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ABSTRACT 
 

 

 

Neuropilin-1 (NRP1) is a co-receptor for multiple extracellular ligands. NRP1 is 

widely expressed in cancer cells and in advanced human tumors; however, its 

functional relevance and signaling mechanisms are unclear. Here we show that 

NRP1 expression controls viability and proliferation of different cancer cells, 

independent of its short intracellular tail. We found that the extracellular domain 

of NRP1 interacts with the Epidermal Growth Factor Receptor (EGFR) and 

promotes its signaling cascade elicited upon EGF or TGF alpha stimulation. 

Upon NRP1 silencing, the ability of ligand-bound EGFR to cluster on the cell 

surface, internalize and activate the downstream AKT pathway is severely 

impaired. EGFR is frequently activated in human tumors due to overexpression, 

mutation, or sustained autocrine/paracrine stimulation. Here we show that 

NRP1-blocking antibodies and NRP1 silencing can counteract ligand-induced 

EGFR activation in cancer cells. Thus our findings unveil a novel molecular 

mechanism by which NRP1 can control EGFR signaling and tumor growth. 
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INTRODUCTION  

 

Neuropilin-1 (Nrp1) and Neuropilin-2 (Nrp2) form a small family of conserved and 

widely-expressed transmembrane proteins, originally implicated in the regulation of 

axon guidance and vascular development (1,2). The extracellular portion of 

neuropilins mediates protein-protein interactions; in particular, “a” and “b” domains 

are known to interact with secreted class 3 semaphorins and vascular endothelial 

growth factors (VEGF) (3,4), while the “c” (MAM) domain mediates neuropilin 

homo- and hetero-dimerization (5) (see Figure 1A). The role of the short cytoplasmic 

tail of neuropilins is poorly understood, and its relevance is still controversial (6-8).  

Beside embryonal development, neuropilins are widely distributed in the adult 

tissues, and their levels are often significantly increased in cancer cells and tumor 

biopsies of various origin, compared to normal counterparts ((9,10); reviewed in (11). 

In addition, high levels of Nrp1 were significantly associated with poor outcome in 

patients with colon cancer (9), breast cancer (12) and non-small lung cancer (13), and 

correlated with invasive behavior and metastatic potential in gastrointestinal 

carcinoma, glioma and prostate carcinoma (11). Notably, EGF stimulation has been 

found to induce Nrp1 expression in tumor cells (9,14,15). Moreover, Nrp1 expression 

was upregulated in epithelial cells upon neoplastic transformation driven by 

constitutive activation of the Ras pathway (16). Nrp1 overexpression in advanced 

tumors may suggest a link with the acquisition of a functional advantage at the 

cellular level. Yet, experimental data on the role of Nrp1 in cancer cells are 

contradictory, and the implicated molecular mechanisms have not been elucidated. 

For example, knocking down Nrp1 expression in carcinoma cells inhibits 

proliferation, cell survival, and extracellular matrix invasion in vitro (13,17); 
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consistently, other studies indicated that Nrp1 overexpression can inhibit cancer cell 

apoptosis (18,19). These effects have been often explained by the role of Nrp1 in 

supporting VEGF signaling (17,19,20). In contrast to these findings, in other studies, 

an elevated expression of Nrp1 was associated with more favorable prognosis for 

colon cancer patients (21) and reduced tumor growth in experimental models in mice 

(22); moreover, a VEGF/Nrp1-dependent pathway suppressing cell viability has been 

proposed in one specific case (23). These discrepancies are currently unresolved and 

they might reflect cell-specific responses and/or the involvement of different signaling 

pathways. 

 Antibodies and short peptides interfering with Nrp1 function have been 

shown to inhibit tumor angiogenesis and tumor growth in vivo in mice (24-26); these 

data have validated Nrp1 as a significant target for anti-angiogenic and antitumor 

agents.  Intriguingly, by applying a computational model, it was predicted that a more 

potent VEGF inhibition may be achieved by using an anti-Nrp1 antibody that does not 

block ligand binding, but rather interferes with Nrp1 oligomerization (27). This is 

consistent with previous evidence that deleting the “c”/MAM oligomerization domain 

impairs neuropilin function (5). Moreover, a synthetic peptide derived from the 

transmembrane segment of Nrp1 prevents Nrp1 dimerization and oligomerization and 

blocks glioma growth in mice (28). 

