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Abstract 

BACKGROUND: Aiming at the rational design of new herbicides, the availability of the three-

dimensional structure of the target enzyme greatly enhances the optimisation of lead compounds 

and the design of derivatives with increased activity. Among the most widely exploited herbicide 

targets is glutamine synthetase. Recently, the structure of a cytosolic form of the maize enzyme has 

been described, making it possible to verify whether steric, electronic and hydrophobic features of a 

compound are in agreement with inhibitor–protein interaction geometry. 

RESULTS: Three series of compounds (aminophosphonates, hydroxyphosphonates and 

aminomethylenebisphosphonates) were evaluated as possible inhibitors of maize glutamine 

synthetase. Aminomethylenebisphosphonate derivatives substituted in the phenyl ring retained the 

inhibitory potential, whereas variations in the scaffold, i.e. the replacement of the second 

phosphonate moiety with a hydroxyl or an amino residue, resulted in a significant loss of activity. A 

kinetic characterisation showed a non-competitive mechanism against glutamate and an 

uncompetitive mechanism against ATP. A docking analysis suggested the mode of bisphosphonate 

binding to the active site. 

CONCLUSION: Results made it possible to define the features required to maintain or enhance the 

biological activity of these compounds, which represent lead structures to be further exploited for 

the design of new substances endowed with herbicidal activity. Copyright © 2009 Society of 

Chemical Industry 

INTRODUCTION 

Among the most widely exploited herbicide targets is glutamine synthetase (GS) [EC 6.3.1.2], the 

enzyme that in both plants and microorganisms plays a key role in ammonia assimilation.1 Within 

the cell, its inhibition rapidly leads to ammonia accumulation and glutamate depletion, which act in 

concert to cause plant death.2 GS-targeting commercial herbicides were developed as a 

consequence of the discovery in Streptomyces spp. of a natural inhibitor, the tripeptide binalaphos. 

The pharmacophore of binalaphos is phosphinothricin (PPT), a phosphinic analogue of the 

physiological substrate glutamate.3 Its remarkable effectiveness relies upon the formation of a 

phosphorylated product that irreversibly binds to the active site.4 Because of its inability to 

distinguish between weeds and crops, use was limited, and so synthesis of a great number of 
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analogues of the active molecule and their screening for selective forms were carried out.5, 6 Most 

of the active derivatives are glutamate analogues that act competitively, without being 

phosphorylated. This results in a much lower effectiveness than that of PPT. As for other 

competitive inhibitors, the progressive substrate accumulation that occurs as a consequence of 

enzyme inhibition is able partially to relieve the block of the enzymatic activity.7 

Attempts to improve the effectiveness of these compounds by using computer-aided molecular 

modelling techniques essentially failed.8, 9 One possible reason for such a failure may be the 

unavailability of the structure of plant GS, which forced docking analyses to be performed on the 

basis of an enzyme from non-plant sources. Recently, however, the three-dimensional structure at a 

suitable resolution of a maize GS has been described.10 In this plant species, the occurrence of at 

least six genes coding for a putative GS, with different functional localisation and, possibly, 

separate metabolic function, has been reported.11 One chloroplastic and five cytosolic GS isoforms 

(also referred to as GS2 and GS1a–e) have been hypothesised to be specifically involved in the 

light-induced reassimilation of photorespiratory ammonia and the generation of glutamine for 

intercellular nitrogen transport respectively.12 The gene coding for GS1a was cloned, 

heterologously expressed and purified,13 and the protein was crystallised. The structure reveals a 

unique decameric structure that differs significantly from the bacterial GS structure,10 thus opening 

new perspectives for the computer-aided design of effective inhibitors of plant GSs. 

Within the framework of long-established research on new active inhibitors belonging to the 

chemical class of aminophosphonates,14 the present authors have previously described a series of 

derivatives of aminomethylenebisphosphonic acid15 and some PPT analogues8, 16 that inhibited 

plant and bacterial GSs. A compound in the former group, 3,5-dichloro-

phenylaminomethylenebisphosphonic acid (compound 1a, Fig. 1), showed inhibitory properties 

only slightly poorer than those of PPT, and reduced in vivo free glutamate pools.15 Its mechanism 

of action at the molecular level was not investigated in detail. Moreover, the same compound was 

afterwards found also to inhibit the activity of δ1-pyrroline-5-carboxylate (P5C) reductase [EC 

1.5.1.2], the enzyme that catalyses the last reaction in both the glutamate and the ornithine 

pathways, the two routes that in higher plants lead to proline synthesis.17, 18 
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Figure 1. Analogues of 3,5-dichlorophenylaminomethylenebisphosphonic acid (compound 1a) 

evaluated as possible inhibitors of maize GS. 

