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Abstract

We consider a class of degenerate Ornstein-Uhlenbeck operators in RY,
of the kind

PO N
A= Z aij () 63@'1]' + Z bijriOx,

i,j=1 i,j=1

arxXiv

where (a;;) is symmetric uniformly positive definite on RP? (pg < N), with
uniformly continuous and bounded entries, and (b;;) is a constant matrix
such that the frozen operator A, corresponding to ai; (o) is hypoelliptic.
For this class of operators we prove global L? estimates (1 < p < co) of
the kind:

‘ Lr (RN
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We obtain the previous estimates as a byproduct of the following one,
which is of interest in its own:

for any u € C§° (St), where St is the strip RY x [T, 7], T small, and
L is the Kolmogorov-Fokker-Planck operator

2
8f”izjuHLp(ST) < C{”LUHLP(ST) + ”U”Lp(sT)}

Po N
L= E ij (137 t) ailx] + E bij:cié)xj — O
i,j=1 i,j=1

with uniformly continuous and bounded a;;’s.

1 Introduction

Let us consider the following kind of Ornstein-Uhlenbeck operators:

Po N
A= Z aij (x) 821% + Z bij,fiamj, (11)

ij=1 ij=1
where:

Ay = (ayj (x))f‘;zl is a po X po (po < N) symmetric, bounded and uniformly
positive definite matrix:

Po

TIEE< Y oy (@) &g < Alel? (12)

ij=1

for all £ € RPo, € RY and for some constant A > 1;
the entries a;; are supposed to be uniformly continuous functions on R,
with a modulus of continuity

w(r) = max sup |aij () — ai; (v)]; (1.3)
4,7=1,...,p0 z,yeRN

|z—y|<r

the constant matrix B = (bij)N _, has the following structure:

]
x *x By ... 0
* % * ... B,

where Bj is a pj_1 X p; block with rank p;,j =1,2,...,7,p0 > p1 > ... > pr > 1,

po+p1+ ... + pr = N and the symbols x denote completely arbitrary blocks.
If the a;;’s are constant, the above assumptions imply that the operator A

is hypoelliptic (although degenerate, as soon as py < N), see [12]. If the a;;’s



are just uniformly continuous, A is a nonvariational degenerate elliptic operator
with continuous coefficients, structured on a hypoelliptic operator. For this class
of operators, we shall prove the following global LP estimates:

Theorem 1.1 For every p € (1,00) there exists a constant ¢ > 0, depending on
p, N, po, the matriz B, the number A in (L) and the modulus w in (I3) such
that for every u € C§° (RN) one has:

Po
2
Z: 2201, o, < {0y + Ml }. (15)
N
> bymidpu|| < e{lMulpey +lulpey, - (16)
W Lr(RN)

In [4] we have proved this result in the case of constant coefficients a;;. Here
we show that exploiting results and techniques contained in [4], together with a
careful inspection of the quantitative dependence of some bounds proved in [12]
and [9], we can get Theorem [Tl The striking feature of our result is twofold.
On the one side, the merely uniform continuity of the coefficients a,;(z); on the
other side the lack of a Lie group structure making translation invariant the
frozen operator

Po N

AIO = Z Qij (:EO) aile + Z bijxiamja o € ]RN

ij=1 ij=1

As in [], we overcome this last difficulty by considering the operator A as
the stationary counterpart of the corresponding evolution operator A — 0; and
looking for the estimates (I3 and (L)) as a consequence of analogous estimates
for A — 9, on a suitable strip Sp = RY x [T, T].

There exists a quite extensive literature related to global L? estimates for
non-degenerate elliptic and parabolic equations on the whole space with un-
bounded lower order coefficients and variable coefficients a;;. The considered
LP-spaces are defined with respect to Lebesgue measure or with respect to an
invariant measure which has also a probabilistic interpretation (see, for instance,
[6], [7, [8], [10], [II], [I4], [I6] and the references therein).