In this study, we identified a novel molecular mechanism to account for the 

acquisition of selective advantage coupled with Neuropilin-1 overexpression in cancer 

cells. We found that Nrp1 is in complex with EGFR on the cell surface, where it 

mediates ligand-induced EGFR clustering and endocytosis, leading to intracellular 

activation of AKT signaling cascade. Notably, upon Nrp1 depletion, EGFR signaling 

is significantly affected in cancer cells. Our work identifies a new function of Nrp1 in 
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association with a growth factor receptor, and envisages a putative role of Nrp1 in 

sustaining EGFR activation in a large fraction of human tumors.         

 

 

 

 

MATERIALS and METHODS  

(also see Supplemental material)  

Cell lines. American Type Culture Collection (ATCC) provided tested 

and authenticated cell lines used in our study, which were passaged in our laboratory 

for fewer than 6 months after resuscitation. Cells were grown in standard medium 

supplemented with 1% L-glutamine (2mM) and 10% FBS (Sigma). 

Gene expression knock down by RNA-interference. Neuropilin expression was 

silenced by transfecting the following targeted siRNA sequences (chemically 

synthesized) with Lipofectamine 2000 (Invitrogen) or by using the Amaxa 

nucleofector kit T (program X-01, Lonza); #1: AGATCGACGTTAGCTCCAA; #2: 

AACACCTAGTGGAGTGATA; #3: CAATCACGTGCAGGCTCAA (where not 

specified, siRNA #2 was used). In order to achieve stable gene knock-down for long-

term experiments, we transduced cells with lentiviral constructs expressing targeted 

shRNA. The sequence targeting Nrp1 was previously published (17). Control shRNAs 

(shC) were generated by introducing four base substitutions in Nrp1 targeting 

sequence (GATAGGTCATGACTGCCC). These shRNA sequences were inserted in 

 American Association for Cancer Research Copyright © 2012 
 on October 31, 2012cancerres.aacrjournals.orgDownloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Author Manuscript Published OnlineFirst on September 17, 2012; DOI:10.1158/0008-5472.CAN-12-0995

http://cancerres.aacrjournals.org/
http://www.aacr.org/


 6

the lentiviral transfer plasmid pCCLsin.PPT.hPGK.GFP.Wpre under control of the H1 

promoter, as previously reported (29). We similarly designed shRNA-expressing 

lentiviral constructs targeting the transcript of Nrp2 (TTCCAAAGATGCTGCCTAT), 

and EGFR (GCAGTCTTATCTAACTATGAT; kindly provided by L. Trusolino, 

IRCC, Candiolo, Italy). PTEN expression was silenced by using Sigma Mission 

shRNA-expressing lentiviral vector TRCN0000002749. Control empty vector pLKO 

was from Sigma. 

 

 

RESULTS 

 

Neuropilin-1 expression regulates tumor cell viability and 

proliferation 

 We knocked down the expression of either Nrp-1 or Nrp-2 by RNA 

interference in multiple different human cancer cells (validation data shown in Suppl. 

Fig. 1A-B). Proliferation and viability of Nrp2-depleted tumor cells were comparable 

to control cells treated with a non-targeting shRNA (see Suppl. Fig. 1C-D). In 

contrast, Nrp1 knock-down resulted in a significant impairment of viability and 

proliferation in a variety of cancer cell models (Fig. 1B and Suppl. Fig. 1E). The 

specificity of this effect was validated by applying three distinct siRNA sequences 

directed against Nrp1 (Suppl. Fig. 1F). Flow cytometry-based detection of the early 

apoptotic marker Annexin-V revealed a significantly increased number of apoptotic 

 American Association for Cancer Research Copyright © 2012 
 on October 31, 2012cancerres.aacrjournals.orgDownloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Author Manuscript Published OnlineFirst on September 17, 2012; DOI:10.1158/0008-5472.CAN-12-0995

http://cancerres.aacrjournals.org/
http://www.aacr.org/


 7

cells following Nrp1 knock-down (Suppl. Fig. 2A); moreover, the pro-survival PI3K-

AKT signaling pathway was strikingly attenuated in these cells compared to controls 

(Suppl. Fig. 2B). Notably, upon forcing the constitutive activation of AKT by means 

of PTEN silencing we could partly rescue cell viability in Nrp1-depeleted cells 

(Suppl. Fig. 2C-D); this implicated AKT signaling in a putative Nrp1-regulated 

pathway supporting cancer cell survival.  