The present paper reports the results of screening 23 new phosphonates, designed using 1a as a lead 

compound, for their ability to inhibit the cytosolic forms of GS, isolated from Zea mays L. leaf 

blades. A thorough kinetic evaluation, coupled with a docking analysis based on the three-

dimensional structure of the same protein used for the biochemical characterisation, made it 

possible to hypothesise on their mechanism of action at the molecular level, and perhaps provide the 

basis for the future design of new, more effective inhibitors. 

MATERIALS AND METHODS 

Materials 

Unless otherwise indicated, chemicals were purchased from Sigma-Aldrich or Merck Chemical 

Companies, and were of analytical grade. The synthesis of aminomethylenebisphosphonic acids 1a–

h, hydroxyphosphonic acids 2a–g and aminophosphonic acids 3a–i (Fig. 1) was described 

previously.18 All hydroxyphosphonic and aminophosphonic acids were racemic. 

Plant material and growth conditions 

Seeds of Zea mays cv. Jeff (Renk Venturoli) were imbibed overnight in sterile distilled water and 

then sown in rows about 10 cm apart in plastic trays (40 cm wide × 50 cm long × 10 cm high, 20 L 

volume) filled with a potting mixture (0.8:1 by weight) of sand:loam (10% organic matter, 0.26% 

total nitrogen, pH 6.7). Seedlings were grown in a growth chamber with a 16 h photoperiod of about 
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400 µE m−2 s−1 at 20 ± 1 °C; relative humidity was not controlled. They were periodically watered 

with tap water, as required. Leaves were harvested from seedlings at the three-leaf stage. 

GS purification 

Leaves (about 100 g) were extracted in a suitable volume of ice-cold 50 mM Tris-HCl buffer (pH 

7.4) containing 5 mM MgCl2, 0.5 mM DTT and 0.5 mM EDTA using a juice extractor (Philips HR 

1821). All subsequent operations were carried out at 0–4 °C. Following centrifugation at 12 000 × g 

for 10 min, the resulting supernatant was made to 70% of saturation by adding solid ammonium 

sulfate. Precipitated material was pelleted by centrifugation, resuspended in a minimal amount of 

the extraction buffer, and desalted by passage through a Bio-Gel P6DG (Bio-Rad) column. 

The desalted extract was then loaded onto a DEAE-Sephacel (Pharmacia) column (2.5 cm diameter, 

25 mL bed-column) equilibrated with the extraction buffer. The column was eluted at a constant 

flow of 1 mL min−1 with a linear gradient from 0 to 400 mM KCl in 400 mL of the extraction 

buffer, while collecting 5 mL fractions. Fractions containing GS activity (>10 nkat mL−1 as 

measured by the transferase assay) were pooled and made up to 50% saturation with solid 

ammonium sulfate. Precipitated protein material was pelleted by centrifugation, resuspended in a 

minimal amount of 25 mM imidazole-HCl buffer, pH 7.4, containing 2.5 mM MgCl2, 0.5 mM 

EDTA and 0.25 mM DTT (column buffer), and desalted by passage through a Bio-Gel P6DG (Bio-

Rad) column equilibrated with the column buffer. 

The sample was loaded at a constant flow of 40 mL h−1 onto a Reactive Blue Sepharose (Sigma) 

column (1.5 cm diameter, 10 mL bed-column) equilibrated with the column buffer. To exchange the 

column buffer for extraction buffer, the flow-through fraction containing materials not retained by 

the Reactive Blue column was passed through another Bio-Gel P6GD column, this time equilibrated 

with the extraction buffer. Flow-through material was injected by means of a 10 mL super loop 

(Pharmacia) onto a Mono-Q 5.5 (Pharmacia) FPLC column equilibrated with the extraction buffer. 

Protein fractions were eluted at a flowrate of 1.0 mL min−1 using a computer-controlled (Kontron 

450) linear gradient from 0 to 500 mM NaCl (100 mL), and 1 mL fractions were collected. Enzyme 

preparations were filter sterilised and stored at 4 °C until used for biochemical determinations. 

