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Construction of microorganisms for consolidated 
bioprocessings: economic motivation and strategies 

 
Cellulose biomass is the largest waste produced by human 

activities and the most attractive substrate for “biorefinery strategies” 
to produce high-value products (e.g. fuels, plastics, enzymes) [1, 2]. 
The current price for cellulosic biomass, i.e. $50/ metric ton, makes 
it less expensive than all other energy sources [1]. Nonetheless, plant 
biomass is highly recalcitrant to biodegradation. No natural 
microorganisms able of efficient single-step cellulosic biomass 
fermentation, i.e. consolidated bioprocessings (CBP), into valuable 
products have been isolated so far. Traditional biomass bioconversion 
processes require extensive feedstock pre-treatment (e.g. by steam-
explosion and/or acid treatment) and the addition of exogenously 
produced cellulases [3, 4]. From study to study, depending on 
calculation methods and base-case to be compared, enzyme 
production impact on the whole bioconversion process cost has been 
widely differently estimated [5, 6]. However, the cost of added 
enzyme does not show a decreasing trend over time and still is a major 
constraint to cost-effective processing of cellulosic biomass [6]. At the 
low end of recent estimates, i.e. 0.50 $ per gallon ethanol, the cost of 
added   enzymes   is   comparable   to  feedstock  purchase  cost  thus 

  
 
 
 
 
 

 
 

eliminating the economic advantage of cellulosic biomass relative to 
corn [1, 6]. Process cost reduction can be obtained by CBP through 
simpler feedstock processing, lower energy inputs, higher rates and 
yields, although, in some cases, economic advantages of CBP might 
have been over-estimated or evaluated on assumptions that may be 
difficult to realize [4-7]. 

Native plant degrading microorganisms synthesize extracellular 
multiple enzyme systems that have different substrate specificities (e.g. 
cellulases, xylanases, pectinases) and catalytic mechanisms (i.e. 
endoglucanases, exoglucanases, processive endoglucanases and β-
glucosidases) [3, 8, 9]. Enzymatic proteins can be either free or 
physically associated to form complexes called “cellulosomes” [3, 8]. 
Cellulosomes are typical of anaerobic strains (e.g. Clostridium spp. 
and Ruminococcus spp.) and are by far the most efficient biochemical 
systems for cellulose degradation [3, 8, 10-12]. Cellulosome 
architecture is organized by “scaffoldins”, which are able to recruit 
catalytic proteins by cohesin-dockerin interactions and improve 
complex affinity for the substrate via carbohydrate binding domains 
(CBMs) [3, 8] (Figure 1). In some strains, e.g. Clostridium 
thermocellum, Clostridium cellulovorans and Ruminococcus 
flavefaciens, scaffoldins also provide cell wall binding through 
covalent or non-covalent interactions [8]. 

Construction of recombinant microorganisms for CBP can be 
pursued via two alternative approaches [2-4]. Native cellulolytic 
strategies (NCSs) aim at introducing and/or improving high-value 
product biosynthetic pathways into natural cellulolytic strains. The 
purpose of recombinant cellulolytic strategies (RCSs) is to confer 
cellulolytic ability to microorganisms with valuable product formation 
properties and include heterologous cellulase expression. The next 
sections will describe limitations of each of these approaches and 
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Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step 
biomass fermentation (consolidated bioprocessing, CBP). Two paradigms have been applied for such, so far unsuccessful, attempts: 
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cutting edge solutions that were applied or could be employed in the 
construction of recombinant cellulolytic strains. 
 

 
 
  
 
 
 
 
 
 

 
 

 
Strain development via native cellulolytic strategies 
 

NCSs are currently hampered by some common limitations. Most 
native cellulolytic strains have been recently isolated from natural 
environments and are poorly characterized. Genetic manipulation 
tools have been set-up for relatively few of them. As far as cellulolytic 
fungi are concerned, most engineering efforts have been addressed to 
increasing cellulase production, although there is increasing interest in 
biofuel production engineering [6, 13-14]. C. thermocellum and C. 
cellulolyticum are the most established cellulosome-forming 
microorganisms [6, 15-17]. Furthermore, the metabolism of few 
strains has been investigated in depth, with C. cellulolyticum as by far 
the best characterized microorganism [7, 18]. Even in strains with 
fully sequenced genomes, many genes are annotated as hypothetical 
while others may have been improperly annotated since their function 
was deduced on the base of amino acid sequence homology only [7]. 

In addition, problems connected with the construction of 
recombinant strains for specific compound production occur. Biomass 
biorefinery potential for sustainable production of a large spectrum of 
high value products, such as building block chemicals (e.g. succinic 
acid, lactic acid, isoprene), higher alcohols, lipidic compounds, fine 

chemicals (e.g. vitamins, antibiotics), has been extensively reviewed 
[19-21]. Production of H2, ethanol and butanol has been targeted in 
this study because of their huge potential as biofuels [1, 2, 7]. 
 
Improving hydrogen production in cellulolytic microrganisms 

A number of anaerobic cellulolytic bacteria, including several 
Clostridia (e.g. C. cellulolyticum, C. cellulovorans, C. termitidis and 
C. thermocellum), Ruminococci (e.g. R. albus) and the extreme 
thermophile Caldicellulosiruptor saccharolyticus, are able to produce 
H2 [7, 22]. However, H2 yields obtained by direct cellulose 
fermentation are usually low because of other metabolic pathways (e.g. 
producing acids, alcohols and ketones) which compete with proton 
reduction to H2 for electron donors, i.e. reduced Ferredoxin (Fdred) 
and/or NAD(P)H [7, 23]. H2 yields of mesophilic cellulolytic 
bacteria generally range from 1 to 2 mol H2/mole hexose sugar, while 
values close to the theoretical maximum of 4 mol H2/ mole hexose 
sugar can be obtained by hyper thermophiles such as C. 
saccharolyticus [7, 23]. 

Fermentative pathways either promoting or competing with H2 
biosynthesis have mostly been studied in Clostridium sp. [7, 24] and 
are depicted in Figure 2.  

H2ases are regarded as the most efficient enzymes catalyzing either 
proton reduction (i.e. H2-evolving H2ases) or H2 oxidation (i.e. 
“uptake” H2ases) [24]. Construction of strains with improved H2 
production has been carried out by deletion of genes encoding 
“uptake” H2ases and/or overexpression of H2-evolving enzymes [25-
26]. Engineering more efficient H2-evolving proteins has also been 
proposed to increase H2 yield and/or productivity [27-28]. However, 
these strategies appear to have limited potential since all H2ases, 
although preferentially directed, are known to be reversible [7, 29]. 

Greater H2 yields could be obtained through repression of 
competing pathways (i.e. producing more reduced end-products than 
acetate) (Figure 2) [7, 29]. Deletion of ldhA in hemicellulolytic 
Thermoanaerobacterium sp. either had no effect or increased H2 
production by 2-fold, depending on the strain, while repression of 
acetate production by ack and pta knockout reduced H2 yields by 
more than 25 fold [30-31]. Recent papers reported repression of 
lactate and/or acetate production in C. cellulolyticum and C. 
thermocellum by Ldh or Ack/Pta gene inactivation, respectively, but 
effects on H2 production were not studied [16, 32-34]. Suppression 
of butyrate production was recently obtained in C. acetobutylicum 
and Clostridium butyricum by inactivation of hdb gene encoding 3-
hydroxybutyryl-CoA dehydrogenase [35-36]. However, H2 
production strongly decreased in both strains. Elimination of ethanol 
formation alone did not increase H2 production in C. butyricum [37]. 