On the other hand, to the best of our knowledge, only the papers [2], [3]
and [5] deal with L? estimates for classes of degenerate operators with both un-
bounded first order coefficients and bounded variable coefficients a;;. However,
we want to stress that the estimates there proved are only of local type.

We also mention that global LP estimates like ((LH]) are crucial in establishing
weak uniqueness theorems for associated stochastic differential equations, see
[15] and the references therein. Finally, a priori estimates in non-isotropic Holder
spaces for operators like (LI)) with Holder continuous a;; were proved by A.
Lunardi in [13].



2 Notations and preliminary results

The operator L

Let us introduce the evolution operator

Po N
Lu(z) = Z a;j (2) 8§ﬂju(z) + Z bijri0p;u(z) — Opu(z)
= Z a;j (2) Zﬁizju(z) + (z, BVu(z)) — dyu(z) (2.1)

with z = (z,t) in R¥*! where now the coefficients a;; possibly depend also on
t. When the a;;’s are time independent, we get L = A — 0;. Let

Az) = {AOO(Z) 8]

be an N x N matrix where Ag(z) = (ai; (2))]5_, isapoxpo (po < N) symmetric
and uniformly positive definite matrix for all z, satisfying

Po

1
TIEP < Y ai ()68 < Al (22)

i,5=1

for all £ € RP° and for some constant A > 1.
Moreover, we assume that the functions a;; are uniformly continuous in
RN*! with modulus of continuity

w(r) = max sup  |aij (1) — aj (22)] - (2.3)
4,j=1,...,p0 21,25 €RNF1
|z1—2z2|<r

The operator L,

For a fixed zg € RV ! we consider the operator L., that differs from L only for
the coefficients a;;’s, that now are constant coefficients:

Lou() = 3 aij (20) 8,0 u(2) + (2, BVu(=)) = dpuz),

5,J=1

where, as above, z = (x, t).

This operator is hypoelliptic; actually it can be proved (see [12]) that this
fact is equivalent to the validity of the condition C(zp;¢) > 0 for every ¢ > 0,
where

C(z05t) = /0 E (s) A(z) E™ (s)ds, where E (s) = exp (—sB”).



Moreover, it is proved in [12] that L., is left-invariant with respect to the com-

position law
(x,t)o (§,7)=(E+E(T)a,t+7).

Note that
(577—)71 = (_E (_T) 57 _T) .

We explicitly note that such a composition law is independent of zg, since only
the matrix B is involved.
The operator L., has a fundamental solution I'(zo;-, -),

T (2052,¢) = 7 (20;¢ " 0 2) for z,¢ € RVTL,
with

0 fort <0
¥ (205 2) =

(4m) N/ - .
T P (=3 (C7 ' (z0;t)z,2) —tTrB) fort >0

where z = (z, t).

The operator K,
By principal part of L., we mean the operator

Po
Kzo = Z aij (Zo) 85111 + <$,B0v> — 815,

i,j=1

where the matrix in the drift term is now By, obtained by annihilating every *

block in (4):

0O B 0 ... 0
0 0 By ... 0
Bo=|i © & o
0 O 0 ... B,
0 0 O 0

The fundamental solution of the principal part operator K, is ' (z0; 2, () =
Y0 (20; (™" 0 2); namely, for ¢ >0

BN 1, 0,
Yo (205 2) = W exp (—Z (Cot (zo,t)x,$>)

with

Co (z03t) = /0 Eo (s) A(20)EL (s) ds, where Eq (s) = exp (—SBOT) . (24)



Homogeneous dimension, norm and distance

For every A > 0, let us define the matrix of dilations on RY,
D (\) = diag (Mpy, NIy, ..., AT,

where I, denotes the p; x p; identity matrix, and the matrix of dilations on
RN'H,

5 (A) = (D(N), \?) = diag (ALpy, N’ Ly, ..., N7, NP

Note that
det (D (X)) =9, det(5(N\)) = \¢F2

with @ =po+3p1 + ...+ (2r + 1) p,; Q and Q + 2 are called the homogeneous
dimension of RN and RN+ respectively. The operator K, is homogeneous of
degree two with respect to these dilations.