Under these conditions, GS activity was found to be stable for at least 1 month. 

Enzyme assays 

During enzyme purification, GS activity was measured by the transferase assay, which ensures rates 

that are not affected by the presence of contaminating enzymes, especially ATPase. The reaction 

mixture contained 25 mM imidazole-HCl buffer (pH 7.4), 50 mML-glutamine, 40 mM Na3AsO4, 4 

mM MnCl2, 5 mM ADP, 25 mM NH2OH-HCl and an amount of enzyme that allowed the initial 

rate to be measured in a convenient time and while most of the substrate was unconverted. The final 

reaction volume was 0.4 mL. After up to 15 min at 35 °C, the reaction was stopped by the addition 

of 0.8 mL of colorimetric solution [10% (w/v) Fe(NO3)3.9H2O, 6.67% (v/v) HCl and 5% (w/v) 

trichloroacetic acid]; following centrifugation for 5 min at 12 000 × g, samples were read at 535 nm 

against non-incubated blanks, and the γ-glutamyl-hydroxamate formed was quantified by 

comparison with a calibration curve obtained with an authentic standard. The purified enzyme could 

be assayed by a biosynthetic assay that measures the physiological, full-forward reaction. The 

mixture contained 50 mM Tris-HCl buffer (pH 7.4), 50 mM L-glutamate, 2.5 mM ATP, 5 mM 

MgCl2, 0.5 mM NH4Cl and a convenient amount of enzyme (50 pkat) in a final volume of 0.1 mL. 

After up to 20 min at 35 °C, the inorganic phosphate released was quantified by the malachite green 

assay method as described previously.19 At least three different incubation times were tested for 

each sample, in the linear range; activity was calculated from the slope of the straight line 
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interpolating the experimental data. Enzyme activity was expressed in katal submultiples, where 1 

nkat is the amount of enzyme that catalyses the synthesis of 1 nmol glutamine s−1. Protein 

concentration was determined by the method of Bradford,20 using bovine serum albumin as the 

standard. 

Enzyme inhibition and kinetic analysis 

GS inhibition was evaluated by adding to the reaction mixture an appropriate dilution of a freshly 

prepared 20 mM solution of a given inhibitor, brought to pH 7.4 with KOH, so as to obtain a final 

concentration of 1 mM. Reported data are means ± SD over results obtained in at least three 

independent measurements. Active compounds were further tested in the micromolar range. The 

concentrations causing 50% inhibition (IC50) of GS activity and confidence intervals were estimated 

by the probit method.21 

For kinetic evaluations, the enzyme was assayed in the presence of increasing concentrations of 

compounds 1a and 1h and substrate concentrations ranging from 6 to 40 mM glutamate and from 

0.2 to 1 mM ATP. Otherwise, substrate concentrations were fixed at 50 mM for L-glutamate and 

2.5 mM for ATP. At least seven inhibitor doses were evaluated, at least in triplicate, for each 

substrate concentration. In the case of glutamate (non-competitive inhibition), Ki values were 

estimated from Lineweaver–Burk plots of activity, on the basis of the corresponding lowering in the 

apparent VMAX value; five inhibitor concentrations, ranging from 0.2- to 1.5-fold the I50 value, were 

tested. In the case of ATP (uncompetitive inhibition), Ki values were estimated from Dixon plots of 

activity by evaluating the effect of four inhibitor levels, ranging from 0.5- to 3-fold the I50 value, in 

the presence of seven substrate concentrations. Reported data are means ± SEM over results 

obtained with different inhibitor or substrate concentrations respectively. 

Molecular modelling 

The crystal structure of the maize enzyme,10 obtained from the Protein Data Bank (refcode 

2D3A),19 was used as a starting point for all calculations. Residue numbering is according to this 

structure. The hydrogen atoms were added using the Insight 2000 program (Accelrys), the 

protonation states of the amino acid side-chain residues were set up for pH 7.0 and the protonated 

structure was checked carefully. Molecular mechanics calculations were performed using the 

Discover program, with a cff97 force field and conjugate gradient minimiser. Minimisations were 

done up to an energy change of 0.01 kcal mol−1. Bisphosphonate molecules were built in the 

Builder Module of the Insight package, and their structures were optimised. The bisphosphonate 

moiety of the ligand was then superimposed on the pyrophosphate group of ADP in the ADP–GS 

complex by pairwise alignment of all heavy atoms. Subsequently, the ADP molecule was removed 

and a bisphosphonate–GS complex was obtained. Finally, the ligand and active-site residues were 

optimised. 