Complementary to gene knock-down experiments, we found that Nrp1 

overexpression was sufficient to confer a proliferative advantage to tumor cells and to 

enhance their viability (Fig. 1C and Suppl. Fig. 3A). Notably, Nrp1 is known to bind 

VEGF-A, a growth factor especially active in endothelial cells via the tyrosine kinase 

receptor KDR/VEGF-R2. Although VEGF-R2 is not expressed in most cancer cells 

(including those used in our experiments), a previous report proposed that VEGF 

binding to Nrp1 could promote tumor cell survival via poorly defined KDR-

independent pathways (19). We have therefore generated and expressed in cancer 

cells a mutated Nrp1 construct unable to bind VEGF-A165 (Nrp1_3mut, see Fig. 1A 

and Suppl. Fig. 3B). In analogy to the wild type counterpart, Nrp1_3mut promoted 

cancer cell growth and viability (Fig. 1D and Suppl. Fig. 3C), indicating that VEGF-

binding is not implicated in this function. Moreover, cancer cells overexpressing 

either wild type Nrp1 or its Nrp1-3mut variant formed larger tumors in mice 

compared to controls (Fig. 1E). Unlike what reported in a previous study (20), Nrp1-

overexpressing tumors (either wt or mutant forms) were not characterized by 

increased vessel density (Suppl. Fig. 3D), indicating that Nrp1 can sustain cancer cell 

growth in vivo independently of tumor angiogenesis.  

Notably, the cytoplasmic domain of Nrp1 is very small, and its functional 

relevance in cancer cells is unclear. In order to experimentally address this issue, we 
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overexpressed in tumor cells a truncated secretable form of Nrp1, lacking both 

transmembrane and cytoplasmic domains (Nrp1ec; Fig. 2A). The isolated 

extracellular domain of Nrp1 was sufficient to promote tumor cell proliferation and 

viability (Fig. 2B-C), consistent with the effects mediated by full-length Nrp1. 

Moreover, Np1ec expression was sufficient to rescue the effect of Nrp1 depletion in 

cancer cells (Fig. 2D). In keeping with our findings in vitro, we observed a growth 

advantage of cancer cells overexpressing Nrp1ec transplanted in mice (Suppl. 

Fig.4A), and this was not accompanied by an increased tumor vessel density (Suppl. 

Fig. 4B). Altogether, these data suggested that Nrp1 activity promoting cancer cell 

survival and proliferation is not due to a signaling cascade elicited by its intracellular 

tail, but rather implicate a function of the extracellular domain of Nrp1, independent 

from VEGF binding.   

 

Neuropilin-1 and EGFR form a signaling complex on the cell surface  

Since Nrp1ec expression was sufficient to induce proliferation and rescue cell 

viability, we asked about the implicated mechanisms. Interestingly, we found that 

treating cancer cells with affinity-purified Nrp1ec activated AKT and MAPK 

signaling cascades (Fig. 3A-B). These effectors have a crucial role in controlling 

tumor cell survival and proliferation, and are often activated downstream to Receptor 

Tyrosine Kinases (RTK) expressed on the cell surface. By applying an unbiased 

screening approach, we found that the extracellular domain of Nrp1 could elicit the 

phosphorylation of Epidermal Growth Factor Receptor (EGFR)(Fig. 3C). This was 

further confirmed by western blotting using specific antibodies directed against the 

major EGFR auto-phosphorylation site P-Tyr1068 (Fig. 3D). Pre-treating cells with 
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Cetuximab (an EGFR-blocking monoclonal antibody) impaired Nrp1ec-induced 

MAPK and AKT activation (Fig. 3E), indicating pathway specificity; similar results 

were obtained by applying the small molecule EGFR inhibitor Gefitinib (not shown). 