There is a natural homogeneous norm in RV+1 induced by these dilations:

N
()l = g |+ 22

Jj=1

where ¢; are positive integers such that D (\) = diag (A7, ..., A9) . Clearly, we
have
6(N) 2| = A|z||  for every A > 0,z € RVFL,

A key geometrical object is the local quasisymmetric quasidistance d. Namely,

d(z,¢)=||¢ oz

Note that the homogeneous norm involved in the definition of d is related to the
principal part operator K, , while the group law o is related to the original op-
erator L. Hence this function d is not a usual quasidistance on a homogeneous
group. The function d (z,() satisfies the quasisymmetric and quasitriangle in-
equalities only for d(z,(¢) bounded (see Lemma 2.1 in [9]); this happens for
instance on a fixed d-ball B,(z), where

By(z) = {¢ e RN 1 d(2,¢) < p}.

3 Estimates on a strip for evolution operators

Let St be the strip RY x [-T,T]. We use ¢ to denote constants that may vary
from line to line.
Our main result in this section is the following:

Theorem 3.1 Let L be as in (2.1]), with the matriz B satisfying (1.4) and with
uniformly continuous coefficients a;; satisfying (2.2).



For every p € (1,00) there exist constants ¢, T > 0 depending on p, N, po, the
matriz B, the number A in (Z2), ¢ also depending on the modulus of continuity
w in (223) such that

5|

i,7=1

2
Bmimju‘

sy < N5y +elngsy | (3.1)

for every u € Cg° (St).
i From Theorem Bl one obtains Theorem [L.T] proceeding as follows.
Proof of Theorem [[1l If u: RY — R is a C§° function, we define

Uz, t) =u(z)y (),

where

Y € Cg° (R)

is a cutoff function with sprt¢ C [-T,T], fTTw (t)dt > 0. Then @BI) ap-
plied to U gives (L)) for u. Moreover, inequality (L) immediately follows by
difference. m

The crucial step toward the proof of Theorem B.1] is a local estimate con-
tained in the following;:

Proposition 3.2 There exist constants ¢,y such that for every zo € Sp, r <
ro, u € C§° (B, (20)), we have

5|

ij=1

9% u <cl|Lu|;, . 3.2
0 IR |2 P (32

Proof. Let zp € St and pg € (0,7] be fixed and choose a cutoff function
n € Cg° (RN*1) such that

n(z)=1for |2 < po/2:
n(z) =0 for 2] > po.

Then, by [9 Proposition 2.11] and (25) in [4], we have, for every u € C§° (B, (20)) ,

02 yu == PV (Lagus (002,17 (20:)) ) = Legus (1 =) 02, 5 (203 )
+ Cij (Zo) ngu
=— PV (Lo u* ko (20;-)) — Layu * koo (20;+) + ¢ij (20) Lzyu (3.3)

having set:
ko (205-) = 0% 4,7 (203 -)

; (3.4)
koo (20;+) = (1 =) 03 4,7 (20;°)



and

cij(20) = — 0z,70(20; CQ)v(C) do (¢),
(20) /||<||—1 20(20: C)5(€) dor(€)

where v; denotes the j-th component of the exterior normal v to the boundary
of {||¢]| < 1}. In (B3) * denotes the convolution with respect to the composition
law o.

Writing
Leu(z) = (Lzy — L) u(z) + Lu (2)
Po
= > (aij (20) — aj (2)) 2 4, u (2) + Lu(2)
ij=1
we get, by (3.3),
Ppo
07,0 =— PV (Luxko (20;-) = PV | Y (ank (20) — ank () 03, 5,1 % ko (205 -)
hk=1
Po
— Lux ks (20;) — Z (ank (20) — ank (-)) 02, 4 u* koo (205 +)
h,k=1
Ppo
+ cij (20) Lu+ cij (20) Y (ank (20) — ank () 0, 5, u
h,k=1
=L+ I+ J + Jo+ A1 + As. (3.5)

We now split the remaining part of the proof into several steps.