Actually, the H2 metabolic network in strict anaerobes is very 
complicated. A paradigm for this is the high diversity of clostridial 
hydrogenases and the existence of multiple forms, likely involved in 
different functions (e.g. redox balancing, derivation of energy from H2 
oxidation, proton respiration and/or proton-gradient build-up) 
within one species [24]. Recently, members of the so called 
bifurcating hydrogenases have been identified in several clostridia, 
including cellulolytic strains [24, 38]. Among them, butyryl-CoA 
dehydrogenases/EtfAB (Bcd/EtfAB) complex from Clostridium 
kluyveri couples NADH-dependent exergonic reduction of crotonyl-
CoA to butyryl-CoA to endergonic reduction of Fd which can be 
used for H2 production [38]. Discovery of such complex in clostridia 
provides a clue to H2 yield decrease in strains in which butyrate 
production was suppressed by Hdb inactivation. More detailed 
understanding of the metabolic networks involved in H2 production is 
definitely essential for successful engineering of H2 hyper producing 
strains.  

Figure 1. Simplistic model of a cellulosome that includes only one 
anchoring scaffoldin. The scaffolding protein (blue) binds the enzymatic 
components through cohesin-dockerin interactions, enhances the 
cellulosome affinity for cellulose through the CBMs, and anchors the 
cellulosome complex to the cell surface through either non-covalent (by 
means of multiple S-layer homology domains) or covalent (mediated by 
sortases) bonds. Apart from the catalytic domains, cellulosomal enzymes 
include dockerin modules and, possibly, additional domains (e.g. CBM, 
SLH) (modified from [60]). 
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It is worth to note that, even if 4 mol H2/mole glucose yield was 
attained, still H2 production from cellulose would not be competitive 
with other cellulosic biofuels because of lower yields and higher waste 
by-product disposal [27-28]. Theoretical analyses have suggested that 
yields close to the stoichiometry maximum of 12 moles H2/mole 
glucose are possible by redirecting glucose catabolism through the 
pentose phosphate pathway or by further acetyl-CoA oxidation 
through citric acid cycle [27-28]. More profound metabolic 
modification of natural cellulolytic strains will be necessary to assess 
in vivo feasibility of such strategies. 
 
Challenges for cellulosic ethanol/butanol production by CBP 

 
Metabolic engineering strategies aimed at developing ethanol 

and/or butanol hyperproducing strains face two main challenges: a) 
the construction of solvent tolerant strains; b) the achievement of high 
solvent yield, titer and productivity. 

Distinct biochemical systems are generally involved in solvent 
resistance and biosynthesis. “Titer gap” is defined as the difference 
between the maximum concentration of a compound that is tolerated 
when it is added to a culture and the maximum concentration of that 
compound that is biosynthesized by a strain [6]. The development of 
C. thermocellum strains able to tolerate added ethanol concentrations 
exceeding 50 g/l has been reported. However, the maximum ethanol 
titer produced by this organism remains at about 25 g/l [6]. A 
number of engineered strains, such as Termoanaerobacterium 
saccharolyticum, showed solvent production titers exceeding the same 
solvent tolerance exhibited in exogenous addition experiments [6, 39]. 
The latter observations provide increasing support that with sufficient 
effort, stoichiometric yields of engineered products can be achieved. 
 
Development of solvent tolerant strains 

The main solvent toxicity is attributed to chaotropic effects on 
biological membranes [40-41]. Compound toxicity is related to its 
partition in an equimolar mixture of octanol and water, i.e. log P [40]. 
The higher is solvent polarity the lower is log P. Molecules with log P 
below 1 or above 4 are scarcely toxic since they are too hydrophilic to 
enter the membranes or too hydrophobic and therefore not 
bioavailable, respectively [40]. In this respect, n-butanol (log P ≈ 1) is 
more toxic than ethanol (log P = -0,18). Even in native solvent 
producers, such as C. acetobutylicum, 50% growth inhibition occur 
for butanol concentration as high as 7–13 g/l and metabolism ceases 
once solvent reaches 20 g/l [41-42]. Continuous extraction of 
solvents form the culture medium or two-phase (organic-aqueous) 
fermentation systems can be employed to overcome solvent toxicity, 
but they increase industrial process complexity and/or cost [39-40, 
42]. The development of strains with superior tolerance features is 
therefore essential for sustainable production of biofuels [41]. 

Solvent accumulation within biological membranes increases 
membrane fluidity and negatively affects membrane processes, e.g. 
energy generation and nutrient transport [40]. Moreover, solvents 
may cause protein and RNA unfolding and degradation and DNA 
and lipid damage [40-41]. In this respect, proteins involved in 
cellulose hydrolysis are less affected than cells by high solvent 
concentration and cellulosomes appear less sensitive than free 
cellulases [43-44]. In response, cells induce complex stress 
mechanisms that include alterations in cell envelope composition, 
biosynthesis of heat-shock proteins and solvent active transporters 
(i.e. efflux pumps) and changes in cell size and shape [40-41]. 
However, the activation of solvent resistance systems increases cell 
energy expenditure. High energy costs are associated with efflux 
pumps and repair or re-synthesis of damaged macromolecules [40-

41]. The consequences of such system activation on cell energy 
balance should be included in theoretical calculations of maximum 
solvent production yields. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Development of solvent tolerant strains has been performed by 

different strategies. In some cases solvent tolerant mutants also 
showed increased solvent production. Utilization of random 
mutagenesis by chemical or physical methods or by using transposable 
genetic elements has been reported [41]. C. beijerinckii BA101, a 
butanol-tolerant mutant obtained by chemical methods, showed cell 
inhibition at 23 g/l butanol rather than 11 g/l typical of the wild-
type (WT) strain as well as improved solvent production [42]. An 
alternative strategy relies on overexpression of proteins involved in 

