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Abstract

In this paper we propose a new mental representation of how markets, technology and their interaction

concur in explaining the why of a certain innovation instead of another. We empirically test this theory

in the telecommunication switches industry. We consider innovation as a new alignment of needs and

opportunities, where markets and technology are not the sources, but the actors in this alignment process.

In order to accomplish this task, we suggest proxies for technological opportunities, market needs, and,

at the same time, for interactions of these two elements. We make use of a statistical tool that grasps

the matching nature of this interactive phenomenon.
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1 Introduction

The aim of this paper is to explain the why of a certain innovation instead of another as the result of

the coevolution of markets and technology. In this paper we quantitatively overcome the long demand-

pull vs. technology-push debate that turned out to be sterile (Freeman 1994). We pursue this task

by addressing the role of coevolution of market and technology as explanantia of the occurrence of an

innovative activity. Although this view is now well received among scholars (Malerba 2006), to our

knowledge there are no attempts to empirically address this issue.

By looking at the existing literature, we claim that this lack of empirical exercises is due to the

misleading mental representation of markets and technology as sources of innovation. On the contrary,

both technology, as the realm of feasible technological opportunities, and markets, as the set of hetero-

geneous needs, should be considered actors that generate innovation by exploring the possible matches

of their characteristics. This view was first put forward by Clark (1985), when describing a successful

innovation as the result of a process of design creation. Design was there defined as the matching process

of technological opportunities with consumers needs.

Thus, in order to empirically analyze how the coevolution of markets and technology acts upon

innovation the problem is threefold: (1) to proxy technological opportunities and market needs at the

same time, (2) to consider the interactions of these two elements, (3) to make use of a statistical tool

which consider the matching nature of this interactive phenomenon.

Previous literature on the debate demand-pull vs. technology-push provided us with a vast list of

possible proxies for markets and technology (among others Schmookler (1966) and Fontana and Guerzoni

(2008) for markets, Nesta and Saviotti (2005) for technology). Also the role of interactions in the process

of innovation has been extensively studied (Lundvall 1988, Lissoni 2001).

This paper contributes to the point (2) by providing a new outlook on user-producer interaction. In

particular we employ a two-modes network approach to map and assess knowledge flows between various

actors. Furthermore, the most innovative challenge of the paper is to address the point (3) and, thus, to

empirically capture the matching nature of the process of innovation. In order to accomplish this task

our base research question “Why does an innovation emerge instead of an other ?” becomes “Why did an

innovation, i.e. a new design, emerge from the specific characteristics of a producer/user dyad instead

of an other?”. The answer to this question requires a mental experiment where the observed reality is

compared with all the possible alternative counterfactual realizations. Further on, we will discuss the

econometric model and data structure that allow to perform this counterfactual analysis.

We use as test field the telecommunication switching industry where user-producer interactions play

a predominant role. In fact, in this sector the production and the purchase of each switch requires the

creation of a very customized product. Moreover, the technology rapidly changes over time together



with both firms’ competences and users’ requirements. Therefore, each product is a new match between

opportunities and needs in a process where not only the characteristics of users and producers matter,

but especially their interaction. The econometric exercise is carried out using an original dataset about

telecommunication manufacturers, network operators, and country characteristics.

The structure of the paper is the traditional one. Next section discusses the theoretical approach

and its positioning in the literature. Section 3 describes the data and the variables used. Section 4 is

devoted to a brief description of the industry and the network analysis of user-producer interactions.

Finally section 5 presents empirical results on how the coevolution of technology and markets affects the

likelihood of an innovation to take place instead of an another. Some final considerations conclude.

2 Aligning markets and technologies

A core research question in the discipline of economics of innovation deals with the nature of the prime

drivers of the innovative activity. The traditional view suggests that market demand governs the rate

and direction through monetary incentives. This idea dates back to the work of Gilfillan (1935) who

surmised that there exists a tendency of technology to lag behind demand. His work opened up a stream

of empirical research focused on testing the demand-pull hypothesis, that is that firms innovate to satisfy

needs signaled by the demand (among others Schmookler (1966), Langrish et al. (1972)).

This view relies upon an unexpressed faith on technological progress: technology opportunities are

thought as unlimited and inventors can explore them in any possible direction. Both sufficient and

necessary condition is simply that there exists a latent demand granting adequate sales, profit, and

returns on R&D investments. The set of all possible human needs, that is any latent demand for an

innovative product, is thus conceived as a subset of the unbounded set of technological opportunities.

A firm is expected to decrypt consumers’ signals in order to place in the market the innovative product

which meets their needs. For this reason this approach has been label “demand-pull”.

This view has been strongly criticized by Mowery and Rosenberg (1979) and Dosi (1982). On the

one side, they addressed the capability of demand to point out a direction for research: the demand-

pull approach fails to separate demand from the “limitless set of human needs” (Dosi 1982). For this

reason the main flow of all those studies consists of the “incapability of defining the why and when of

certain technological developments instead of others and of a certain timing instead of other” (Mowery

& Rosenberg 1979, p.229). Furthermore, Dosi points also out that R&D cannot freely explore an infinite

space, but it is focused on specific technological problems and trade-offs which define the trajectory

where the technological progress is moving along1. The conceptualization of the relationship between

opportunities and needs is thus here reversed: the technological opportunities are a subset of the limitless

1Note that the concept of technological trajectories embraces much more than what is discussed here (Dosi 1982, Dosi 1997).



set of human needs, technology follows its own internal logic and demand can only select among all of

the possibilities provided by firms.

As response to this critique, scholars refined the demand-pull approach and acknowledged that what

matters is not a vague idea of demand, but rather the smaller set of needs of consumers with a high need

determinatess (Teubal 1979, Clark 1985) or sophistication (Guerzoni 2010). Different concepts such as

lead users (Von Hippel 1988), experimental users (Malerba, Nelson, Orsenigo & Winter 2007), pioneers

(Rogers 1995) recognize the importance of those actors with highly defined preferences. In order words,

they reduce the limitless set of human need to its much smaller subsets of needs of very specific users.

If we combine these streams of research, technological opportunities and users needs should be con-

sidered as two partially overlapping, but separated sets. Indeed there is no reason to assume that the

two sets of opportunities and needs are either coincident (all and only all we want is feasible), or disjoint

(only what is feasible is not wanted). Accordingly, it makes sense to consider the process of innovation

as the attempt to align needs and opportunities (to want what is feasible and to do what is needed).