These data suggested that the Nrp1-dependent signaling cascade controlling cell 

growth and survival is largely mediated by EGFR activation. Moreover, upon 

analysing tissue sections of Nrp1-overexpressing tumors grown in mice (described in 

Fig. 1E) we found that EGFR tyrosine phosphorylation was significantly increased 

compared to controls (Suppl. Fig. 5).   

Co-immunoprecipitation experiments indicated that the extracellular domain 

of Nrp1 interacts with EGFR upon overexpression (Fig. 4A). Furthermore,  

endogenous Nrp1 and EGFR were basally associated in A549 non-small lung cancer 

cells, and the complex was induced upon stimulation with either EGF or TGF�, two 

major EGFR ligands found in tumors (Fig. 4B). By confocal microscopy analysis, we 

found that endogenous Nrp1 and EGFR largely co-localized on the surface of A549 

cells (Suppl. Fig. 6A). Moreover, in response to EGF stimulation, a large fraction of 

Nrp1 was found in intracellular vesicles co-localizing with EGFR (Suppl. Fig. 6A). 

Based on the co-localization with the Early Endosome Antigen-1 (EEA1; (30) (Suppl. 

Fig. 6B), these vesicles were identified as early endosomes, a vesicular compartment 

that typically traffics internalized EGFR (31). 

 

Neuropilin-1 ectodomain regulates EGFR clustering and endocytosis  

In order to understand the functional relevance of Nrp1 in EGFR signaling, we 

first checked EGFR levels on the plasma membrane in control and Nrp1-depleted 

cells by cell surface biotinylation experiments, and found them to be comparable 
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(Suppl. Fig. 7A). Moreover, cell surface incubation with fluorescently-labeled EGF 

revealed that receptor binding was not affected upon Nrp1 knock down (Suppl. Fig. 

7B). Ligand-induced activation of EGFR is thought to elicit receptor oligomerization 

and clustering on the cell surface, followed by internalization by endocytosis (32,33). 

We therefore applied Total Internal Reflection Fluorescence (TIRF) microscopy to 

study EGFR distribution at the cell surface. This revealed that, at the steady state, 

EGFR-signal was dispersed on the plasma membrane and rarely aggregated in small 

spots (Fig. 4C). In contrast, upon stimulation with physiological concentrations of 

EGF (2 ng/ml) the receptors clustered in many distinct aggregates at the cell surface 

(Fig. 4C). Importantly, this ligand-induced effect was barely detectable in Nrp1-

depleted cells, which behaved similarly to non-stimulated cells (Fig. 4C), strongly 

suggesting that Nrp1 plays a role in ligand-engaged EGFR clustering on the cell 

surface. Consistent results were furthermore obtained assessing EGF- or TGF�-

induced EGFR clustering by conventional confocal microscopy (Fig. 4D). Notably, 

the treatment with soluble extracellular domain of Nrp1 (Nrp1ec) promoted EGFR 

clustering in tumor cells and was sufficient to rescue the functional defect resulting 

from endogenous Nrp1 knock down (Fig. 4D). Altogether, these data indicate that the 

extracellular domain of Nrp1 is required and sufficient to induce EGFR 

oligomerization and clustering on the cell surface.     

Ligand-induced EGFR clustering is followed by its internalization in 

endocytic vesicles, from where EGFR can sustain prolonged intracellular signals (34-

36). Intriguingly, we noticed that ligand-induced EGFR trafficking into EEA1-

positive endosomes was impaired in Nrp1-silenced cells, potentially suggesting the 

requirement of Nrp1 for EGFR endocytosis (Suppl. Fig. 8). In order to track the 

internalization of activated EGFR, A549 carcinoma cells were ligated with EGF at 
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+4°C (to put on hold the endocytosis of activated receptors), and then surface biotin-

labeled either before or after allowing ligand-induced endocytosis to occur (by 

shifting the cells at 37°C). Whereas in control cells activated EGFR was efficiently 

internalized and its levels on the cell surface dramatically decreased, in Nrp1-deficient 

cells ligand-engaged EGFR largely remained at the cell surface indicating that it was 

inefficiently internalized (Fig. 5A). By immunofluorescence experiments, we tracked 