RESULTS AND DISCUSSION 

Purification of a cytosolic form of GS from Zea mays seedlings 

Aiming at the evaluation of the effectiveness of derivatives of the active15 compound 1a as 

possible GS inhibitors, the cytosolic form of Z. mays GS was purified from leaf blades. Based on 

literature data, six GS isoforms are present in maize: one (GS2) is functionally localised in the 

chloroplast, the other five in the cytosol.11 The latter enzyme forms, named GS1a–e, show 

differential expression patterns in the plant tissues.12 In roots, mainly GS1a and GS1d are 
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expressed, and their levels increase differently in response to ammonia treatments. However, in 

spite of a high sequence similarity, they show significantly different properties and stability.13 In 

leaf blades, besides the chloroplastic isozyme, the large majority of GS activity is attributable to 

GS1a and GS1b, the genes of which are both expressed at substantial levels.11 The primary 

structures of GS1a and GS1b were found to be 97% identical;12 thus, the proteins are supposed to 

show negligible functional differences, if any. Because crystallographic analysis was performed 

with purified GS1a,10 leaf blades from maize seedlings were used for enzyme isolation. 

Partial purification of GS1a–b from leaves of maize plantlets harvested at the three-leaf stage was 

obtained by a five-step protocol (Table 1). Maximal specific activity observed corresponded to 50-

fold purification, with a yield of about 40% of the initial activity. Besides achieving an initial 

enrichment, anion-exchange chromatography (step 2) allowed GS1 resolution from the 

chloroplastic enzyme form. During all subsequent steps, the elution profile of GS activity was 

symmetric, a finding that strengthens the high structural/functional similarity of GS1a and GS1b, 

previously hypothesised on the basis of their primary structure.10, 12 In spite of further purification 

by negative affinity chromatography and ion-exchange FPLC, final preparations were not 

homogeneous, as several fainter protein bands were still evident in SDS-PAGE patterns (not 

shown). However, samples were apparently devoid of any other enzymatic activity able either to 

hydrolyse ATP or to use glutamate as a substrate. In any case, proper checks were always done by 

assessing possible phosphate release in parallel reaction mixtures in which glutamate had been 

omitted. A residual presence of activities able to make use of the same substrates, or further 

metabolise the products, may lead to experimental artefacts, or at least interfere heavily with the 

assay of an enzyme. This is the reason why some widely used GS assay methods (the so-called 

hemibiosynthetic and transferase assays) were developed that indeed measure partial or reverse—

thus, non-physiological—reactions.22 However, compounds able to interfere with enzyme activity 

under such assay conditions might be scarcely effective on the full reaction, or vice versa. The 

purification protocol that was set up made it possible to resolve GS from most interferences, and to 

use the synthetic assay method, one that measures the whole-forward, physiological reaction.15, 22 

Table 1. Partial purification of GS1 from Zea mays L. seedlingsa 

Step 
Protein 

(mg) 

Activity 

(nkat) 

Specific activity 

(nkat mg−1) 

Purification 

(fold) 

Yield 

(%) 

Activity was measured by the transferase assay. Results presented are for a typical 

purification starting from 100 g (fresh weight) of leaf blades from seedlings harvested at 

the three-leaf stage. 

1. Crude extract 354.2 1311.6 3.70 1 100 

2. DEAE-Sephacel 

column 
70.13 1091.8 15.6 4.2 83.2 

3. 0–50% ammonium 

sulfate fraction 
41.51 1044.0 25.2 6.8 79.6 

4. Blue sepharose, flow 

through 
18.26 752.6 41.2 11.1 57.4 

5. MonoQ column 2.91 521.6 179.5 48.5 39.8 
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The partially purified protein was characterised with respect to kinetic parameters in order to ensure 

non-limiting assay conditions during the subsequent analyses. Apparent dissociation constants were 

205 ± 12 µM and 18.3 ± 0.4 mM for ATP and glutamate respectively. At concentrations exceeding 

5 mM, ATP was found to be inhibitory. A high affinity for ammonia was also evident (KM < 10 

µM), one that resulted in saturating conditions at lowest concentrations, and thus hampered a 

reliable measurement of the constant value. The levels of the substrates previously adopted to assay 

GS from other plant species15, 16, 22 were slightly modified, accordingly. 