In this view, markets and technologies cease to be a source of innovation but rather actors that try to

match their characteristics.

Clark (1985) defines this process as design creation, where design is a fitness between a form and a

its context. The context is the set of users needs to be satisfied and the form consists of the possibilities

provided by a technology. When a new technology became available both consumers and producers tend

to perceive it in terms of already existing products and, for this reason, they might ignore how to fully

exploit its potential and which needs can satisfied. The process leading to a successful innovation is a

process of learning through which producers and users became aware of opportunities, needs, and of their

possible alignment (Clark 1985).

As already Freeman (1994) clearly pointed out, the debate demand-pull versus technology-push is

sterile, but it is precisely the coevolution of technology and demand to be considered. Although Freeman’s

suggestion is reasonable and well received among scholars, few attempts have been made to operationalize

this idea of coevolution in explaining successful innovation and to empirically assess it (Malerba 2006).

We surmised that this is probably due to the fact that that markets and technology have still been treated

as coevolving sources, rather than coevolving actors of innovation.

Based on this line of thought and bringing together different streams of research, we consider in-

novation as the result of a matching process of markets and technology characteristics. Thus we have

three elements to take into account: (1) markets and technology characteristics as in the traditional

literature, (2) the interaction among users and producers to grasp Freeman’s idea of coevolution, and (3)

the matching nature of the process.



2.1 Design as successful innovation

Markets and technology characteristics, their interaction, and the process of matching are three theoreti-

cally determined elements, which have to be translated in empirically operative tools. Based on previous

literature we discuss here which proxies can be used. An extensive explanation about the derivation of

all the variables used and the empirical method will be discussed in the empirical section of the paper.

Concerning the demand side, Schmookler empirically shows the size of a potential market is a good

predictor of the future innovative activity in a sector (Schmookler 1966). Although his analysis suffered of

statistical flows (Kleinknecht & Verspagen 1990), the overall results still hold and it is stronger for large

industries (Scherer 1982) and for process innovation (Fontana & Guerzoni 2008). A second stream of

research suggested that demand can pull innovation also by clearly signaling their needs and highlight the

path R&D should go to strike the market with successful innovations. For this reason also heterogeneity

and the level of users sophistication should be taken into account (Fontana & Guerzoni 2008).

On the technology side, two factors have been taken into account. Resource based theory (Penrose

1959) suggests that the search activity of a firm is driven by its knowledge stock, that is by its competences

accumulated over time. The knowledge stock is a double-edged sword: the growth of new knowledge is

positively correlated with the capabilities a firm has to acquire further knowledge and innovate (Kogut

& Zander 1992); however, it also might became a source of rigidities and hinder innovation because

firms tend to search only locally (among others March (1991) and Nelson and Winter (1982)). Secondly,

knowledge proximity to the relevant technological trajectory of a sector might influence the rate and

direction of a firm’s innovative activities. The concept of technological trajectories as introduced by Dosi

(1982) describes the existence of a pattern of certain problem solving activities, which are preferred to

others or which have turn out to be more successful. This concept resulted to be very useful to depict

the limited possibility of technological search, which is not unbounded, but proceed at least in time of

“normal science” along and around a given trajectory.

From an empirical point view, scholars made an extensive use of patents to capture the idea of

knowledge stock (Malerba & Orsenigo 1997) and its characteristics such as relatedness (Nesta & Saviotti

2005) and we will build upon these attempts. The empirical analysis of technological trajectories has

mainly focused on the artifact level. For instance, product characteristics have been extensively used

to grasp technology dynamics in aircrafts and helicopters (Frenken, Saviotti & Trommetter 1999), and

tanks (Castaldi, Fontana & Nuvolari 2009). Only recently, works in patent or publication citation

network analysis made finally possible to empirically capture the idea of technological trajectories at

the knowledge level (Mina, Ramlogan, Tampubolon & Metcalfe 2007, Verspagen 2007, Martinelli 2011).

Patent citations can be used to track flows of knowledge among patents and map in a network “chains of

ideas as they develop over time” (Verspagen 2007). By looking at the intensity of citation among different



patents in a citation network has been possible to identify in various industry a main path of knowledge

flows, which has been interpreted as proxy for a technological trajectory. From a firm perspective, it is

therefore possible to position firms in the technological space by looking at the distance of their patent

portfolios to the trajectory (Bekkers & Martinelli 2011).

The process of matching between producers‘ technology opportunities and users’ needs takes place

through interactions among the various agents. Evidence of this interaction is well established in the

literature ranging from the active role of lead users (Von Hippel 1988) or local users (Lissoni 2001),the

system of innovation (Lundvall 1988), to the co-production (Gallouj & Weinstein 1997). In this paper, we

proxy the intensity of interaction with two different kinds of knowledge flows, a direct one and an indirect

one. By direct knowledge we consider the knowledge exchange that takes place during an interaction

where users learn about technological opportunities and producers about markets needs. Secondly, we

assume that the knowledge developed during an interaction persists within the actors and it is carried

on by an actor in any future relationships with third parties. In this way, we want to capture that both

firms and users profit from the past experience of their partners as well.

Also in this second case, empirical evidence is well established. Especially in knowledge intensive

industry, any workers make use of the knowledge gained in previous interactions with other agents

(among others, see Den Hertog (2000)). We make use of citation network to capture both the direct and

direct measures of interaction, which are going to be extensively discussed in the empirical section.

The third empirical issue does not concern the type of variables involved, but rather the model

describing their coevolution. As put forward, in our view technological characteristics and needs have

not to be considered as sources of innovation but rather elements to be aligned in order to produce

innovation. Firms and users are the actors who actively make this alignment possible.

The question of why an innovation occurs instead of another can be thus rephrased as why a specific

match of users needs and technological opportunities have been observed instead of another. In order to

answer this question, one should observe all possible matches of users’ needs with producers’ technological

opportunities and, thereafter, compare the cases which led to an innovation with those where it did

not happen. However, an innovation ex post is the realization of a market-technology match only

when the alignment between needs and opportunities took successfully place. In other words, the

lack of observations of failures creates the problem of missing counterfactuals. The mental exercise

that a researcher has here to perform to is to imagine “what if” scenarios and compare any possible

characteristics of the technology with any other possible characteristics of the market. This paper

proposes a methodology that allows to run this hypothetical counterfactual analysis. An assumption

is however necessary, that is producers are repository of the technical knowledge, while users of the

demand needs. We acknowledge the limitation of this assumption because both users are involved in the



R&D process and producers are, to a certain extent, aware of users needs. Nevertheless, the fact that

we also take into account the role of interactions might mitigate the burden of this assumption. Thus,

the empirical method proposed in section 5 considers all possible matches of users and producers and

compares the characteristics of those matches that generated a new alignment of needs and opportunities

with those where it did not occurs.