EGFR trafficking in response to EGF or TGF�; unlike in control cells, in Nrp1-

depleted cells ligated receptors remain on the cell surface and their internalization is 

impaired (Fig. 5B and Suppl. Fig. 9A-C). Further experiments applying fluorescent-

labeled EGF to track the internalization of receptor complexes (Fig. 5C) demonstrated 

the requirement of Nrp1 expression for this function. Notably, Nrp1-deficient cells 

did not show any defect in the uptake mediated by Transferrin receptor (TfR), a cargo 

receptor which is continuously internalized from the cell surface (Suppl. Fig. 10); this 

indicated that Nrp1 is not part of the basic molecular machinery mediating receptor 

endocytosis, but it specifically affects the endocytosis of selected molecules, such as 

EGFR.  

We found that the differential internalization of EGF-EGFR complexes in 

control and Nrp1-depleted cells was unchanged upon treatment with the catalytic 

inhibitor Erlotinib (selectively blocking EGFR autophosphorylation) (Suppl. Fig. 

11A), or with the tyrosine phosphatase inhibitor sodium orthovanadate (preventing 

phosphorylation turnover)(Suppl. Fig. 11B), strongly suggesting that Nrp1 can control 

ligand-induced EGFR internalization even independently from its tyrosine 

phosphorylation. Thus, to elucidate the functional role of specific Nrp1 domains for 

EGFR internalization, we reconstituted its expression in silenced cells by ectopically 

transfecting either non-targetable full-length Nrp1 or two different mutants of the 
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intracellular domain, lacking either the C-terminal -SEAcooh sequence (Nrp1_�SEA) 

or the entire cytoplasmic domain (Nrp1_�cyto). Re-expression of full-length Nrp1, as 

well as of either of the above mutants (shown in Suppl. Fig. 12A), restored ligand-

induced EGFR internalization to normal rates, indicating that the cytoplasmic domain 

of Nrp1 is not implicated for this function.  

We then focused our attention on the extracellular domain of Nrp1, based on 

our data supporting its crucial role in eliciting EGFR clustering on the cell surface. A 

Nrp1 mutant lacking the extracellular MAM domain, required for receptor 

oligomerization (�MAM) (5) (expression shown in Suppl. Fig. 12B), could not rescue 

EGFR endocytosis (Fig. 5E). Unlike wild type Nrp1, the monomeric �MAM mutant 

was furthermore unable to reinstall ligand-induced EGFR clustering in Nrp1-depleted 

cells (Suppl. Fig. 13A), consistent with that Nrp1 oligomerization is required to 

mediate the clustering of associated EGFR. We then tested a complementary 

truncated mutant of Nrp1 including the oligomerization MAM domain only, anchored 

to the plasma membrane (Nrp1-MAM-TM). This protein strongly associated with 

endogenous Nrp1 (Suppl. Fig. 13B) but was unable to interact with EGFR (not 

shown). Notably, not only Nrp1-MAM-TM could not rescue the effect of Nrp1 knock 

down, but it even acted as dominant negative molecule, by blocking the function of 

endogenous Nrp1 and leading to impaired EGFR clustering on the cell surface (Suppl. 

Fig. 13C), as well as defective AKT activation (Suppl. Fig. 13D) and reduced tumor 

cell viability (Suppl. Fig. 13E). Taken together, these data strongly suggest that the 

oligomerization of the extracellular domain of Nrp1 associated with EGFR is 

responsible for ligand-induced EGFR clustering on the cell surface and subsequent 

internalization.    
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Nrp1 expression controls ligand-induced EGFR activation and 

signaling in tumor cells  

In keeping with its impact on EGFR oligomerization, Nrp1 knock-down also inhibited 

ligand-induced EGFR phosphorylation and the activation of intracellular AKT 

effector pathway in cancer cells (Fig. 6A-B). Notably, AKT activation in response to 

the ErbB3/ErbB4-ligand Heregulin-�1 or the unrelated growth factor Insulin was 

unaffected by Nrp1 knock down in the same cells (Fig. 6C). We further assayed the 

functional relevance of Nrp1 in EGFR signaling by treating two different cancer cell 

lines with a Nrp1-blocking antibody (3). In treated cells, ligand-induced 

phosphorylation of both EGFR and the downstream effector AKT was impaired (Fig. 