Figure 2. Overview of Clostridium sp. central metabolic pathways. 
Pathways for butanol, ethanol and hydrogen production are highlighted in 
green, red and blue, respectively. Redox reactions involving NAD(P) or Fd 
and ATP generating reactions have been indicated. Glucose is catabolized 
through the Embden-Meyerhof route. Formate oxidation to H2 and CO2 by 
Formate Hydrogen Lyase (Fhl) occurs in enteric bacteria and in some 
species of Clostridium, although has not been observed in cellulolytic 
species like C. thermocellum so far [7]. Abbreviations: 1,3 BPG, 1,3 
bisphosphoglycerate; Acetyl-P, acetyl phosphate; Butyryl-P, butyryl 
phosphate; Fd, ferredoxin; Ack, acetate kinase; Adc, acetoacetate 
decarboxylase; AdhE, aldehyde/alcohol dehydrogenase; Atk, acetate 
thiotransferase; Bcd, butyryl-CoA dehydrogenase complex; Buk, butyrate 
kinase; Crt, crotonase; CtfAB, acetoacetyl-CoA:acyl-CoA transferase; Fnor, 
ferredoxin:NAD(P)+ oxidoreductase; H2ase, hydrogenase; Hbd, 3-
hydroxybutyryl-CoA dehydrogenase; Ldh, lactate dehydrogenase; Pfor, 
pyruvate:ferredoxin oxidoreductase; Pdc, pyruvate decarboxylase; Pta, 
phosphotransacetylase; Ptb, phosphotransbutyrylase; Thl, thiolase. 
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solvent resistance (e.g. heat-shock proteins, efflux pumps, enzymes 
changing membrane lipid composition) [45-47]. The overexpression 
of GroES and GroEL in C. acetobutylicum resulted in 85% less 
growth inhibition by butanol and 30% improved butanol production 
[45]. Global approaches, e.g. the construction of genomic and 
deletion libraries and the utilization transcriptomic and proteomic 
techniques, have been employed so as to expand the number of genes 
identified as involved in solvent tolerance [41]. The construction of a 
C. acetobutylicum genomic library led to the identification of 16 
genes contributing to butanol tolerance [48]. The overexpression of 
one of them, i.e. CAC1869, in C. acetobutylicum resulted in 81% 
increase in cell density in a butanol-challenged cultures. A more 
straightforward approach to achieve solvent tolerant phenotype is in 
vivo directed evolution under selective pressure. Cellulolytic C. 
thermocellum strains able to tolerate ethanol concentrations as high as 
80 g/l were developed by adaptation approaches [49-50]. Whole 
genome shuffling (WGS) can be used to improve phenotypes 
obtained through random mutagenesis and/or in vivo evolution [41]. 
Applications of WGS for improving butanol tolerance have recently 
been reported [51-52]. C. acetobutylicum DSM 1731 mutants able 
to tolerate up to 19 g/l butanol were isolated, although butanol titers 
obtained by batch fermentations using this strain did not exceed 15.3 
g/l [52].  

The same approaches could be successfully applied for developing 
other ethanol tolerant or butanol resistant cellulolytic strains. 

 
Engineering efficient ethanol production in cellulolytic 
microorganisms 

Several cellulolytic bacteria, such as Clostridium sp. (e.g. C. 
thermocellum and C. cellulolyticum), and fungi, such as Rhizopus, 
Aspergillus, Neocallimastix, and Trichoderma, can synthesize ethanol 
although their yields and/or titers and /or productivities are 
insufficient for direct utilization in CBP [6-7, 14]. Ethanol can be 
produced from pyruvate via two pathways (Figure 2): (i) pyruvate 
oxidative decarboxylation by Pfor and subsequent acetyl-CoA 
reduction to acetaldehyde and finally to ethanol; (ii) the pyruvate 
decarboxylase (Pdc) catalyzed conversion of pyruvate to acetaldehyde 
which is reduced by alcohol dehydrogenase (Adh) (Fig. 2). Clostridia 
generally employ the first pathway, however, a Pdc gene has been 
identified on the pSOL1 megaplasmid of C. acetobutylicum [36]. 

Rational metabolic engineering to increase ethanol yield and 
purity has been performed by two main strategies: introduce 
heterologous gene, and disrupt genes involved in by-product 
formation that compete with ethanol synthesis [34]. 

The first strategy, by employing the expression of Zymomonas 
mobilis Pdc and Adh genes, was applied to C. cellulolyticum [53]. 
Yet, acetate was the main end-product of the recombinant C. 
cellulolyticum. As compared to the wild type strain, acetate 
production was improved by 93% whereas final ethanol 
concentration was increased by 53% only [53]. 

Significant ethanol yield improvement was recently obtained by 
targeted gene disruption. The inactivation of a single gene, i.e. hdb, 
involved in butyrate synthesis in C. acetobutylicum, led to a strain 
with impressive ethanol yield (i.e. 0.38 g/g of glucose) and 
productivity (i.e. 0.5 g/l/h) [36]. Fed-batch cultures of the 
engineered C. acetobutylicum resulted in final ethanol amount of 33 
g/l [36]. Ethanol titer obtained by a hdb-deficient C. butyricum was 
18-fold higher that in the WT strain [35]. hdb deletion could be 
applied for improving ethanol production in butyrate producing 
cellulolytic clostridia, such as C. cellulovorans and C. 
thermopapyrolyticum [54]. 

Repression of acetate biosynthesis by inactivation of Pta and/or 
Ack has been suggested as a key modification for driving pyruvate flux 
towards ethanol [16]. However, disruption of the pta gene in C. 
thermocellum did not increase final ethanol amounts and led to severe 
growth deficiency as concerns both growth rate and final biomass 
[16]. Actually, acetyl-CoA conversion to acetate is a key pathway for 
metabolic energy production via SLP in clostridia [7, 35]. Indeed, 
attempts to construct pta or ack inactivated C. cellulolyticum strains 
were unsuccessful, so far [34]. 

Strategies employing Ldh disruption were more successful. A C. 
cellulolyticum H10 double mutant, where both Ldh paralogs, i.e. 
Ccel_2485 and Ccel_0137, were disrupted showed remarkable 
production of 0.27 g of ethanol per g of crystalline cellulose [34]. 
Similar ethanol yields from crystalline cellulose were obtained with a 
C. thermocellum strain that was constructed by both ldh and pta 
disruption [32]. However, maximum reported titers (5.61 g/l) remain 
low for this strain application to CBP [32]. 

Impressive results were obtained by deletion of ack, ldh and pta in 
the hemicellulolytic T. saccharolyticum [30]. The engineered strained 
showed homoethanologenic metabolism with maximum ethanol 
productivity and titer up to 2.2 g/l/h and 65 g/l, respectively [6, 
30]. 
 
Alternative strategies for engineering butanol production in 
cellulolytic strains 

All natural butanol producers belong to the genus Clostridium. 
The highest butanol amounts are synthesized by C. acetobutylicum, 
C. beijerinckii, C. saccharobutylicum, and C. 
saccharoperbutylacetonicum [39]. Development of C. acetobutylicum 
or C. beijerinckii strains with improved butanol production (i.e. titers 
up to 19 g/l) by random mutagenesis or rational metabolic 
engineering was reported [41, 45]. However, none of these strains can 
directly ferment cellulose. Few cellulolytic clostridia producing very 
low butanol amounts include four recently isolated strains [54-55]. By 
developing effective gene manipulation tools, butanol production in 
these microorganisms could be improved by applying strategies that 
were previously set up in more established butanol producers. 