2.2 Hypotheses

Based on this elements we can now better specify the empirical hypotheses to be tested.

Hypothesis 1: Users’ and producers’ characteristics have a significant impact upon the likelihood of a

successful innovation to come into being instead of another

Hypothesis 2: The level of interaction among users and producers has a significant impact upon the

likelihood of a successful innovation to come into being

Hypothesis 1 acts here as control hypothesis and tries to capture past results from the literature.

Demand is thus described by usual proxies for its size and complexity, while technology is captured

by firms knowledge stock, and proximity to the technological trajectories. Hypothesis 2 captures the

coevolving nature of the innovation process. The intensity of interaction is measured with network

indicators and we test the role of both directed and indirected interactions.

As test bed for this hypothesis this analysis makes use the telecommunication switching industry2,

which is very appealing for our theory for several reasons. First of all, any installed switch is a com-

plex and unique product resulting from the interaction between a manufacturer (the producer) and a

network operator (the user). In this dyadic relation, the former has specific technical knowledge about

technological opportunities, whereas the latter has specific needs because it manages the telecommuni-

cation infrastructure. For digital switching platforms, that are the specific product matter of this paper,

manufacturers’ competences relate to the trade-off between incorporating new components for increasing

switch performance and keeping economic feasibility. For users, competences relate to demand expecta-

tions and infrastructure management. In particular, because network operators have an infrastructure

characterized by a specific topology extremely costly to change3, they have rather diversified needs: al-

though different users might share some ideas about how end demand and final customers’ preferences

would evolve, they rely on different infrastructure systems. For this reason, overall, they achieve similar

level of services using with various types of equipment. Moreover, the lock-in into different infrastructure

topologies determines a long term demand for switches with different service characteristics and fosters

2Telecommunication switches constitute a fundamental part of the telephone network. It allowed the establishment of a
phone call by realizing a connection from a selected inlet to a selected outlet for the duration of the call.

3For instance, once the local switch is installed and all the subscribers are connected, any relocation of the local switch is
very expensive, unless a major network restructuring takes place.



a stable co-existence of different designs. Therefore, in this industry each installed switch is a peculiar

design resulting from a unique alignment between users’ needs and technological opportunities and, thus,

in our definition, a successful innovation.

A second characteristic of the industry relevant to the analysis is the fundamental role of the down-

stream market. Being network operators very sophisticated, that is with very concrete and complex needs

to be satisfied, not only they drive adoption and diffusion of new switching platforms, but also their re-

search labs are a valuable source of knowledge. Starting from the flagship case of the Bell Laboratories,

these laboratories would represent a source of science-based research necessary for the development of

the latest switching platforms 4.

For concluding, the telecommunication switching industry is an ideal setting to understand how the

coevolution of markets and technology affect the emergence of an innovation. Indeed, in this sector

it is straightforward to pinpoint a new design, being any new installed switch. Moreover, not only a

variegated technological base and a diversified demand plays a role, but also user-producer interactions.

3 Data, variables, and methods

The aim of this section is to provide the reader with a description of the data and variables used, and

of the methods applied in section 4 and 5. As anticipated in the introduction the empirical analysis will

include network analysis and a choice model (the multinomial conditional logit).

Following the hypotheses stated in section 2.2 we test three groups of variables. These are summarized

in table 1 and discussed in section 3.1.1, 3.1.2, and 3.1.3, respectively.

[Table 1 about here.]

The dependent variable of the choice model, i.e. a successful innovation has been derived from the

Dittberner Digital Switches Evolution 2003 Report, which consists of a census of all the existing digital

switches installed between 1972 and 2001 and includes 3017 observations for 42 manufacturers. For each

switch, it provides information about the producer (i.e. the manufacturer), the user (i.e. the telecom

operator that bought it), the model, the capacity described as the number of lines, and the year of

installation. From this data source, it is therefore possible to derive a dyadic relation between producers

and users. This relation will provide the dependent variable for the econometric model and the base for

the two-mode network analyzed in section 4.

Despite the richness of these data two issues emerge: first, the presence of several missing observations

about the years of installation, and the lack of information about manufacturers acquired by other

4Other famous PTT laboratories are: the GPO Dollis Hill Research Centre in United Kingdom and the Electrical Commu-
nication Laboratory (ECL) established by NTT in Japan.



companies before 2001. In the first case, only 1627 switching installation can be actually assigned to a

specific year. The distribution of the observations with missing year by firm is very skewed for some small

manufacturers, however, they account for only the 36% of the whole world capacity1. The second issue

has been partially solved with some reconstruction work by re-assigning the entry from the company

that took over the business to the old ones. This was done by matching the switch model, which is

firm specific, and the years. This worked rather well for the switch System 12 installed before 1988 and

re-assigned to ITT from Alcatel (that took over ITT); however, this process has been less precise in the

case of GEC-Plessy where it was not possible to distinguish the two companies as they develop the switch

System X together. Overall, it is worth to note that only 4 companies (ITT, GEC, Plessy and GTE)

were acquired and, therefore the reconstruction work has still been very limited.

These market data are complemented with patent data, financial data, and country data in order to

address the research questions of the paper. The merge of such different data sources cut the number

of useful observations for the regression analysis because data refer to different time spans. The most

incomplete database is OSIRIS, the financial one, for two different reasons: numerous manufacturers are

not available and only few companies have long financial data series. The Dittberner Digital Switches

Evolution 2003 Report points out the existence of two types of switches manufacturers: big companies,

both with the status of national champions and with a more international outlook, and very small

manufacturers having an exclusively local production. In the latter categories we can find manufacturers

such as the Slovenian Iskratel, the Polish Inventel, and the Iranian ITRC. For this small manufacturers

it was difficult to find any information both in specialized IEEE (Institute of Electrical and Electronics

Engineers) publication and in the internet2. Fortunately, these manufacturers represent a tiny part of the

whole market in term of shipped capacity as they were basically local producer serving small domestic

markets. Summing up, the problem of skewed time series length is twofold: very few companies have

financial data going back to maximum middle ’80s and the majority of them have complete series only for

recent years (especially Chinese manufacturers) but market share are available only to 2001. However, the

analysis is based on almost the 50% of the entire population and possible bias either partially excluded

by previous work on the subject (Martinelli 2011) or carefully taken into account.