6D). These data suggest that Nrp1 is specifically required for EGFR signaling in 

cancer cells.  

EGFR pathway is frequently activated in human tumors, and pivotally 

implicated in sustaining cell proliferation (37). This may be associated with receptor 

gene amplification and overexpression (38), or ligand over-expression and autocrine 

signaling in cancer cells (39,40). Interestingly, upon forced EGFR overexpression and 

constitutive activation in A549, Nrp1 expression became dispensable for cell viability 

(Fig. 7A). On the other hand, constitutive EGFR activation sustained by autocrine 

TGF� signaling was strikingly dependent on Nrp1 expression in cancer cells (Fig. 7B, 

left panel). Consistently, cells carrying TGF� overexpression displayed a modest but 

significant increment of cell viability in culture, which was completely lost upon Nrp1 

silencing (Fig. 7B, right panel).  
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DISCUSSION  

 

Accumulating evidence seems to associate neuropilins expression in cancer cells with 

tumor progression. In particular, Nrp1 overexpression is often found in human 

cancers of different origin, and correlates with tumor aggressiveness and poor clinical 

outcome. Tumor models, in vivo and in vitro, have been used to try elucidating the 

functional role of Nrp1 in cancer progression; however experimental data were partly 

contradictory and did not identify the implicated molecular mechanisms. The results 

of the present study indicate that Nrp1 expression plays a pivotal role in cancer cell 

survival and proliferation. In fact, while knocking down Nrp1 expression severely 

impaired growth and viability of different cancer cells, its overexpression conversely 

promoted cell proliferation in vitro and tumor growth in mouse models. 

By investigating the molecular mechanisms underlying this activity, we found 

that the extracellular domain of Nrp1 (Nrp1ec) could elicit the phosphorylation of 

both AKT and MAPK intracellular effectors and promote cell proliferation, 

recapitulating the effects of overexpressing the full-length molecule; moreover 

Nrp1ec was sufficient to restore viability of cancer cells deprived of the endogenous 

transmembrane molecule. These results suggested that the small cytoplasmic domain 

of Nrp1 is not specifically required for the regulation of cancer cell viability and 

proliferation. Moreover, by experiments in vitro and in vivo, we demonstrated that the 

VEGF-binding site in the extracellular domain of Nrp1 is not required to mediate 

these effects, thereby implicating a major alternative signaling pathway. 
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Initially, we ruled out two candidate effectors previously associated with 

Nrp1: VEGF-R2 and c-Met (data not shown). Then, by applying an unbiased 

screening for RTK activation in cancer cells, we found out that Nrp1ec selectively 

triggered the phosphorylation of EGFR (but not other ErbB family members). 

Notably, Nrp1ec did not interfere with EGF-induced receptor activation, or even 

slightly improved it in co-stimulation experiments (data not shown), thus suggesting 

that Nrp1ec does not engage EGFR ligand-binding site or EGF itself. We then 

demonstrated the physical association between endogenous Nrp1 and EGFR in cancer 

cells and found it to be induced by EGF and TGF�. Moreover, while ligand 

stimulation induced EGFR clustering in large complexes on the cell surface, this was 

impaired upon Nrp1 silencing. We found that this process is mediated by the 

oligomerization (MAM) domain of Nrp1. 