The expression of the clostridial butanol biosynthetic pathway in 
heterologous hosts, such as native cellulolytic bacteria, seems an 
alternative promising strategy. The whole C. acetobutylicum butanol 
pathway, i.e. thl, crt, bcd, etfB, etfA, bcd, and adhE genes (Figure 2), 
was introduced in well-established and/or solvent tolerant 
heterologous hosts (e.g. E. coli and Pseudomonas putida), but the 
highest reported butanol titers, i.e. by E. coli BUT2, were 1184 mg/l 
[56-57]. Inefficient or imbalanced heterologous gene expression and 
low catalytic efficiency of some C. acetobutilicum enzymes (i.e. 
thiolase and butyryl-CoA dehydrogenase), have been hypothesized as 
the main causes of such low butanol production [57-58]. A chimeric 
butanol biosynthetic pathway was constructed in E. coli by assembling 
genes from three different organisms [58]. The clostridial Bcd was 
replaced by Treponema denticola trans-enoyl-CoA reductase (Ter). 
Both enzymes catalyze crotonyl-CoA reduction to butyryl-CoA, but 
Ter reaction is more exoergonic since it does not involve concomitant 
Fd reduction. Anaerobic fed-batch cultures of recombinant E. coli 
resulted in the impressive production of 15 g/L of butanol [58]. 

Strategies for efficient expression of the C. acetobutylicum 
butanol biosynthetic pathway in other clostridium sp. hosts, such as 
C. tyrobutyricum, might be less complex [59]. Since C. tyrobutyricum 
possesses its own butyrate biosynthetic pathway, the introduction of 
the C. acetobutylicum acetaldehyde/alcohol dehydrogenase AdhE2 
and either ptb or ack inactivation, significantly diverted carbon flux 
from acetate and butyrate to butanol. About 10 g/l butanol was 
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obtained by glucose fermentation [59]. This strategy could be 
successfully applied to other butyrate producers, such as cellulolytic 
C. cellulovorans.  

For a long time only the clostridial route to butanol synthesis has 
been known, but recently the in vivo construction of alternative 
pathways has been reported [19, 39]. Direct conversion of crystalline 
cellulose to isobutanol was performed by a modified C. cellulolyticum 
by the introduction of an engineered valine biosynthetic pathway [15] 
(Figure 3). 
 

 
 

 
 
 
 
 

 
Recombinant cellulolytic strategies: efficient heterologous 
cellulase system expression and beyond 
 

The secretion of efficient designer cellulase systems in 
heterologous hosts is among the most challenging tasks of RCSs [60]. 
The strategies for both i) the design of efficient artificial cellulase 
systems and ii) their efficient secretion in strains with product 
formation features will be detailed in the next sections. In-depth 
analyses of natural cellulolytic microorganisms metabolism provide 
further insights for improving recombinant strains by central 
metabolic pathway engineering, as described in a further section. 
 
Design of efficient artificial cellulase systems: from nature to 
application 

Minimal enzyme systems able to catalyze efficient cellulose 
hydrolysis contain at least an exoglucanase (Exg, i.e. either a 
cellodextrinase, EC 3.2.1.74, or a cellobiohydrolase, EC 3.2.1.91), an 
endoglucanase (Eng, EC 3.2.1.4) and a β-glucosidase (Bgl, EC 
3.2.1.21) [3]. Yeast strains secreting a Bgl, a Exg and a Eng were able 
to directly ferment pretreated Whatman paper to ethanol with yields 

up to 94% of the theoretical maximum [61]. If RCSs involving 
heterologous expression of complexed cellulases (i.e. minicellulosomes 
or designer cellulosomes) are concerned, the additional expression of a 
scaffolding protein that consists of at least two cohesins is required 
for functional complex assembly [3]. 

In both free-cellulase and cellulosome biosynthesizing native 
organisms, optimal biomass degradation is obtained by secretion of 
non-equimolar ratios of different protein components with Exgs 
generally among the most abundant enzymatic subunits [3]. Indeed, a 
Saccharomyces cerevisiae strain that was engineered by introduction of 
two heterologous cellobiohydrolases only was able to hydrolyze up to 
6 g/l of crystalline cellulose in 168 hours [62]. However, an in depth 
rationale able to explain and possibly predict which enzyme partners 
can act with the highest synergism degree is currently unavailable. 
Such information is essential to design optimized mixtures containing 
the minimal number of enzymatic subunits enabling efficient cellulose 
hydrolysis. 

Exgs generally have a tunnel-shaped active site which retains a 
single glucan chain and prevents it from re-adhering to the cellulose 
crystal, thus enabling them to catalyze processive crystalline cellulose 
degradation from either the reducing or non-reducing end [9, 63]. 
Engs instead have cleft-shaped open active site which can cleave 
internal bonds of amorphous cellulose only [9, 63]. However, 
processive Engs, which are active on crystalline cellulose also, have 
also been discovered. Most processive Engs consist of a family 9 
catalytic domain attached to a family 3c CBM [9, 649]. CBMs 
promote cellulase stable binding to cellulose, yet they allow the 
enzymes to diffuse along the cellulose chain. In some cases, CBM 
ability to disrupt non-covalent interactions between cellulose chains of 
crystalline cellulose has been demonstrated [63, 65]. 

A number of experimental observations indicate that cellulosomes 
are more effective than free enzymes, with special regards to insoluble 
(i.e. crystalline) cellulose hydrolysis, likely because the improved 
proximity enhances enzyme synergism [10-12]. However, in-depth 
understanding of the mechanisms that drive protein assembly and 
spatial organization in such complexes is still incomplete [8-9]. 
Cellulosome-biosynthesizing microorganisms adapt complex 
composition to the available substrate(s) and assembly non-equimolar 
ratios of the different subunits for optimal substrate degradation [66-
68]. Cellulosome composition likely depends on both the relative 
amounts of available subunits and their differential affinity for 
cohesin domains, but with different extents depending on the 
microbial strain [69]. While within C. cellulolyticum and C. 
thermocellum cohesin-dockerin interaction seems to be non-selective 
or characterized by slightly different dissociation constants, up to 
100-fold differences in binding affinities have been observed in C. 
josui and C. cellulovorans [11, 69]. 

Recent studies showed that linker regions that connect cohesins in 
scaffoldins are crucial for cellulosome plasticity and catalytic 
efficiency [70-71]. Linker flexibility enables cellulosome 
conformation to adapt to the substrate and allows glycosyl hydrolases 
(GHs) to work in close synergism through proximity effect [70-71]. 
Linker flexibility and length appear key factors mainly for very 
complicated and cell-bound cellulosomes, that likely need more 
extensible conformations [71]. Recent studies suggest that CBM3s, 
apart from promoting cellulosome binding to the substrate, could also 
induce conformational changes in the quaternary structure of 
cellulosomes through direct interaction with linker segments 
[72]. Cohesin–dockerin dual binding mode, i.e. the ability of 
dockerin-containing proteins to bind the cognate cohesin by two 
different orientations, also contribute to complex plasticity [73]. 