3.1 List of variables

The variables used in the empirical analysis are reported in table 1 and can be grouped in three: Firms and

Technological Characteristics (X ), User-Producer Interaction (W ), and User (Country) Characteristics

(Z ). These groups are summarized in the following subsections.



3.1.1 Firms and Technological Characteristics (X)

These variables capture firms’ characteristics, such as size and technological competences. Financial data

about manufacturers was retrieved using the OSIRIS Database. For each company it was possible to

build a series about profitability, total assets, and number of employees. Firm size is measured using the

total assets3 deflated with PPI for capital goods.

Firm’s technological competencies are evaluated with the firm’s knowledge stock calculated using

USPTO patents. Knowledge stock is proxied in the standard way with the perpetual inventory method

and a depreciation rate of 15% (Hall, Jaffee & Trajtenberg 2000).

Firms’ technological position is represented as relatively to the technological trajectory. The techno-

logical trajectory is identified by applying the connectivity approach to patent citation networks. Such

approach links patents through their citations and maps the knowledge flows occurring between them.

This method applies a search algorithm that identifies the “main path” within the patent citation net-

work. This path is a set of connected patents and citations linking the largest number of patents of the

network. Because a citation can be viewed as a knowledge flow, the main path is the path that cumulates

the largest amount of knowledge flowing through citations in the network. This path represents therefore

a local and cumulative chain of innovation consistent with the definition of technological trajectory put

forward by Dosi (1982)4.

This methodology has been successfully applied to several technologies such as cell fuel (Verspagen

2007), medical innovation (Mina et al. 2007), the artificial disc (Barberá, Jiménez & Castelló 2010), and

switches (Martinelli 2011). Starting from the result of Martinelli (2011), the variable Distance measures

the distance of the firm’s patent portfolio from the patents belonging to the technological trajectory. In

particular, the variable Distance is computed for each firm as the average geodesic distance between each

patent in the firm’s portfolio and the closest patent belonging to the technological trajectory.

Finally, the domestic dummy controls for the advantage to ship a switch to the domestic market. This

variable should control for the tight institutional relation between manufacturers and producers during

the pre-liberalization period.

3.1.2 User-Producer Interaction (W)

In this group of variables we consider the direct and indirect interactions between users and produc-

ers5. These variables are built analyzing the two-mode network of manufacturers and operators and its

unipartite projection.

A two-mode network is characterized by the presence of two types of nodes which cannot be directly

connected. Figure 1 shows an example of two-mode network where the blue squares represent manu-

facturers and the red circles network operators. Indeed, these two types of nodes cannot be directly



linked because manufacturers can ship switches only to operators and not to other manufacturers. The

thickness of the ties is proportional to the number of lines installed by a manufacturer into the network

operator’s infrastructure.

[Figure 1 about here.]

The value of the tie represents the strength of the direct interaction between a manufacturer and a

network operator. From the manufacturers perspective, it measures the experience and the knowledge

cumulated about a specific user and its network infrastructure.

We can draw a two-mode network for each year in the sample. Therefore, we can build a balanced

panel dataset whose individual (the cross-sectional) dimension is the dyadic relation between the user

and producer. The variable DirExp measures the stock of such direct interaction and it is calculated

using the perpetual inventory method and a 15 % depreciation rate6 on the number of lines (i.e. the

strength of the tie in the above figure) a producer has sold to a user.

In a two modes network, the adjacency matrix, which describes the link among nodes, is not necessarily

a squared matrix because the number of the two types of nodes is not necessarily the same. For this

reason, descriptive analysis techniques such as centrality measures cannot be computed. A standard

procedure is therefore to focus on its unipartite projection that contains only manufacturer nodes, which

are linked if they share common users.

[Figure 2 about here.]

For instance, figure 2 shows the unipartite projection for the manufactures displayed in the two-mode

network in figure 1. Links between manufacturers are established in case of common “users” such as

between Lucent and Alcatel which are connected because they both ship switches to France Telecom;

similarly, no link exists between Lucent and Siemens. Ties are weighted using the minimum, that is, if

Lucent and Alcatel supply France Telecom 100 and 140 lines respectively, the value of the link between

the two manufacturers will be 100. In this way, the link between the two manufacturers represent the

minimum bundle of indirect knowledge they can gain from having the same users.

In the similar fashion as before, we can obtain an unipartite network for each year and build a balanced

panel data whose individual dimension is the manufacturer. In this panel data, we can include for each

year the sum of the values of the ties of each manufacturer that correspond to the manufacturer’s degree

centrality in the unipartite network. This corresponds to the total indirect knowledge that a manufacturer

gains every year by sharing a common pool of users. The intuition behind is the transitivity of the

learning-by-interacting. In this specific context, the nature of this common knowledge is about how

to adapt the existing switching platform to the user specific needs, expectations, and infrastructures.

If on the one hand, this knowledge is “user-specific” on the other hand it goes to enrich the firm’s



competences. The variable IndExp is the stock of this indirect knowledge and it is computed using the

perpetual inventory method with a 15%7.

It is important to stress that all the networks analyzed in section 4 are unipartite projection obtained

as just explained for specific years.

3.1.3 Users Characteristics (Z)

Finally, Z variables should capture the dimension of the demand side. The literature about demand and

innovation can be divided in two stream. On the one hand, many authors (Schmookler 1966, Scherer

1982) put forward, discussed, and tested the role of demand as incentive: the larger is a potential

market, the higher are the expected returns from an innovation, and, for this reason, the higher is the

optimal level of R&D investment. However, since the work by Gilfillan (1935) clearly emerge the role

of demand as provider of information. Due to the uncertain nature of the innovation process is very

hard to predict expected returns from an innovation. Thus, users, especially in business-to-business

relation can provide the inventors with useful information or even with prototypes. More recently, it

has been put forward that not all users dispose the competencies to generate such information, but

only those users with specific characteristics such as the sophisticated users (Guerzoni 2010), pioneers

(Rogers 1995), lead users (Von Hippel 1988), experimental users (Malerba et al. 2007). In this paper we

use countries data elaborated by the World Bank to portray the drivers of digital equipment demand

and users characteristics. Following the literature, the proxies considered are GDP, the size of the

installed switch, the percentage of the urban population, and the contribution of service sector to GDP

(Shampine 2001, Greenstein, McMaster & Spiller 1995). GDP and the size of the installed switch capture

the size of the market. Whereas, the percentage of urban population and the percentage of service on

GDP are proxies for the complexity of the demand. We assume that the higher is the complexity of a

market, the higher is also the sophistication of the users that needs switches. Despite their simplicity,

these indicators capture the two main drivers of switching demand: network expansion and upgrading

(i.e. sophisticated demand).