GS inhibition by analogues of 3,5-dichlorophenyl-aminomethylenebisphosphonic 

acid 

Three groups of 3,5-dichlorophenylaminomethylenebisphos-phonic acid analogues were tested as 

possible inhibitors of the purified enzyme: bisphosphonates (1b–h), hydroxyphosphonates (2a–g) 

and aminophosphonates (3a–i) (Fig. 1).15 The first set was chosen with the aim of investigating the 

effect of either the number or the position of the chlorine substituents in the phenyl ring. The two 

other sets were evaluated in order to check the influence of the scaffold structure (i.e. the presence 

of two phosphonic moieties) on the inhibitory effectiveness. The activity of maize GS was 

measured in the absence or in the presence of the 24 compounds at 1 mM. Those showing a 

significant effect in the millimolar range were further characterised through the evaluation of the 

concentrations causing 50% inhibition of enzyme activity (IC50). Results, summarised in Table 2, 

clearly showed that bisphosphonate analogues exhibit the highest effectiveness. The comparison of 

the effect of compounds with the same substituents at the aromatic portion of the molecule (e.g. 1b 

versus 2d and 3a, or 1c versus 2f and 3c respectively) revealed that their efficacy as inhibitors is 

reduced by two orders of magnitude when the second phosphonate moiety is replaced with either a 

hydroxyl or an amino group. Bisphosphonates 1a–h are a chiral, whereas the corresponding 

hydroxy- and aminophosphonates are racemic mixtures.18 However, the difference in the inhibitory 

activity largely exceeds that expected (0.3 in log scale) in the case of a racemic mixture in which 

one of the enantiomers is equivalent to the corresponding optically inactive bisphosphonate and the 

other enantiomer is inactive. Therefore, both phosphonate residues most likely interact with the 

enzyme, and a second acidic group cannot be replaced by weak antagonists, such as OH and NH2 

moieties. 
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Table 2. Inhibition of maize glutamine synthetase by analogues of 3,5-

dichlorophenylaminomethylenebisphosphonic acid (compound 1a) 

Compound Inhibitory effect at 1 mMa (%) IC50b (µM) pIC50c 

 a Activity was evaluated by the biosynthetic assay method measuring the physiological 

reaction either in the absence or in the presence of a given phosphonate at 1 mM. Each test 

was carried out in triplicate, and values were expressed as percentage inhibition ( ± SD) 

with respect to untreated controls. 

 b Active compounds (inhibition at 1 mM > 15%) were further tested at concentrations 

ranging from 0.001 to 5 mM. The concentrations causing 50% inhibition (IC50) of in vitro 

activity were estimated by the probit method.21 nd = not determined. 

 c Minus log10 of the molar concentration causing 50% inhibition of enzyme activity. 

1a 86.3 ( ± 6.0) 7.6 ( ± 0.7) 5.119 

1b 84.9 ( ± 2.8) 12.8 ( ± 1.8) 4.893 

1c 79.7 ( ± 5.8) 21.2 ( ± 4.2) 4.674 

1d 79.1 ( ± 4.0) 39.2 ( ± 6.5) 4.407 

1e 81.1 ( ± 2.5) 15.0 ( ± 2.1) 4.824 

1f 73.8 ( ± 5.6) 31.9 ( ± 6.3) 4.496 

1g 79.1 ( ± 1.8) 21.0 ( ± 2.9) 4.678 

1h 67.5 ( ± 3.8) 56.0 ( ± 3.4) 4.252 

2a 10.7 ( ± 3.4) nd nd 

2b 27.0 ( ± 6.3) 6610 ( ± 420) 2.180 

2c 12.3 ( ± 7.7) nd nd 

2d 47.2 ( ± 2.2) 1160 ( ± 240) 2.936 

2e 14.6 ( ± 2.4) nd nd 

2f 31.9 ( ± 3.3) 4830 ( ± 680) 2.316 

2g 8.3 ( ± 6.3) nd nd 

3a 47.7 ( ± 4.7) 1050 ( ± 480) 2.979 

3b 36.3 ( ± 6.8) 5810 ( ± 570) 2.236 

3c 40.7 ( ± 2.8) 2610 ( ± 400) 2.583 

3d 8.1 ( ± 6.5) nd nd 

3e 13.6 ( ± 4.8) nd nd 

3f 26.7 ( ± 1.0) 10 100 ( ± 1310) 1.996 

3g 7.9 ( ± 5.4) nd nd 

3h 42.5 ( ± 3.1) 4100 ( ± 760) 2.387 

3i − 1.2( ± 5.9) nd nd 

 