Step 1. LP-estimate of A1 and As.
We obviously have

[A1ll (B, (z0)) < leij (o)l Lull Lo(B, (z0))-

On the other hand, by Theorem [£.I] and Remark [£.2] in Appendix, there exists
an absolute constant ¢ such that

1
cii(z0)| < 02,70 (20; do(() <ec ———do(().
|a(0)|</”<”_1| 0(20: )] do(C) < /||<||—1 e 4ol

Therefore
I A1llLe (B, (z0)) < cllLullLo(B, (z0))- (3.6)

Analogously, using the uniform continuity of the coeflicients a;;’s, we get

Po
[ A2l o (B, (o)) < cw(r) Y 102, 0t Lo(s, (20))- (3.7)
k=1

Step 2. LP-estimate of J1 and Js.



Without loss of generality we can assume B,.(zg) C Sar for every zg € St.
Then

FAP /S koo (20; )1 € | Lt o5, (20
2T

where the presence of the constant ¢ depends on the fact that our group is not
unimodular. On the other hand, just proceeding as in [4], pages 799-800, and
using the estimates in Appendix (see Proposition 6] we get

| eioldc < e,
Sar
where c is independent of zy € S7. Therefore
1]l Le (B, (z0)) < cllLullLr(B, (z0))- (3.8)
Analogously, using the uniform continuity of the a;;’s, we get
||J2||LP(BT(ZO)) < cw Z || mhmkuHLp(BT (z0))* (39)
h,k=1

Step 3. LP-estimate of 11 and I.
To estimate the LP-norm of I; and Iz, we can use Theorem B.3] getting:

111l Lo (B, (20)) T+ 112l L2 (B, (20))

Po
< e Ll ogs, =) + || D lank (20) — ank ()] 92, 4 u
k=1 L?(Br(20))
< eq 1 Lullpop, () +w (r) Z 102, e tll Lo (5, (20) (3.10)
h,k=1

with ¢ independent of r and zj.

Step 4. Conclusion.
By (B3) and the estimates ([3.6])-(B1I0) in the previous steps, we get

RT3 1 LY Pt Sl &t oo

TiTj ‘
h,k=1

i,j=1

with ¢ independent of r and zj.
We now fix once and for all 7y small enough so that cw (rg) < 1, getting

> |

7,j=1

< CHLU’HLP(BT(ZO))

TiTj ‘

L2 (Br(20))

for every u € C§° (B,(20)) with r < 1o, with ¢, ro independent of u and zy € St.
[



Next, we have to prove the following crucial ingredient which has been used
in the previous proof:

Theorem 3.3 Let ko(zo;) be the singular kernel defined in (34). For every
p € (1,00) there exists a positive constant c, independent of zy, such that

[PV (f * ko(20; ) Lr (B, (z0)) < €llflLr(B, (z0)) (3.11)
for every f € C§°(By(20)), 20 € St and r > 0 such that B(z) C Sar.

Proof. This theorem is analogous to Theorem 22 in [4], the novelty being the
uniformity of the bound with respect to the point zq in the kernel ko(zo;-). As
in [], this theorem follows applying the abstract result contained in [T, Thm 3].
Without recalling the general setting of nondoubling spaces considered in [I],
here we just list, for convenience of the reader, the assumptions that need to
be checked on our kernel, in order to derive Theorem 3.3 from [l Thm 3]. The
constant ¢ in ([BIT]) will depend only on the constants involved in the following
bounds.
Let
k(zo;w ™t 02) = a(2) ko(zo;w™t 0 2)b (w)

where a,b € C§° (RNH) with sprta, sprtb C B, (20). Then the required prop-
erties are the following:

c

cap—1 L .—1
|/€(20,’w o 2)} + |k(2’0,2 OU})} < m (3.12)
for every zg € St, z,w € Sor such that Hw’l o zH <1
|k(zo; wloz) —k(zp;w o E)| + (3.13)