4 The telecommunication switching industry: a network ap-

proach to the user-producer relation

The aim of this section is to introduce the industry under examination and to discuss the evolution of

the user-producer interaction using the unipartite network introduced before.

A practical advantage of studying the telecommunication switching industry is the limited number of

producers that allows for a meaningful integration of quantitative and qualitative information and the



possibility to apply the empirical strategy explained in section 5. As already explained in section 3.1.2,

in this network a link between two manufacturers indicates the presence of a common pool of knowledge

derived from sharing the same users.

The dataset used in this study allows to trace all the successful innovation resulting in the installation

of a digital switch worldwide between 1972 and 2001. Table 2 summarizes the size of the two-mode

network (i.e. number of manufacturers and network operators), and countries included in the dataset for

two subsequent sub-periods and the whole dataset.

[Table 2 about here.]

Digital switches are increasingly produced by manufacturers and adopted by network operators and

countries. The last columns in the table inform about the distribution of number of countries served

by each manufacturer. Such distribution has a large standard deviation indicating the coexistence of

manufacturers serving either a very limited or a large number of countries.

Table 3 and table 4 present figures about the evolution of the network size and key structural indicators

for both each subperiod considered and the total network. The strength of the ties represents the stock

of common experience derived by sharing the same users. This corresponds to the IndExp presented

in section 3.1.2, in the year 1990 and 2001 respectively. The total network includes all the installed

lines with missing years that are assigned to the last period. This brings about an overestimation of the

strength of the ties as none of these lines is depreciated8.

[Table 3 about here.]

The comparison between the first two rows shows that more manufacturers start producing digital

switches, however the value of the ties decreases both at the mean and at the maximum. This patterns

is consistent with the mature and even declining phase of the technology in the 1990s. In fact, with

the increasing demand of data transmission related to the diffusion of Internet, digital switches became

obsolete. The last column indicated the cut-off point for the value of the ties displayed in figures 3, 4,

and 5.

[Table 4 about here.]

Table 4 reports the evolution of some structural indicators of the network9. The decrease in the

density of the network over time is consistent with the decrease of the value of the ties of time. This

happens both because earlier common pool of experience depreciates and also because not many new lines

are installed. The average distance between manufacturers is rather short and a very small proportion

of the nodes cannot be reached. Finally, the GINI coefficient measures the dispersion of the values of the

ties. This rather high and stable over time indicating that most of the successful innovation takes place



from the interaction between few users and producers. This is even more evident when all the switches

in the sample are included in the network.

Figure 3, 4, and 5 visualize the unipartite networks. They allow evaluating not only the whole

network structure but also each individual firm and the underlying core-periphery structure. In particular,

companies marked with red circles belong to the core, whereas the blue squares are in the periphery10.

[Figure 3 about here.]

The network displayed in figure 3 shows the situation in the early phase of the industry. Even if the

first digital switches were sold in the early 1970s, it is only some years later in 1979 that they emerge as the

standard product and technology. The fitting of a core-periphery structure11 allows to distinguish between

companies densely linked from the others. The companies in the core are all large manufacturers, whereas

in the periphery we can notice the coexistence of both large manufacturers (Lucent, NEC, and Nortel)

and domestic producers (Tropico for Brazil, Italtel for Italy, C-DOT for India, ITRC for Iran, etc.). The

fact that Lucent12 does not belong to the core can be puzzling if we consider that Bell Laboratories,

which belong to Lucent, were the most active research centre for telecommunication switches. However,

because of the monopolistic position of AT&T as a network operator, its manufacturing branch, Western

Electric was not allowed to sell to others operators until 1984 (Noam 1992). Therefore, the fact that

user-producer interactions on a large scale are a “recent” phenomenon for Lucent in the period under

examination can explain its secondary position in the network structure.

On the contrary, looking also at the strength of the ties we can notice the central role played by

Ericsson and ITT. Both these companies have been characterized by their international outlook either

because their domestic market was too small to provide the scale needed to support the R&D effort

(Ericsson) or there was not a preferential domestic market (ITT).

Finally, observing the structure of the network, two groups of highly connected companies should be

highlighted: the one on the right side including LG, HanWha, and Samsung, and the Japanese manu-

facturers on the left side (OKI, Hitachi, Fujitsu, and NEC). In the last case, the presence of reciprocal

connections is the result of specific industrial policies aimed to develop and foster a telecommunication

sector that brought the four Japanese manufacturers in a coordinated competition regime: they were

collaborating at the Electrical Communication Laboratory (ECL) in exchange of fixed domestic market

shares, but, at the same time, they were fiercely competing for foreign markets.

[Figure 4 about here.]

Figure 4 displays the same network for the next period. The visual comparison with the previous one

points out an increase in the number of triadic closures and therefore an increase in centralization. The

number of firms included in the core increases and numerous Chinese manufacturers (Huawei, Zhongxing,



and Great Dragon) entered the sample. This is consistent with the fast catching-up experienced by

Chinese firms in the telecommunication sector (Mu & Lee 2005). The entrance in the core of Nortel is

the consequence of its aggressive strategy into digital switches probably due to the domestic market size

(Canada) insufficient for the scale intensive R&D efforts. For this reason, Nortel successfully entered bot

the US and the Japanese market (Sutton 1998, Fransman 1995).

[Figure 5 about here.]

The last figure (Figure 5) represents the unipartite network calculated on the whole sample, including

observations with the missing years (see footnote 1). In this respect, it is difficult to interpret such figure

where all the shipment for which we do not know the year became predominant as not discounted. This

might explain why a company such as GTE belongs to the core and Nortel not. However, the MDS13

layout used for network visualization tends to place close nodes, that have the most similar shortest

distance. In this industry, they are manufacturers that share most of the pool of users. Despite the

overestimation of the weights of the ties, it is still however possible to distinguish a group of highly

similarly connected firms.