As for the substituents at the phenyl ring, in the case of bisphosphonates, data did not provide any 

plain pattern: neither the presence of one or two chlorines nor their position causes a significant 

variation in the resulting effectiveness in inhibiting the enzyme. However, comparison of the 

present results with those obtained in a previous screening for phosphonate inhibitors of plant GS15 

confirms the importance of the presence of chlorine substituents. The unsubstituted 

phenylaminomethylenebisphosphonic acid and some analogues in which chlorine is replaced with 
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other halogen moieties (F, Br) or other groups (methyl, methoxyl) had indeed shown no or poor 

activity.15 Interestingly, however, compound 1h (in which the two chlorines of 1a are replaced by 

methyl groups) retained a significant inhibitory potential, albeit to a slightly lower extent. For the 

less active OH and NH2 analogues, the position of the chlorine substituent(s) seems to affect the 

activity significantly, meta-monosubstitution being apparently unfavourable. On the other hand, the 

activity of 2-halogen-substituted compounds is almost unchanged among analogues with Cl, Br and 

F. However, amino- and hydroxyphosphonates exhibited poor inhibitory activity, and their mode of 

binding could differ from that of bisphosphonates. If so, the structure–activity pattern may also be 

different. 

Kinetic analysis and possible mechanism of action 

In order to obtain some information concerning the inhibitory mechanism, a thorough kinetic 

analysis was carried out for some of the most effective compounds. In a preliminary study, the 

ability of compound 1a and other active analogues to inhibit in vivo glutamine synthesis was 

supported by the measurement of free amino acid pools in suspension-cultured plant cells.15 

Moreover, the determination of the activity over time of the partially inhibited enzyme suggested 

that they act differently to PPT, i.e. that they do not bind to the active site irreversibly.15 However, 

the fine details of the inhibitory mechanism were not determined experimentally. An in silico 

analysis performed on the basis of the structure of the enzyme from non-plant sources gave only a 

rough pattern of bisphosphonate binding, suggesting that the bisphosphonic moiety of the inhibitors 

may interact with the metal ions present in the active site.23 The activity of maize GS was thus 

assayed in the presence of inhibitory concentrations of compounds 1a and 1h at varying those of 

either ATP or glutamate. Results (Fig. 2) accounted in both cases for an inhibition of non-

competitive type with respect to glutamate, and uncompetitive against ATP. From a quantitative 

point of view, the calculated Ki values in the case of glutamate were 7.2 ± 0.3 µM and 53 ± 1 µM 

for compounds 1a and 1h respectively, and 6.4 ± 0.5 µM and 55 ± 7 µM in the case of ATP. As a 

term of comparison, some PPT derivatives with a modified methyl group that also bind reversibly 

to the enzyme showed Ki values against glutamate ranging from 2 to 22 µM. However, in that case 

the inhibition was of competitive type against glutamate.16 
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Figure 2. Kinetic analysis of GS inhibition by compounds 1a and 1h. The cytosolic form of the 

enzyme partially purified from Z. mays seedlings was incubated in the presence of increasing 

inhibitor concentrations, as specified in the graph legends, at varying substrate levels. Lines 

converging to the x axis in the Lineweaver–Burk plot accounted for an inhibition of non-

competitive type against glutamate (panels A and C; Ki = 7.2 ± 0.3 µM in the case of compound 1a 

and Ki = 53 ± 1 µM in the case of compound 1h), whereas parallel lines showed an inhibition of 

uncompetitive type with respect to ATP (panels B and D). Replotting of the latter data as a Dixon 

plot resulted in Ki values of 6.4 ± 0.5 µM and 55 ± 7 µM for compounds 1a and 1h respectively. A 

multiple regression analysis showed in all cases a high significance level (P < 0.00) with respect to 

both variables (inhibitor and substrate concentration). 