Which catalytic efficiency on native substrates can be expected for 
minicellulosomes with respect to natural complexes ? Experimental 

Figure 3. Synthetic pathway for isobutanol production in C. 
cellulolyticum [15]. Abbreviations: AlsS, B. subtilis α-acetolactate 
synthase; IlvC, E. coli acetohydroxyacid isomeroreductase; IlvD, E. coli 
dihydroxy acid dehydratase; KivD, L. lactis ketoacid decarboxylase; 
AdhA/YqhD E. coli and L. lactis alcohol dehydrogenases. 
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evidences suggest an almost linear correlation between the number of 
cohesins that are beared by a scaffoldin and the activity on crystalline 
cellulose [11, 74]. The specific activity on crystalline cellulose of C. 
thermocellum minicellulosomes assembled by three-cohesin bearing 
mini-scaffoldin CipA was about 38% as compared to complexes 
containing the full-length CipA, which consists of 9 cohesins [11]. 
However, specific activity of designer cellulosomes or cellulase 
mixtures can be significantly increased by enzymatic components with 
superior activity either selected among the continuously increasing 
number of newly isolated GHs or developed through directed 
evolution or rational design [9, 12]. 
 
Strain engineering with designer cellulase systems 

Cellulolytic aerobic fungi (e.g., Trichoderma reesei) usually secrete 
high amounts (i.e. >1 to 10 g/l) of GHs. Although cellulosome-
forming microorganisms biosynthesize lower cellulase levels (i.e. ≈ 
0.1 g/l), cellulase amount as high as 10 to 20 % (w/w) of whole 
cellular proteins was estimated in C. thermocellum [12]. 

State-of-the-art molecular biology enables the production of large 
amounts of cellulases in heterologous hosts by choosing one among 
the several mechanisms, at either mRNA or protein level, that regulate 
gene expression in microorganisms [60, 62]. 

Heterologous cellulase gene expression under the control of 
constitutive transcriptional promoters appears the most appropriate 
for strains aimed to biorefineries, since it avoids the non negligeable 
supplemental cost of large amounts of specific inducers [60]. By 
randomized or combinatorial methods, libraries of transcriptional 
promoters showing strengths within a range of three orders of 
magnitude can be easily constructed [75]. Improvement of mRNA 
stability and translation efficiency can be used as further tools to 
increase the expression of heterologous cellulases (for extensive review 
refer to [60]) 

A more challenging task of RCSs is the coordinated expression of 
multiple heterologous genes that are required for efficient cellulose 
degradation [60, 76]. Since cellulase system optimal activity is 
obtained for non-equimolar ratios of the different components, the 
use of multiple transcriptional units under different promoter control 
will probably be required. As detailed understanding of mRNA 
processing and post-trascriptional mechanisms in microorganisms is 
increasing, more elegant systems, e.g. fine tuning of artificial 
polycistronic operons by differential RNA stability and/or 
translation efficiency in bacteria, will be probably available. The 
design of artificial multifunctional GHs and/or “covalent” 
cellulosomes could provide efficient cellulose hydrolysis without the 
need of coordinated multiple gene expression [77]. The engineering 
of cellulases with superior activity on native substrates could also 
compensate for low secretion yields.  

The main concern of RCSs is to find efficient and reliable 
secretion methods. The products of genes coding for clostridial 
cellulosomal components including their original signal peptide, were 
efficiently secreted by C. acetobutylicum and Lactobacillus plantarum 
[60, 78]. In other cases, efficient cellulase secretion was promoted by 
the replacement of original signal peptides by either signal peptides of 
efficiently secreted autologous proteins or optimized synthetic 
sequences [79-80]. Nowadays, insufficient understanding of high 
complexity and specificities among different microorganisms in 
protein secretion mechanisms, severely limits the number of targeted 
approaches that can be used for improving heterologous protein 
secretion [60]. We are currently unable to predict if a cellulase will be 
secreted in high amounts in a recipient strain or it will result in 
saturation of membrane translocation mechanisms and cell toxicity. 
Nonetheless, significant progress has been achieved by trial and error 

approaches, as well documented by studies on C. acetobutylicum and 
S. cerevisiae [62, 78, 81]. First attempts to express C. cellulolyticum 
Cel48F and Cel9G in C. acetobutylicum were unsuccessful. C. 
acetobutylicum deficiency of specific chaperone(s) that maintain 
family 48 and 9 GHs in a competent state for translocation was 
hypothesized [78]. However, Cel48F/Cel9G engineering with 
CBM3a and X2 modules of the C. cellulolyticum CipC scaffoldin 
prevented toxic effects and triggered enzyme secretion in C. 
acetobutylicum [81]. Prior to this study, the function of X2 domains 
was unknown. By selecting the most efficiently secreted enzymes from 
a large panel of heterologous Exgs, recombinant S. cerevisiae secreting 
up 1 g/l of cellobiohydrolases could be engineered [62]. Secreted 
heterologous cellulase amount was estimated as high as 4% of total 
cell protein of the recombinant S. cerevisiae, demonstrating that with 
sufficient efforts secretion of cellulase levels which are comparable to 
those observed in native cellulolytic strains is possible. Selected strains 
from Kluyveromyces spp. and S. cerevisiae expressing a library of 
cellulases were able to directly convert crystalline cellulose up to 0.4-
0.5 g/l of ethanol without any externally added enzyme [82]. 
Furthermore, cultures of such engineered strain were able to ferment 
crystalline cellulose to ethanol with 30% of the maximum theoretical 
yield, when supplemented with commercial β-glucosidase [62]. 

In order to avoid the hydrolysis of the heterologously expressed 
cellulases, utilization of protease inactivated strains, such as B. subtilis 
WB800 and L. lactis HtrA mutants, may be required [79, 83]. 

Microbial cell surface binding enhances cellulase activity [12, 79]. 
Higher activity of cell-bound as respect to cell-free cellulosomes is 
obtained by limited escape of hydrolysis products and minimal 
distance products must diffuse before the cellular uptake occurs [12, 
79]. The effect of such improved synergism is particularly evident on 
crystalline cellulose as compared with amorphous substrate 
degradation [12]. 

So far, designer cellulosomes binding up to 3 catalytic subunits 
have been functionally displayed on the surface of engineered 
microbial hosts. Such minicellulosomes have covalently been linked to 
the cell wall of the yeast S. cerevisae by means of agglutinin/flocculin 
display system [68, 84]. Trifunctional-minicellulosome-displaying S. 
cerevisiae was able to ferment amorphous cellulose to ethanol with 
62% of the theoretical yield [84]. A non-covalent surface display 
system for lactic acid bacteria has been developed by target protein 
fusion with the C-terminal cA peptidoglycan binding domain of the 
major autolysin AcmA from L. lactis [60]. Fragments of the 
scaffolding protein CipA of C. thermocellum have covalently been 
anchored at the surface of L. lactis by fusing them with the C-
terminal anchor motif of the streptococcal M6 protein, a sortase 
substrate [79]. A similar strategy was used to covalently link 
engineered C. thermocellum scaffoldins and cellulases to the B. 
subtilis cell wall [83]. Higher amounts of surface displayed constructs, 
i.e. about 3 x 105 per cell, were estimated in engineered B. subtilis 
[83]. Recently, a designer cellulosome consisting of two scaffoldins, 
one involved in catalytic component binding and the other mediating 
cell-surface anchoring, was expressed in S. cerevisiae to improve 
complex-display level [85]. The recombinant strain was able to 
directly ferment crystalline cellulose to ethanol. Although the reported 
yields are low, as far as I know this is the first microbial strain able to 
biosynthesize by itself functional minicellulosomes enabling  
significant crystalline cellulose hydrolysis. 
 