Overall, the network analysis points out the presence of two types of manufacturers: the ones involved

in successful interaction with the same large number of users and the ones that do not. The implication is

that only few companies can actually benefit from the sharing of the common pool of indirect experience.

5 Econometric model: a choice model14

In order to test the hypotheses put forward in section 2.2 this section estimates the probability of a

successful innovation, where “success” is determined by the alignment between user needs and technolog-

ical feasibility. The idea of alignment is operationalized through the estimation of the probability of a

manufacturer to supply a switch to a specific network operator conditional to the independent variables.

From the two-mode network perspective (see figure 1), this corresponds to estimate the probability to

observe a tie between a network operator and a specific manufacturer instead of an other. In this respect,

the estimation of our hypothesis corresponds to implement a mental experimental which considers all

the possible alternative events that did not take place and we compare the characteristics of those events

with the reality. This can be done by reshaping the data structure and transforming the data in a choice

file15, where each original observation (the installation) is multiplied by the number of alternatives (the

number of companies that can supply the switch). In this choice file, the independent variables of in-

terests can be of two types: alternative dependents or alternative invariants. The former group includes

the variables that depends on the manufacturers (i.e. the alternatives) such as the variables in group X

and W, whereas the latter includes variables related to the characteristic of the switch or the country



(i.e. constant along the alternatives) such as the variables in the group Z.

In order to include both types of variable we need to rely on a mixed logit and in particular on a

multinomial conditional logit. The probability of installation i to be shipped by manufacturer j is:

Pr[yi = j] =
exp

(

αXij + βWij +
∑

42

l=1
(γldijl + δZldZijl)

)

∑

42

k=1
exp

(

αXik + βWik +
∑

42

l=1
(γldijl + δZldZijl)

)

where dijl is a dummy variable equal to 1 if j = l and equal to zero otherwise, dZijl = dijlZi, and the

number of alternatives (i.e. the number of possible manufacturers) is 4216.

According to the literature, the model is estimated as a conditional logit with the inclusion of

manufacturers dummies and their interaction with the alternative independent covariates (Cameron

& Trivedi 2005). As for these multinomial models the interpretation of the coefficients is rather prob-

lematic, all the coefficients reported are marginal effects. In particular, for the alternative independent

variables these marginal effects are calculated as:

∂Pij

∂Zi

= pij(βj − βi)

where β =
∑

l
pilβl is a probability weighted average of βl.

The main conceptual assumption of this model, that each company had the same probability to supply

each switch, could be questionable. However, at least for large companies, which are the only one finally

included in the model, the assumption seems reasonable.

Table 5 and table 6 show descriptive statistics and correlation coefficients of the dependent and

independent variables.

[Table 5 about here.]

[Table 6 about here.]

Table 7 reports the first group of regressions. In the first column OLS results are shown; however,

because of the nature of the dependent variable it can be used only as exploratory analysis. The last

three columns display results of conditional logit regressions, where no alternative invariant covariates

(i.e. SwSize, GDP, Urban, and Service) are included. All covariates have significant coefficients; specif-

ically, the size (LnAssets) of a producer exhibits an inverted U shape impact on the probability that

an interaction takes place. The variables related to firms’ technological competences are significant and

have the expected sign. The same is true for both interaction variables. Finally, domestic companies

have an advantage over foreign companies.

[Table 7 about here.]



[Table 8 about here.]

Regressions displayed in table 8 include also the alternative invariant variables (i.e. SwSize, GDP,

Urban, and Service) interacted with “alternative dummies” (i.e. manufacturer dummies). The focus is

on the subset of large firms in term of shipment and telecommunication, because of the large number of

alternatives (42) and the large number of companies with few valid observations (see appendix C). In

addiction to that and following the results of the network analysis, only a limited number of companies

have the possibility to compete for each shipment. The five models in the table differ in the alternative

invariant variables and in the presence of the domestic dummy.

The results look rather stable at the different specifications. Size is not significant and this is expected

as the focus is on large firms. Moving to the technology related variables (X ), knowledge stock is positive

and significant. Firm’s distance from the technological trajectory is negative and significant: reducing

the distance of a company to the pool of relevant knowledge, increases the probability of observing a

successful innovation. The user-producer variables (W ) turn out to be positive and significant. Not only

knowledge gained through directed interaction plays a role, but also the knowledge conveyed by users

from past interactions with third parties. Finally, the domestic dummy is positive and highly significant

revealing the advantage of domestic firms.

The last set of variables (Z ) tests the impact of demand. As these variables enter as interaction with

manufacturer dummies, we have to compare the alternative marginal effects. Figure 6 reports the average

marginal effects for the four variable considered and shows the advantages of some firms in markets with

specific characteristics.

[Figure 6 about here.]

In term of size of the market Nortel and Lucent display the largest advantage. On the contrary,

Alcatel, Siemens, and Ericsson are more successful in smaller markets. A similar pattern is followed

when controlling for the incidence of the service sector on the economy, for the size for the switch and

for the percentage of urban population. The reason why a firm shows more advantage in certain market

condition has to do with institutional and historical factors, which, although of a great interest, are

not subject of this paper. Regarding the issue matter of this work what really emerge is that demand

conditions have statistically significant impact on the likelihood to observe a certain new design.

[Table 9 about here.]

As robustness check, table 9 displays that estimated probabilities match the observed frequencies.

Finally, the multinomial conditional logit relies on the crucial assumption of independence of irrelevant

alternatives (IIA). IIA implies that adding or changing alternatives do not affect the relative odds between

the other alternatives considered. In general, this implication is not realistic for applications with similar



alternatives, which is not our case. Moreover, we could rejects the null hypothesis, that different models

with less alternatives are statistically different. Furthermore, the estimation of a multinomial probit

(that relax such assumptions) shows comparable results.

Recalling the hypotheses stated in section 2.2, it is possible to conclude that the empirical model

supports both of them. Within a framework where the innovation process is conceived as an attempt

to match needs and opportunities both demand and technology show a significant impact. Moreover,

also when controlling for users and producers characteristics the interaction of this two actors remain

positive and significant. Demand, technology, and user-producer interaction are significant predictors

of a successful innovation. The ranking of their importance requires further empirical research and it

probably differs across sectors.