In a non-competitive inhibition, two independent binding sites are usually present, whereas in the 

case of uncompetitive inhibition the inhibitor binds to the active site after the substrate has bound. 

A mechanism for which these compounds bind to the enzyme after the formation of an ATP–

enzyme complex would therefore be consistent with the experimental results. The finding that the 

inhibition is uncompetitive against ATP implies that the V′max (Vmax in the presence of the inhibitor) 

will always be equal to Vmax divided by (1 + I/Ki), regardless of substrate concentration. On the 

other hand, a competitive inhibitor is displaced by an increase in substrate concentration. Because 

enzyme inhibition always causes in vivo an increase in the substrate pool, competitive inhibitors are 

usually much less effective in vivo than they are in vitro.7 Thus, bisphosphonates are probably 

going to be more effective inside the cell than all other reversible GS inhibitors that act 

competitively with respect to glutamate.5, 16 
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Computer-aided analysis of inhibitor binding 

To obtain a deeper insight into the mechanism of action, a docking analysis of compounds 1a–h 

into the active site of the maize enzyme was performed. A detailed inspection of GS structure 

suggested that the negatively charged bisphosphonic group can interact only with two positively 

charged magnesium ions present in the active site (Fig. 3), a possibility that is in agreement with the 

well-known metal-complexing properties of bisphosphonates.24 As an uncompetitive mode of 

action against ATP and a non-competitive mode of action against glutamate were proven 

experimentally, the inhibitors should bind to the enzyme after ATP and independently of glutamate. 

It is proposed that, acting as strong complexing agents, bisphosphonates displace the triphosphate 

group of ATP. The optimised complex composed of the enzyme and the most effective compound 

1a is presented in Fig. 4a. The bisphosphonate group of the inhibitors not only interacts with the 

two metal ions (Mg1 and Mg2) but also forms hydrogen bonds with Gln201 and Arg311 residues, 

and with the Lys36′ residue of the adjacent enzyme subunit, where interactions with Lys36′ and 

Arg311 are charge assisted. Moreover, inhibitor NH moiety forms a hydrogen bond with Asn54′. 

The aromatic fragment of the compounds does not compete with ATP for binding, being located in 

a non-physiological pocket of the enzyme composed by the side chains of residues Trp53′, Asn54′, 

Asn251, Gly318 and Tyr328 (Figs 4b and c). 

 

Figure 3. Ball-and-stick model of ADP binding to maize glutamine synthetase (PDB id 2D3A): 

surfaces are coloured according to the electrostatic potential (blue—positive, grey—neutral, red—

negative values). Magnesium ions are represented as light-green balls. 
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Figure 4. Modelled binding of compound 1a to Zea mays GS. The enzyme is presented either as a 

stick model of active-site residues (panel A, where hydrogen bonds and interactions with metal ions 

are marked as green lines) or as coloured surfaces, according to the electrostatic potential (panel B: 

blue—positive, grey—neutral, red—negative values). ADP and methionine sulfoximine phosphate 

were superimposed on the structure of the 1a–GS complex and are shown as a stereo image in panel 

C. Labels of amino acid residues belonging to the adjacent enzyme subunit are marked with a prime 

(′). 

The hypothesised mode of binding implies that both phosphonate groups are required for a proper 

interaction with the enzyme. This is consistent with the experimental results showing a strikingly 

lower effectiveness of hydroxy- and aminophosphonates with the same side chains (Table 2). 

Molecular modelling studies (Fig. 4c) show a similar interaction with the enzyme for all the active 

compounds 1a-h, and no significant steric restriction with chlorine substituent positions on the 

aromatic ring is plausible to be operative. Accordingly, the inhibitory activity of chlorophenyl-

substituted aminomethylenebisphosphonates 1a-g does not vary substantially (pIC50 in the range 

4.407–5.119). 

CONCLUSION 

Most GS inhibitors described so far act as glutamate analogues. From this point of view, 

bisphosphonates represent a completely different class,25 as they seem to interact with the enzyme 

near the ATP binding site.9 Data presented here concerning the relationships between phosphonate 

structures and their biological activity, as well as the protein residues involved in bisphosphonate 

binding, may provide substantial information for a further optimisation of the structure of such 
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inhibitors. Work is currently in progress in the authors' laboratories to develop and test new active 

derivatives. 
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