Lessons from natural cellulolytic microorganisms 

Research on native cellulolytic strains, suggests that cellulose 
hydrolysis is not the only bottleneck of cellulose metabolism [18]. As 
compared with soluble sugar metabolizing bacteria, anaerobic 
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cellulolytic bacteria have limited carbon consumption rates and 
growth capabilities, which raise some concerns about maximum 
productivity that could be obtained by industrial cellulose 
bioprocessing. 

However, improved conversion efficiencies by recombinant 
microorganisms developed by RCSs, could be obtained by 
introducing cellodextrin membrane transporters [86]. The uptake of 
cellulose hydrolysis product by cellulolytic microorganisms mainly 
consists in the transport of cellodextrins with a polymerization degree 
up to 7 which are degraded into the cytoplasm by phosphorolytic 
cleavage. Both cellodextrin uptake and phosphorolytic cleavage 
contribute to high bioenergetic benefits of cellulose with respect to 
glucose or cellobiose metabolism in native organisms [18]. These 
activities could be engineered in heterologous hosts for optimized 
valuable product yields and productivity by CBP. 

Metabolic flux analysis could be an essential tool to identifying 
further bottlenecks of cellulose catabolism in native cellulolytic 
microorganisms and improve recombinant strains by rational 
engineering of central metabolic pathways. Alternatively, evolutionary 
engineering strategies by continuous culture under selective pressure 
could be applied to optimize cellulose overall metabolism in 
recombinant microorganisms [60].  
 
Conclusions and future perspectives 
 

Both native recombinant strategies and recombinant cellulolytic 
strategies have made considerable progress. Outstanding results 
include the construction of C. cellulolyticum and C. thermocellum 
strains able to ferment crystalline cellulose to ethanol with yields close 
to 60% of the theoretical maximum and free cellulase-secreting or 
minicellulosome-displaying yeasts able to directly convert crystalline 
cellulose to ethanol [32, 34, 82, 85]. Yet, such strains are far to meet 
the yields, titers and productivities that are required for economically 
sustainable cellulose CBPs. 

Rational engineering of biological systems so as to reach the high 
performances that are demanded by industrial processes will probably 
require the use of computational methods which can integrate: gene 
network regulation data; detailed information on in vivo enzyme 
catalytic parameters and metabolic fluxes; bioenergetics parameters 
(e.g. the energy demand of solvent tolerance mechanisms or cellulase 
biosynthesis, and biological reaction thermodynamics). Furthermore, 
this information will enable synthetic biology strategies to design new 
metabolic pathways for the conversion of cellulosic biomass into a 
virtually unlimited number of valuable products [39, 67]. 
 
 
Acknowledgements 
 

Many thanks to Prof. Enrica Pessione for helpful discussion and critical 
reading of the manuscript. 
 
 
 
 
 

 

 

 

References 
 
1. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, et al. (2008) 

How biotech can transform biofuels. Nat Biotechnol 26: 169-172. 
2. Alper H, Stephanopoulos G (2009) Engineering for biofuels: 

exploiting innate microbial capacity or importing biosynthetic 
potential ? Nat Rev Microbiol 7: 715-723. 

3. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial 
cellulose utilization: fundamentals and biotechnology. Microbiol 
Mol Biol Rev 66: 506-577. 

4. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated 
bioprocessing of cellulosic biomass: an update. Curr Opin 
Biotechnol 16: 577-583. 

5. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch 
HW (2012) The challenge of enzyme cost in the production of 
lignocellulosic biofuels. Biotechnol Bioeng 109: 1083-1087. 

6. Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress 
in consolidated bioprocessing. Curr Opin Biotechnol 23: 396-405. 

7. Levin DB, Carere CR, Cicek N, Sparkling R (2009) Challenges for 
biohydrogen production via direct lignocellulose fermentation Int J 
Hydrogen Energy 34: 7390-7403. 

8. Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes 
to cellulosomics. Chem Rec 8: 364-377. 

9. Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr 
Opin Microbiol 14: 259-263. 

10. Blanchette C, Lacayo CI, Fischer NO, Hwang M, Thelen MP 
(2012) Enhanced cellulose degradation using cellulase-nanosphere 
complexes. PLoS One 7: e42116. 

11. Krauss J, Zverlov VV, Schwarz WH. (2012) In vitro reconstitution 
of the complete Clostridium thermocellum cellulosome and synergistic 
activity on crystalline cellulose. Appl Environ Microbiol 78: 4301-
4307. 

12. You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YH (2012) 
Enhanced microbial utilization of recalcitrant cellulose by an ex vivo 
cellulosome-microbe complex. Appl Environ Microbiol 78: 1437-
1444. 

13. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) 
Metabolic engineering strategies for the improvement of cellulase 
production by Hypocrea jecorina. Biotechnol Biofuels 2: 19. 

14. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions 
for the production of bioethanol using consolidated bioprocessing of 
lignocellulose. Curr Opin Biotechnol 20: 364-371. 

15. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering 
of Clostridium cellulolyticum for production of isobutanol from 
cellulose. Appl Environ Microbiol 77: 2727-2733. 

16. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, et al. 
(2010) Development of pyrF-based genetic system for targeted gene 
deletion in Clostridium thermocellum and creation of a pta mutant. 
Appl Environ Microbiol 76: 6591-6599. 

17. Kuehne SA, Heap JT, Cooksley CM, Cartman ST, Minton NP 
(2011) ClosTron-mediated engineering of Clostridium. Methods 
Mol Biol 765: 389-407. 

18. Desvaux M (2006) Unravelling carbon metabolism in anaerobic 
cellulolytic bacteria. Biotechnol Prog 22: 1229-1238. 

19. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for 
synthesis of branched-chain higher alcohols as biofuels. Nature 451: 
86-89. 

20. Octave S, Thomas D (2009) Biorefinery: Toward an industrial 
metabolism. Biochimie 91: 659-664. 

21. Adkins J, Pugh S, McKenna R, Nielsen DR (2012) Engineering 
microbial chemical factories to produce renewable "biomonomers". 
Front Microbiol. 3: 313. 

Citation  
Mazzoli R (2012) Development of microorganisms for cellulose-
biofuel consolidated bioprocessings: metabolic engineers’ tricks. 
Computational and Structural Biotechnology Journal. 3 (4): 
e201210007. doi: http://dx.doi.org/10.5936/csbj.201210007 

Microorganism development for CBP 

7 

Volume No: 3, Issue: 4, October 2012, e201210007 Computational and Structural Biotechnology Journal | www.csbj.org 



22. Ntaikou I, Koutros E, Kornaros M (2009) Valorisation of 
wastepaper using the fibrolytic/hydrogen producing bacterium 
Ruminococcus albus. Bioresour Technol 100: 5928-5933. 

23. Oh YK, Raj SM, Jung GY, Park S (2011) Current status of the 
metabolic engineering of microorganisms for biohydrogen 
production. Bioresour Technol 102: 8357-8367. 