6 Conclusions

This paper suggested both a theoretical framework and an empirical method to overcome the debate

demand-pull vs. technology push by looking at the coevolution of markets and technology. Although

this view is somehow acknowledged in the discipline, there are no empirically exercises coherently mov-

ing in this direction. In this work we stressed the fact, that not only markets, technology, and their

interactions should be simultaneously taken into account, but also the mental representation of markets

and technology as sources of innovation has to be reconsidered.

The main contribution of this paper is twofold. First, this work proposed a new mental representation

of how markets, technology and their interaction concur in explaining the why of certain innovation

instead of another. Both technology, considered as the realm of feasible technological opportunities,

and markets, as the set of heterogeneous needs, should not be considered sources, but rather actors,

which by exploring the possible matches of their characteristics generate innovation. In this framework

we attempt to explain innovation as the occurrence of a specific match between opportunities and need

and we analyze the why of certain match instead of another. Answering this question correctly should

require the mental experiment of comparing the characteristics of a match with those characteristics of

all other possible ones that did not take place. Of course, this approach can be empirically pursued only

in circumstances where the set of possible alternatives is not only finite, but also small.

Secondly, the paper suggested how to empirically deal with this issue. Section 3 showed how to grasp

the idea of interaction with the use of two modes network. Both direct and indirect interactions can be

proxied and analyzed in this framework. Section 5 showed how it was possible to use all the variables

explained to perform the mental experiment described above and model an innovation as the successful

alignment between needs and opportunities as opposed with all the possible counterfactual alternatives.



In this way, it was possible show the impact that the markets and technologies have on the probability

that an innovation takes place instead of another. We accomplished this task by estimating the likelihood

of observing a specific purchase in the telecommunication switches industry as the result of users and

producers characteristics and of their interactions. Indeed, any installed switch is a complex and unique

product resulting from the interaction between a manufacturer and an operator. In this dyadic relation,

the former has the specific technological knowledge about opportunities, whereas the latter has specific

needs. Therefore, each installed switch can be considered a new design. We run a fixed effect logit where

the econometric challenge has been to simultaneously considering covariates varying across alternative

and alternative invariants.

Results support our theoretical framework and suggest that markets and technologies significant

impinge upon innovation within a framework where they are not considered sources, but rather the

engine behind the alignment of needs and opportunities.



Notes

1Furthermore, some tests for selection bias were performed and if on the one hand the switches whose instal-

lation year is missing are on average smaller this difference is not statistically significant (with a p-value of 0.58)

(Martinelli 2010).

2One exception is a short article “Unknown switches?” published on Global Communications Newsletter

(Jajszczyk 1995).

3The total assets is the sum of total current asset, long term receivables, investments in unconsolidated com-

panies, other investments, net property, plant and equipment and other assets, including intangibles.

4more technical details about the method are in Martinelli (2010)

5For a similar approach applied on a different case see Leiponen (2008).

6Results hold also with different depreciation rates (such as 5% and 20%).

7Results hold also with different depreciation rates (such as 5% and 20%).

8See footnote 1 for a discussion of the implications.

9 For the definitions of the indicators exposed in the table see Appendix A.

10For the details about how the core-periphery model is fitted see Appendix B.

11See appendix B for details and the numerical results.

12Here Lucent indicates what in the past was AT&T and Western Electric.

13MDS stays for multidimensional scaling and it is a standard social network analysis technique

14All the estimations (and post estimation statistics) are carried out using the asclogit package available for

STATA.

15The choice file is built following the instruction by John Hendrickx provided at http://home.wanadoo.nl/

john.hendrickx/statres/mcl/stata/mcl.pdf .

16The whole population of the telecommunication switch manufacturers include 42 companies, however, not all

of them enter in the regression analysis because of the lack of financial information.
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A Summary of key measures for the analysis of the knowl-

edge network

[Table 10 about here.]

B Core-Periphery analysis

This annex reports the results obtained in fitting a core/periphery model. The procedure here used

maximizes the correlation between the permuted data matrix and an ideal structure matrix consisting

of ones in the core block interactions and zeros in the peripheral block interactions.

[Table 11 about here.]

[Table 12 about here.]



C Alternative summary statistics

[Table 13 about here.]



Figures

Figure 1: A two-mode network. An example.



Figure 2: Unipartite projection. An example

Figure 3: Network Evolution 1972-1990



Figure 4: Network Evolution 1972-2001



Figure 5: Network Evolution (Total)



Figure 6: Average marginal coefficients for alternative independent variables (model 4)

GDP Contribution of Service to GDP

Size of the switch Percentage Urban Population



Tables

Table 1: List of variables and hypothesis

Group Category Variables Name Hypothesis

X

Size LnAssets

1
Firms and Technological Knowledge Stock LnKnow

Characteristics Distance Distance

Domestic dummy Domestic

W User-Producer Interaction
Direct Experience DirExp

2
Indirect Experience IndExp

Z

GDP GDP

1
User (Country) Switch Size SwSize

Characteristics % Urban population Urban

% of Service on GDP Service



Table 2: Network summary - Nodes

Number of
manufacturers

Number of
operators

Number of countries

(producers) (users) Mean Std. Dev. Min Max

1972-1990 29 183 10.79 16.67 1 70
1972-2001 39 525 17.667 27.64 1 123

Totala 42 750 20.714 31.5 1 134
aTotal includes also the observations with missing year. See section 3 for details.

Table 3: Network summary - Size and Strength

Number of
manufacturers

Strength of the ties (thus. lines)
Cut-off

(producers) Mean Std. Dev Min Max

1972-1990 29 14794.93 21249.02 0 82370.2 1000
1972-2001 39 12848.74 17539.04 0 62168.62 1000

Total 42 48304.85 89826.3 0 403603.4 1000
Note: Symmetric network

Table 4: Network summary - Structural indicators

1972-1990 1972-2001 Total

Density 528.3904 338.1246 1178.167
Average Distance 1.675 1.388 1.305
Fragmentation 0.069 0.051 0.048

GINI Coefficient 0.655 0.66 0.748
Note: Symmetric network

Table 5: Summary Statistics

Variable Mean Std. Dev. Min. Max. N

Response 0.024 0.152 0 1 54222
LnAssets 16.247 4.668 0 25.035 19903
LnAssets2 285.762 154.412 0 626.772 19903
LnKnowt−1 3.534 3.383 0 9.056 37232
Distance 20.265 14.004 1 56.783 38005
DirExp 17.92436 307.0203 0 23486.12 54222
IndExp 2219.046 3627.119 0 17301.27 54222
TotPort 1077.068 4015.604 0 75199.398 54222
LnGdp 25.172 2.691 17.198 29.941 49560
Service 50.582 14.649 4.141 85.858 46032
Urban 55.035 23.618 5.22 100 53760
Domestic 0.039 0.195 0 1 54222