—1 —
-1 .1 [z~ oZ]]
|k(z05 27 ow) — k(202 " ow)| < CW

for every 29 € Sr,2z,Z,w € Sor such that |[z71 o Z| < M[w™ o 2| and
o2 < 1

/ aoi¢ o]+ | [ Koz 0 Q) dd] < c
ri<||¢toz||<rs ri<[[~toz||<r2
(3.14)
for every rq,79 with 0 < 71 < 79 and for all z € Sor and zp € Sp;
h(zo,) — h* (20,-) € C7 (B(20)) (3.15)
for some positive 7, where
h(z0,2) = lim k(z0;¢ 1 o 2) dC; (3.16)
T0 r< )¢ toz|
h* (20, 2) = lim k(20327 o) dC. (3.17)

=0 Jr<)c 1oz

10



Now: estimates (B.12)) and I3) follow from Theorem 1] and Remark 2]
contained in the Appendix.

Let us prove B14). Actually, we will bound the first integral, the bound on
the second being analogous. Moreover, we actually prove the following

/ ko(z0;¢ o 2)dC| < e, (3.18)
ri<[[(~toz||<ry

which implies the analogous bound on k by the same argument contained in

[4, Prop. 18]. To show ([BIS), we proceed as in [4], page 803. Without loss of

generality we assume ro < pg, where pg is the positive constant introduced at

the beginning of the proof of PropositionB:2 in fact, ko (zo; w) = 0 for ||w| > po.
We have:

/ ko(z0;¢ " 0 2)d¢ = A(zo;m1,72) + B(z0;71,72),
ri<[[¢Ttoz||<rz

where
Alzirir) = | ()2, (01 w) do

ri<|lwl[<r2

and

B(zo;11,72) =/

ri<|lwl[<r2

n(w)o2 . A (zoiw) (T 1) dw,  w = (7).

Then, by (@3]

1 1
B(ZO§T17T2)§C/ —degc/ g dw
m<llwl<rs [0 lwli<po 12

with ¢ independent of 2o € Sp. Moreover, if ro < £2, then integrating by parts

A(Zo;ﬁ,?"z) :/

llwl|=r2

0.1z dow) = [ 0 (ans wh; dotw)

llwl|=r1

== I(ZQ; 7“2) — I(ZQ;Tl).

Now we estimate I(zo; p) by proceeding as in [9], page 1280. We have
I(z05p) :/ICI—l 02,7p(20; Q)v; do(Q)
= [ e 0) = el O) vy o)
+ /ICI—l 9,70 (20; Q)vj do(C)

where v,(20; ) is defined as in [9], (2.24).

11



The last integrand can be estimated by a constant independent of zg € S,
thanks to ([@2) and Remark 22 On the other hand, from (2.45) in [9] we get,
for a suitable ¢ independent of zy € Sp:

1

< Cp/lCl—l FW(C) do (),

/HCH (9270 (203 C) = B;70(203 €)) w5 do (C)
=1
¢ = (x,7), where v is the fundamental solution with pole at the origin of
Po
‘UZ 89%1 + <‘T7 BOV> — O
i=1

for a suitable g > 0 independent of zg € Sp. Note that the last integral is an
absolute constant.
Suppose now £ < ry < po. Then we can write

/ ko (z0; w) dw / ko (zo;w) dw| .
ri<[[w|[<po/2 po/2<||w||<rz

The first term can be bounded as above, while the second one is bounded by

/ c|lw]|~ 9 dw
po/2<|w]|<po

with ¢ independent of zp, see [@3)). This completes the proof of (BIJ).
Finally, let us prove the Holder continuity of the function