24. Calusinska M, Happe T, Joris B, Wilmotte A (2010) The surprising 
diversity of clostridial hydrogenases: a comparative genomic 
perspective. Microbiology 156: 1575-1588. 

25. Nakayama SI, Kosaka T, Hirakawa H, Matsuura K, Yoshino S, et al. 
(2008) Metabolic engineering for solvent productivity by 
downregulation of the hydrogenase gene cluster hupCBA in 
Clostridium saccharoperbutylacetonicum strain N1–4. Appl Microbiol 
Biotechnol 78: 483–493. 

26. Jo JH, Jeon CO, Lee SY, Lee DS, Park JM (2010) Molecular 
characterization and homologous overexpression of [FeFe]-
hydrogenase in Clostridium tyrobutyricum JM1. Int J Hydrogen 
Energy 35: 1065–1073. 

27. Abo-Hashesh M, Wang R, Hallenbeck PC (2011) Metabolic 
engineering in dark fermentative hydrogen production; theory and 
practice. Bioresour Technol 102: 8414-8422. 

28. Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for 
improving biological hydrogen production. Bioresour Technol 110: 
1-9. 

29. Hallenbeck, P.C. (2009) Fermentative hydrogen production: 
principles, progress, and prognosis. Int J Hydrogen Energy 34: 
7379–7389. 

30. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, et al. 
(2008) Metabolic engineering of a thermophilic bacterium to 
produce ethanol at high yield. Proc Natl Acad Sci U S A 105: 
13769-13774. 

31. Li S. Lai C, Cai Y, Yang X, Yang S, et al. (2010) High efficiency 
hydrogen production from glucose/xylose by the ldh-deleted 
Thermoanaerobacterium strain. Bioresour Technol 101: 8718–8724. 

32. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, et al. 
(2011) High ethanol titers from cellulose by using metabolically 
engineered thermophilic, anaerobic microbes. Appl Environ 
Microbiol 77: 8288-8294. 

33. Cui GZ, Hong W, Zhang J, Li WL, Feng Y, et al. (2012) Targeted 
gene engineering in Clostridium cellulolyticum H10 without 
methylation. J Microbiol Methods 89: 201-208. 

34. Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M Jr, et 
al. (2012) Combined inactivation of the Clostridium cellulolyticum 
lactate and malate dehydrogenase genes substantially increases 
ethanol yield from cellulose and switchgrass fermentations. 
Biotechnol Biofuels. 5: 2. 

35. Cai G, Jin B, Saint C, Monis P (2011) Genetic manipulation of 
butyrate formation pathways in Clostridium butyricum. J Biotechnol 
155: 269-274. 

36. Lehmann D, Lütke-Eversloh T (2011) Switching Clostridium 
acetobutylicum to an ethanol producer by disruption of the 
butyrate/butanol fermentative pathway. Metab Eng 13: 464-473. 

37. Cai G, Jin B, Monis P, Saint C (2012) A genetic and metabolic 
approach to redirection of biochemical pathways of Clostridium 
butyricum for enhancing hydrogen production. Biotechnol Bioeng 
doi: 10.1002/bit.24596. 

38. Buckel W, Thauer RK (2012) Energy conservation via electron 
bifurcating ferredoxin reduction and proton/Na(+) translocating 
ferredoxin oxidation. Biochim Biophys Acta. 2012 Jul 16. [Epub 
ahead of print] 

39. Dürre P (2011) Fermentative production of butanol--the academic 
perspective. Curr Opin Biotechnol 22: 331-336. 

40. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) 
Solvent-tolerant bacteria for biotransformations in two-phase 
fermentation systems. Appl Microbiol Biotechnol 74: 961-973. 

41. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view 
of metabolite and substrate stress and tolerance in microbial 
bioprocessing: From biofuels and chemicals, to biocatalysis and 
bioremediation. Metab Eng 12: 307-331. 

42. Huang H, Liu H, Gan YR (2010) Genetic modification of critical 
enzymes and involved  genes in butanol biosynthesis from biomass. 
Biotechnol Adv 28: 651-657. 

43. Lavan LM, Van Dyk JS, Chan H, Doi RH, Pletschke BI (2009) 
Effect of physical conditions and chemicals on the binding of a mini-
CbpA from Clostridium cellulovorans to a semi-crystalline cellulose 
ligand. Lett Appl Microbiol 48: 419-425. 

44. Xu C, Qin Y, Li Y, Ji Y, Huang J, et al. (2010) Factors influencing 
cellulosome activity in consolidated bioprocessing of cellulosic 
ethanol. Bioresour Technol 101: 9560-9569. 

45. Tomas CA, Welker NE, Papoutsakis ET. (2003) Overexpression of 
groESL in Clostridium acetobutylicum results in increased solvent 
production and tolerance, prolonged metabolism, and changes in the 
cell's transcriptional program. Appl Environ Microbial 69: 4951–
4965. 

46. Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, 
et al. (2003)  Expression of a cloned cyclopropane fatty acid synthase 
gene reduces solvent formation in Clostridium acetobutylicum ATCC 
824. Appl Environ Microbiol 69: 2831-2841. 

47. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, et al. 
(2011) Engineering microbial biofuel tolerance and export using 
efflux pumps. Molecular Systems Biology 7: 1-7. 

48. Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library 
enrichment and identification of solvent tolerance genes for 
Clostridium acetobutylicum. Appl Environ Microbiol 73: 3061–3068. 

49. Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, et al. 
(2011) Mutant alcohol dehydrogenase leads to improved ethanol 
tolerance in Clostridium thermocellum. Proc Natl Acad Sci U S A 
108: 13752-13757. 

50. Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, et al. (2011) 
Mutant selection and phenotypic and genetic characterization of 
ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol 
Biotechnol 92: 641-652. 

51. Mao S, Luo Y, Zhang T, Li J, Bao GAH, et al. (2010) Proteome 
reference map and comparative proteomic analysis between a wild 
type Clostridium acetobutylicum DSM 1731 and its mutant with 
enhanced butanol tolerance and butanol yield. J Proteome Res 9: 
3046–3061. 

52. Winkler J, Rehmann M, Kao KC (2010) Novel Escherichia coli 
hybrids with enhanced butanol tolerance. Biotechnol Lett 32: 915–
920. 

53. Guedon E, Desvaux M, Petitdemange H (2002) Improvement of 
cellulolytic properties of Clostridium cellulolyticum by metabolic 
engineering. Appl Environ Microbiol 68: 53-58. 

54. Mendez BS, Pettinari MJ, Ivanier SE, Ramos CA, Sineriz F (1991) 
Clostridium thermopapyrolyticum sp. nov., a cellulolytic thermophile. 
Int J Syst Bacteriol 41: 281-283. 

55. Virunanon C, Chantaroopamai S, Denduangbaripant J, 
Chulalaksananukul W (2008) Solventogenic-cellulolytic clostridia 
from 4-step-screening process in agricultural waste and cow intestinal 
tract. Anaerobe 14: 109-117. 

56. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, et al. (2008) 
Expression of Clostridium acetobutylicum butanol synthetic genes in 
Escherichia coli. Appl Microbiol Biotechnol 77: 1305– 1316. 