Table 6: Correllation Table

Variables 1 2 3 4 5 6 7 8 9 10

1 Response 1.000
2 LnAssets -0.040 1.000
3 LnKnowt−10.104 0.392 0.415 1.000
4 Distance -0.079 -0.189 -0.241 -0.426 1.000
5 DirExp 0.148 0.009 0.009 0.039 -0.027 1.000
6 IndExp 0.186 -0.013 -0.024 0.348 -0.258 0.088 1.000
7 TotPort -0.000 0.003 -0.002 0.028 0.031 0.041 -0.028 1.000
8 LnGdp -0.000 -0.017 -0.006 -0.034 -0.075 0.013 0.031 0.077 1.000
9 Service -0.000 -0.005 -0.008 0.004 -0.128 -0.011 -0.031 -0.093 0.269 1.000
10 Urban -0.000 -0.001 -0.003 0.004 -0.070 0.003 -0.019 -0.044 0.245 0.700

Table 7: Regression Results

(1) (2) (3) (4) (5)
OLS Clogit Clogit Clogit Clogit

LnAssets 0.002 0.059 0.146∗∗∗ 0.133∗∗∗ 0.132∗∗

[0.002] [0.035] [0.037] [0.040] [0.041]

LnAssets2 -0.000∗∗∗ -0.005∗∗∗ -0.007∗∗∗ -0.006∗∗∗ -0.006∗∗∗

[0.000] [0.001] [0.001] [0.001] [0.001]

LnKnowt−1 0.008∗∗∗ 0.212∗∗∗ 0.173∗∗∗ 0.096∗∗∗ 0.093∗∗∗

[0.001] [0.018] [0.018] [0.019] [0.019]

Distance -0.038∗∗∗ -0.022∗∗∗ -0.022∗∗∗

[0.003] [0.004] [0.004]

DirExp 0.001∗∗∗ 0.001∗∗∗

[0.001] [0.001]

IndExp 0.001∗∗∗ 0.001∗∗∗

[0.001] [0.001]

Domestic 0.671∗∗∗

[0.172]

Constant 0.013
[0.013]

Observations 18766 13360 13360 13360 13360
R2 0.012
Pseudo R2 0.048 0.082 0.148 0.151

Standard errors in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



Table 8: Regression Results

(1) (2) (3) (4)
Mult.Clogit Mult.Clogit Mult.Clogit Mult.Clogit

LnAssets -0.733∗ -0.358 -0.625 -0.361
[0.325] [0.355] [0.328] [0.360]

LnAssets2 0.037∗ 0.020 0.032∗ 0.021
[0.015] [0.017] [0.015] [0.017]

LnKnowt−1 0.093∗ 0.103∗ 0.092∗ 0.100∗

[0.042] [0.049] [0.043] [0.050]

Distance -0.019∗∗∗ -0.017∗∗ -0.019∗∗∗ -0.018∗∗

[0.005] [0.005] [0.005] [0.005]

DirExp 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗

[0.001] [0.001] [0.001] [0.001]

IndExp 0.001∗∗ 0.001∗ 0.001∗∗ 0.001∗

[0.001] [0.001] [0.001] [0.001]

Domestic 0.650∗

[0.312]
LnGdp Yes Yes Yes Yes
TotPort Yes Yes Yes Yes
Service Yes Yes
Urban Yes Yes

ll -1106.911 -963.532 -1076.065 -939.338
Observations 5281 4770 5281 4770

Standard errors in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: Alternative summaries for regression 5

Company
Alternative

Cases Present Frequency
selected

Percent
selected

Estimated
probability

Alcatel 589 112 18.57 0.142
Ericsson 543 66 10.95 0.104
Fujitsu 515 24 3.98 0.04
Lucent 372 69 11.44 0.173
NEC 515 31 5.14 0.055
Nokia 596 43 7.13 0.051
Nortel 573 121 20.07 0.195

Samsung 365 32 5.31 0.037
Siemens 576 99 16.42 0.153

Zhongxing 126 6 1.00 0.05



Table 10: Summary of key measures for the analysis of the knowledge network

Variable Definition

Density The density for a valued network is defined as the sum of all the
values divided by the number of possible ties.

Average
distance

The average of geodesic distances between nodes in the network.
The distance is the length of a geodesic between them, which is

measured as the shortest path.

Fragmentation Proportion of nodes that cannot reach each other.

GINI
Coefficient

Distribution of strength of the ties measured by the GINI
coefficient applied to outdegree centrality. .

Table 11: Core-Periphery analysis

Density of the linkages
Final fit

Core Periphery

1972-1990
Core 9647.625 701.823

0.734
Periphery 701.823 122.578

1972-2001
Core 3807.023 223.129

0.828
Periphery 223.129 35.78

Total
Core 11786.04 2209.817

0.764
Periphery 2209.817 148.525

Table 12: Company in the core over time

Company in the core

1972-1990 Fujitsu, Alcatel, Ericsson, Siemens, and ITT
1972-2001 Zhongxing, Alcatel, Ericsson, Lucent, Fujitsu, Siemens, Great

Dragon, Huawei, Nortel, and ITT
Total NEC, Alcatel, Lucent, Great Dragon, Siemens, Ericsson, Huawei,

and GTE



Table 13: Alternative summary statistics

Company
Alternative

Cases Present Frequency
selected

Percent
selected

Large

Alcatel 775 135 16.92 x
Bosch 701 1 0.13
Datang 68 0 0
Ericsson 721 82 10.28 x
Fujitsu 664 25 3.13 x

HanWha 555 9 1.13
Hitachi 687 0 0

LG 478 6 0.75
Lucent 488 74 9.27 x
GEC 582 6 0.75
Mitel 663 18 2.26
NEC 664 36 4.51 x
Nokia 786 66 8.27 x
Nortel 753 154 19.3 x
OKI 640 0 0

Philips 554 4 0.5
Samsung 473 33 4.14 x
Siemens 762 111 13.91 x

Teltronics 685 16 2.01
Zhongxing 169 6 0.75 x

GTE 607 1 0.13
GEC-Plessy 134 6 0.75

ITT 697 9 1.13