A(zo;1r1,72) < +

h (Zo, ) —h* (Zo, )
defined in @I0)-@I7) [

r—0

ewns) = i) [ bl 000 €)=

r—0

= hma(z)/ kQ(ZQ;w)b (zowil) eTTT(B)dw
r<||w]]
=a (Z)/ ko(205 w) [b (Z ° w_l) —b (2)} e T7(B) duy+
llwl[<po

+a(z)b(z)/

ko(zo; w) [eTTT(B) - 1} dw
llwl<po

r—0

+lima(2)b(z) /<” ” ko (z0; w)dw

=M (ZQ, Z) + ho (ZQ, Z) + hs (ZQ, Z) .

1We take this opportunity to notice that in [4] this check has not been explicitly done.

12



Now:
hs (z0,2) = a(2)b(z) c(20)
with a (+), b () smooth and ¢ (zp) uniformly bounded in zy by the previous bound

BI]). Also,

ha (z0,2) = a(z)b(2)c1 (20)
with ¢ (z0) uniformly bounded in z by the same argument used above to bound
B(zp;71,72). Let us come to hy (z0,2). If Z is any right-invariant differential
operator, then

Zhy (2’0,2) =Za (Z)/ kO(Zo;w) [b (Z ° wfl) _ b(z)] e™I7(B) oy

llwl<po

—|—a(z)/ ko(z0; w) [Zb (zowil) —7Zb (Z)} eTTT(B)dw,
lwl[<po

hence
\Zhy (20, 2)] < c/ ko (20: )| [10] duw < .
lwll<po

Since this procedure can be iterated, we get an upper bound on any derivative
of the kind |Z1Z5...Z;hy (20, 2)|, hence (since the commutators of suitable right
invariant vector fields span RY*+1) also on |[Vhy (29, 2)|. Therefore the function
hi (z0,-) is Lipschitz continuous, uniformly with respect to zp. The function
h* (zp,-) can be handled similarly. This completes the proof of the conditions
which are sufficient to apply [I, Thm 3] and deduce BII]), with a constant ¢
independent of z;. m

In order to deduce Theorem [B.1] from Proposition [3.2] we now need to recall
a covering lemma, see Lemma 21 in [4] (note that this result is not standard
since our space is not globally doubling):

Lemma 3.4 For every ro > 0 and K > 1 there exist v € (0,70), a positive
integer M and a sequence of points {z;};-, C St such that:

Sr < |J By (2); (3.19)
=1
Z XBrr(z) (2) <M Vz e Sr. (3.20)
=1

Proof of Theorem [B.I] Let us apply the previous lemma with 7y as in

Proposition B2 for a fixed r € (0,r¢), with /2 satisfying (819), (320). Pick

A€eCE (B, (0), A=11in B, ;»(0),0 < A<1andlet aj () = A (2, 02).
Let now u € C§° (St). By B19) we can write

P s P e
o <> | =X |
‘ Lr(St) ]; L?(B,2(2k)) ;

Ty
(o]
<> |2, @
k=1

p

L?(B,2(2k))

2
u‘ 0z, U

8§im]‘ (aku)

(3.21)

p
L?(B,(zx))

13



On the other hand, by ([B2]) we have

2.0, (x|

< cllL(arw)ll o B, (54))

LP(Br(zx))
Po
<c ||akLU||Lp(BT(zk)) +2 Z ||8mla'k8mmu||LP(BT(zk)) + ||ULak||Lp(BT(zk))
I,m=1

(3.22)

By recalling that the operators d,,, [ =1, ...,po, and Yy := Zivjzl bijw;0; are
left invariant with respect to the group law o, we have

sup  |Opa (2)] = sup [0n,A(z)] <¢,  I=1,...po,

zE€B,(zk) z€B,(0)
sup [Yoay (2)| = sup [YoA(2)[ <c
2EB,(2zk) z€B,(0)
and
sup |07 o ak (2)| = sup |97, A(2) <S¢, ij=1,2,010
2B, (21) ’ 2€B,.(0) g