Microorganism development for CBP 

8 

Volume No: 3, Issue: 4, October 2012, e201210007 Computational and Structural Biotechnology Journal | www.csbj.org 



57. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, et al. (2009) 
Engineering alternative butanol production platforms in 
heterologous bacteria. Metab Eng 11: 262–273. 

58. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, et al. (2011) 
Driving forces enable high-titer anaerobic 1-butanol synthesis in 
Escherichia coli. Appl Environ Microbiol 77: 2905-2915. 

59. Yu M, Zhang Y, Tang IC, Yang ST (2011) Metabolic engineering of 
Clostridium tyrobutyricum for n-butanol production. Metab Eng 13: 
373-382. 

60. Mazzoli R, Lamberti C, Pessione E (2012) Engineering new 
metabolic capabilities in bacteria: lessons from recombinant 
cellulolytic strategies. Trends Biotechnol 30: 111-119. 

61. Khramtsov N, McDade L, Amerik A, Yu E, Divatia K, et al. (2011) 
Industrial yeast strain engineered to ferment ethanol from 
lignocellulosic biomass. Bioresour Technol 102: 8310-8313. 

62. Ilmén M, Den Haan R, Brevnova E, McBride J, Wiswall E, et al. 
(2011) High level secretion of cellobiohydrolases by Saccharomyces 
cerevisiae. Biotechnol Biofuels 4: 30. 

63. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-
producing bacteria for the bioconversion of lignocellulosic biomass. 
Int J Biol Sci 5: 500-516. 

64. Jeon SD, Yu KO, Kim SW, Han SO (2012) The processive 
endoglucanase EngZ is active in crystalline cellulose degradation as a 
cellulosomal subunit of Clostridium cellulovorans. N Biotechnol 29: 
365-371. 

65. Ciolacu D, Kovac J, Kokol V (2010) The effect of the cellulose-
binding domain from Clostridium cellulovorans on the 
supramolecular structure of cellulose fibers. Carbohydr Res 345: 
621-630. 

66. Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, et 
al. (2010) Modulation of cellulosome composition in Clostridium 
cellulolyticum: adaptation to the polysaccharide environment revealed 
by proteomic and carbohydrate-active enzyme analyses. Proteomics 
10: 541-554. 

67. Cho W, Jeon SD, Shim HJ, Doi RH, Han SO (2010) Cellulosomic 
profiling produced by Clostridium cellulovorans during growth on 
different carbon sources explored by the cohesin marker. J 
Biotechnol 145: 233-239. 

68. Tsai SL, Goyal G, Chen W (2010) Surface display of a functional 
minicellulosome by intracellular complementation using a synthetic 
yeast consortium and its application to cellulose hydrolysis and 
ethanol production. Appl Environ Microbiol 76: 7514-7520. 

69. Jeon SD, Lee JE, Kim SJ, Kim SW, Han SO (2012) Analysis of 
selective, high protein-protein binding interaction of cohesin-
dockerin complex using biosensing methods. Biosens Bioelectron 35: 
382-389. 

70. García-Alvarez B, Melero R, Dias FM, Prates JA, Fontes CM, et al. 
(2011) Molecular architecture and structural transitions of a 
Clostridium thermocellum mini-cellulosome. J Mol Biol 407: 571-
580. 

71. Molinier AL, Nouailler M, Valette O, Tardif C, Receveur-Bréchot 
V, et al. (2011) Synergy, structure and conformational flexibility of 
hybrid cellulosomes displaying various inter-cohesins linkers. J Mol 
Biol 405: 143-157.  

72. Yaniv O, Frolow F, Levy-Assraf M, Lamed R, Bayer EA (2012) 
Interactions between family 3 carbohydrate binding modules 
(CBMs) and cellulosomal linker peptides. Methods Enzymol 510: 
247-259. 

73. Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JA, Money 
VA, et al. (2008) The Clostridium cellulolyticum dockerin displays a 
dual binding mode for its cohesin partner. J Biol Chem 283: 18422-
18430. 

74. Cha J, Matsuoka S, Chan H, Yukawa H, Inui M, et al. (2007) Effect 
of multiple copies of cohesins on cellulase and hemicellulase activities 
of Clostridium cellulovorans mini-cellulosomes. J Microbiol 
Biotechnol 17: 1782-1788. 

75. Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter 
libraries--tuning of gene expression. Trends Biotechnol 24: 53–55. 

76. Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene 
networks. Nat Biotechnol 27: 1139-1150. 

77. Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP (2007) 
Exploration of new geometries in cellulosome-like chimeras. Appl 
Environ Microbiol 73: 7138-7149. 

78. Mingardon F, Chanal A, Tardif C, Fierobe HP (2011) The issue of 
secretion in heterologous expression of Clostridium cellulolyticum 
cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. 
Appl Environ Microbiol 77: 2831-2838. 

79. Wieczorek AS, Martin VJ (2010) Engineering the cell surface display 
of cohesins for  assembly of cellulosome-inspired enzyme complexes 
on Lactococcus lactis. Microb Cell Fact 9:69. 

80. Hyeon JE, Jeon WJ, Whang SY, Han SO (2011) Production of 
minicellulosomes for the enhanced hydrolysis of cellulosic substrates 
by recombinant Corynebacterium glutamicum. Enzyme Microb 
Technol 48: 371-377. 

81. Chanal A, Mingardon F, Bauzan M, Tardif C, Fierobe HP (2011) 
Scaffoldin modules serving as "cargo" domains to promote the 
secretion of heterologous cellulosomal cellulases by Clostridium 
acetobutylicum. Appl Environ Microbiol 77: 6277-6280. 

82. McBride JE, Brevnova E, Ghandi C, Mellon M, Froehlich A, et al. 
(2010) Yeast expressing cellulases for simultaneous saccharification 
and fermentation using cellulose. PCT/US2009/065571. 

83. Anderson TD, Robson SA, Jiang XW, Malmirchegini GR, Fierobe 
HP, et el. (2011) Assembly of minicellulosomes on the surface of 
Bacillus subtilis. Appl Environ Microbiol 77: 4849-4858. 

84. Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional 
minicellulosomes for simultaneous saccharification and fermentation 
of cellulose to ethanol. Appl Environ Microbiol 76: 1251-1260. 

85. Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW (2012) Self-surface 
assembly of cellulosomes with two miniscaffoldins on Saccharomyces 
cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci U S A 
109: 13260-13265. 

86. Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, et al. 
(2010) Cellodextrin transport in yeast for improved biofuel 
production. Science 330: 84-86. 

 
 

 

 

 

 

 

 

 

 

 
 
 

Key words:  
metabolic engineering, butanol, ethanol, hydrogen, cellulosome, cellulase 
 
Competing Interests:  
The authors have declared that no competing interests exist. 
 
 

 
 
© 2012 Mazzoli.  
Licensee: Computational and Structural Biotechnology Journal.   
This is an open-access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original 
author and source are properly cited. 

 

Microorganism development for CBP 

9 

Volume No: 3, Issue: 4, October 2012, e201210007 Computational and Structural Biotechnology Journal | www.csbj.org 


