1980.]

[Ellman, 1989] T. Ellman. Explanation-based learning: a survey of programs and perspectives. ACM
Computing Surveys, 21, pp. 163-222, 1989.

[Flach, 1992] P.Flach. Simply Logical, John Wiley and Sons, 1992.
[Howden, 1976] W. E. Howden. Reliability of the path analysis testing strategy. IEEE Trans. on
Software Engineering, 2, 208-215, 1976. . .
[Klir and Folger, 1988] G. J. Klir and T. A. Folger. Fuzzy Sets uncertainty and Information. Prentice
Hall, Englewood Cliffs, NJ, 1988 _

[King and Offutt, 1991] K. N. King and A. J. Offutt. A Fortran language system for mutation-based
software testing. Software Practice and Experience, 21, 685718, 1991.] .

[Léa Sombé, 1990] Léa Sombé Reasoning Under Incomplete Information in Artificial Intelligence.
John Wiley and Sons Inc., 1990.

[Van Laer et al., 1994] W. Van Laer, L. Dehaspe and L. DeRaedt. Applications of a logical discovery

engine. Leuven, Belgium, 1994. Technical Report, Dept. of CS, Univ. of Leuven.)

[Mischell et al., 1986] T. Miichell, R. M. Keller and S. Kedar-Cabelli. Explanation-based generaliza-
tion: a unifying view, Machine Learning, 47-80, 1986.))

[Muggieton and Feng, 1990} S. Muggieton and C. Feng. Efficient induction of logic programs. In

. Proceedings of the First Conference on Algorithmic Learning Theory, Tokyo, Japan: 1990.

[Pazzani et al., 1991} M. Pazzani, C. A. Brunk and G. Silverstein. A Knowledge-intensive approacl} to
learning relational concepts. Proceedings of the 8th International Conference on Machine Learning,
1991.

[Pazzani and Kibler, 1992] M. Pazzani and D. Kibler. The utility of knowledge in inductive learning.
Machine Learning, 9, 57-94, 1992.)

[Pitt and Valiant, 1988] L. Pitt and L. G. Valiant. Computational limitations on lcaming from exam-
ples. Journal of ACM, 35, 965-984, 1988.) ‘

[Quinlan, 1990] R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, 5,
239-266, 1990.

[Rouveirol, 1992] C. Rouveirol, ed. Proceedings of the ECAI Workshop on Logical Approaches to
Learning. ECCAL Vienna, Austria, 1992.

[Shapiro, 1983] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[Valiant, 1984] L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1134-1142,
1984,

[Weyuker, 1983] E. J. Weyuker. Assessing Test Data Adequacy Through Program Inference. ACM
Trans. on Programming Languages and Systems, 5, 641-655, 1983.

[Zadeh, 19651 L. A. Zadeh. Fuzzy sets. Information and Control, 8, 338-353, 1965 .

[Zimmerman, 1984} H. J. Zimmermann Fuzzy Set Theory and its applications. Kluwer-Nijhoff,
Boston, 1984,