As a consequence

sup |Lag (2)] < ¢
z€B(z1)

with ¢ independent of k. Hence (8:22) gives

¢ independent of k. Inserting the last inequality in (B2I]) and recalling (3:20)
we get

&

TiTj

02, (aru)|

<c ||Lu||LP(BT(zk)) +2 Z HammU”Lp(BT(zk)) + ||U||Lp(BT(zk)) )

L2 (B, (21)) =

o]
p

“Noogsry =€ 1{|Lu||LP<B (24) +Z 190wl 2o 5, () + 10l (5, 2 >>}

{nLuan oyt S 10l + |u||ip(ST)}.
m=1

This also gives

> Jot

3,7=1

Po
2 s <cM{|Lu||Lp<ST>+Z ||ammu||msﬂ+||u||Lp<ST>}

m=1

which, by the classical interpolation inequality
c
||8zmuHLP St) <e ||aﬂcmwmuHLP (ST) g HUHLP(ST) )

yields 3I)). So we are done. m

14



4 Appendix: uniform bounds on the fundamen-
tal solution of L,

The aim of this section is to prove the following result, which has been exploited
in the proof of Proposition 3.2l and Theorem [3.3]

Theorem 4.1 There exists a positive constant ¢ independent of zo € St such
that

&
[7(20; Q)| < e’ (4.1)
c .
‘8117(207<)| S W ] = 1, ...y PO, (42)
c .o
8§imj7(20;<)’ S W 1, = 1, ...y PO, (43)

for every € Sar.
Morever, if H C RN is a compact set there exist constants ¢ and M, depending
on H but not on zy, such that

- — _ z7loz

- 1 Iz~ o z]] :
‘3xj’7(20§w 102)—8zj7(30;w 1OZ)| SC/W J=1,...,po,
- IR [ -
8£mj’7(zo§w 102)—83””7(20;“) IOZ) SC/W i,j=1,...,po,

(4.4)

for every z,zw € Sor such that ||z71 o z|| < M|w™oz| and wtoz €
H x [-2T,2T).
The previous estimates still hold replacing v(zo; z) with v(zo;271).

Remark 4.2 The estimates of Theorem[{-1] obviously hold if we replace y(zo; )
with vo(z0; ). In this case we can exploit the homogeneity of v to obtain (EI)—
@3) for every ¢ in the strip RN x [—1,1].

The above theorem will follow by a careful inspection of several arguments
contained in [9] and [I2]. We first need to establish several lemmas.

In the following, Z denotes the N x N matrix

— o O
z._[o O}

where I, is the py X po identity matrix. Moreover, for every ¢ > 0, C (t) is the
N x N matrix defined as follows

C(t) = /O Eo(s)ZEL (s)ds (4.5)
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with Ey(s) as in (Z4). Notice that C(t) > 0 for every t > 0, or, equivalently,
that the operator

Z@i 2, U (x, BoVu(z)) — Oru(z)

is hypoelliptic (see [12]).

The following preliminary lemma holds.

Lemma 4.3 The inequalities below hold true for all zyg € RNTL:

O < (ol V) < MCyy) Wy e B (46)
and 1
N det C(1) < det Co(zp;1) < AN det C(1). (4.7)

Proof. We have that

%I < Azp) < AT for all zp € RNTL

Thus, [@0) holds. Inequalities ({1) are an easy consequence of ([A6]). m

Lemma 4.4 There exist M > 1,T > 0 such that for every x € RN, zy € RN+,
te (0,17,

(C(t)z, x) < (Clz0:t)z, ) < M(C(t)x,z) (4.8)
" % det C(t) < det C(z0;t) < M det C(t). (4.9)
Proof. Tt is a known fact (see [I2, Proposition 2.3]) that
Co (205t) = D(V1)Co (203 1) D(V)
C (t) = D(VH)C (1) D(WT), Vit>0.
Then (@B) implies

%(5(1%)90, 2) < (Colz0: )2, 7) < AMC (), 7). (4.10)

Therefore, to prove (8] it is enough to look for positive ¢1, ¢ such that

c1(Co (203t) z,z) (1 + O(1)) < (C (20;1) z,z)
c2 (Co (205t) z,2) (1 + O(t)) ast—0

(4.11)

<
<
with O(t) uniform w.r.t. zp.
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This follows using the arguments in [I2) p. 46]. Indeed, set 2 = D (
we get

)y

S

(C (20;t) x, x) 14 ((C(z0;t) — Co(z0;t))x, x)

(Co (20;t) @, ) (Co(z0;t), )

(D (&) (Clait) = Colz0s)D (L) w.w)
(Co(z0; 1)y, y) '

Now, by the proof of Lemma 3.2 in [I2] and a careful check of the block de-
composition of the matrices C(zo;t) and Cp(z0;t), see Lemma 3.1 in [12], we
get,

HD (%) (C(z0;t) — Co(z05t))D (%) H <ct ast— 0", (4.12)

uniformly w.r.t. zg. Thus, we get (EIT).
Let us now prove ({9). By [{@I0), we get

1

A det C(t) < det Co(z0:t) < AN det C(t).

Moreover, by ([EIT) there exist positive constants cs, ¢4 such that
c3(1 4 O(t)) det Co(20;t) < det C(z0;t) < ca(1 + O(t)) det Co(z0;t)
as t goes to 07, uniformly w.r.t. zo € RV*1 Thus, @3) follows. m
Now, we turn to prove estimates for C~(zq;-).

Lemma 4.5 The following inequalities hold:

(1) there exist M > 1,T > 0 such that for every x € RN, 2z € RNTL
telo, 17,

1

M(C’gl(zo;t)x,@ <{(C7 M (zp;t)w, x) < M{(C (205 t), ) (4.13)

(2) let Az and Ag be the smallest and the largest eigenvalue of the symmetric

o(8)-

positive definite matriz CN'(l), respectively. Then

o(3)-

for all x € RN and for all zp € RN*1L,

2

! . (414)

A

2 A
<(Cy M=o )z, ) < —
Ae
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Proof. The proof of ([£I3) follows the lines of the proof of (3.10) in [12], using

@12 in place of (3.8) in [12].
As far as ([£I4) it is concerned, we begin noticing that, see [12] p. 42],

Cy ' (z0;t) =D (%) Cy ' (20;1) D (%) ,  Vt>o0.

Thus we have

(C'O_l(zo;t):zr,x> = <C0_1(zo; 1)D (%) z, D <it) x)
. Ly P ()l
< ﬁiﬁw@ (205 1)y, y) ’D <_t> x| = |I;Ti_nl<00é—0; Doa)
By 48 1 A&
min (Co(z0; 1)y,y) = ¢ mi:nl@(l)y,w ==

and the last inequality in ([@I4]) follows. Analogously the first one can be proved.
|

Collecting the results in Lemma 4] and Lemma we easily get the fol-
lowing;:

Proposition 4.6 Let C be defined as in [@D). There exist positive constants
T and m, depending only on the operator L, such that the following inequalities
hold for every t € [—2T,2T), every zo € RN and every x € R :

(a) %@(t):c,:@ < (Clz; t)a, @) < m{C(t)a, x);

(b) 1 det C(t) < det C(z0;t) < mdet C(t);
m

o 2fo(8)-

The above estimates, together with the procedure in [9] proof of Proposition
2.7], imply the uniform bounds in Theorem FTl for v(zp; 2). To prove analogous
estimates for v(z0; 271) and its derivatives, one can proceed in a similar way.

2 2

<A{(CMzpit)x, ) <m ‘D (%) T
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