Ligand-induced EGFR internalization into endocytic vescicles was 

furthermore impaired in the absence of Nrp1. Importantly, EGFR internalization was 

recovered in Nrp1-silenced cells upon re-expression of mutated Nrp1 isoforms 

lacking the cytoplasmic domain, or by the treatment with Nrp1ec alone. On the other 

hand, EGFR internalization could not be recovered upon re-expression of mutated 

Nrp1 lacking the oligomerization MAM domain, responsible for EGFR clustering on 

the cell surface. It is known from literature that EGFR endocytic traffic is intimately 

connected to receptor activation (41). However, whether the kinase activity is required 

for EGFR internalization is debated (33,42,43), and it cannot be ruled out that tyrosine 

phosphorylation and receptor internalization may be two partly independent 

consequences of receptor ligation on the cell surface. This issue started to be 

mechanistically addressed, and receptor oligomerization per se is emerging as a 

driving force for EGFR internalization independent of kinase activity (44). In this 
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framework, our study points at Nrp1 as an additional player in the regulation of EGFR 

trafficking. Indeed, in our experimental model we found that Nrp1 controls EGFR 

endocytosis even independently from tyrosine autophosphorylation, by mediating 

receptor oligomerization and clustering on the cell surface.  

It is well known that receptor endocytosis is a major regulatory mechanism 

controlling receptor signaling in space and time (45). This is particularly important for 

EGFR, because the signaling cascade elicited by receptor activation is not limited to 

the plasma membrane, and crucially continues during receptor trafficking through 

endosomal compartments, especially for mediating AKT activation (36). Because 

ligand-induced EGFR internalization in tumor cells was severely reduced in the 

absence of Nrp1, EGF-bound receptors remained at the cell surface, where they are 

hardly capable to activate AKT (46). This mechanism is potentially implicated in the 

pathway leading to tumor cell growth and survival mediated by EGF. Indeed, we 

found that the extracellular domain of Nrp1 is sufficient to promote AKT activation, 

cancer cell viability and tumor growth in vivo, independent from VEGF binding. 

Moreover, our data suggest that Nrp1-dependent AKT activation is mediated by 

EGFR signaling, thereby suggesting a molecular mechanism to account for increased 

Nrp1 expression in human tumors. Complementary to this, and relevant for cancer 

treatment, the treatment with a Nrp1-blocking antibody (or knocking down Nrp1 

expression by RNAi) abated EGFR auto-phosphorylation and downstream AKT 

signaling induced by EGF or TGFalpha, which sustains tumor cell survival and 

proliferation.  

EGFR is in fact a major driver of progression in several human cancers. Even 

tumors carrying wild type non-amplified EGFR have been found to depend on the 

signaling activity of this proto-oncogene for progression, and they can be successfully 
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targeted with EGFR-blocking drugs (47-49). Intriguingly, our data suggest that Nrp1 

function is dispensable in EGFR-overexpressing cancer cells. Instead, we found that 

constitutive EGFR activation and pro-survival signaling due to an autocrine loop of 

TGF�, which is also frequently seen in human tumors, is dependent on Nrp1 

expression.  

Preclinical trials in mice with two different anti-Nrp1 antibodies demonstrated 

a strong tumor suppressor effect that could not be explained by interference with 

VEGF binding or VEGFR2 signaling (24), although the implicated molecular 

mechanisms remained unclear. On the other hand, one anti-Nrp1 MoAb, selected for 

targeting the VEGF-binding domain in order to block tumor angiogenesis 

(MNRP1685A), was tested in the clinics revealing moderate toxicity. Therefore, our 

data could prompt future studies focusing on antibodies or therapeutic active 

molecules targeting Nrp1-EGFR interaction in tumor cells, independent of its function 

as co-receptor for VEGF in endothelium.  

In conclusion, Nrp1, thanks to its ability to regulate EGFR activation, 

internalization and signaling, could represent a new and relevant target for interfering 

with the EGF/TGF�-dependent survival and proliferation of cancer cells. 
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LEGENDS to FIGURES 

 

Figure 1. Neuropilin-1 expression levels regulate tumor cell growth and viability. 

A. Schematic drawing depicting Nrp1 structure and the conserved domains comprised 

in the different constructs analyzed in this study (including point mutations in 

Nrp1_3mut).  

B. The viability of multiple different Nrp1-depleted tumor cells (expression data 

shown in Suppl. Fig. 1A) was assessed by MTT assay (see Suppl. Methods). Values 

shown are the mean ±SD of three independent experiments performed in triplicate, 

normalized to controls for each cell line; *p<0.01; **p<0.001; ***p<0.0001. 

C. The growth of control-EV, Nrp1-depleted (shNrp1), and Nrp1-overexpressing 

A549 carcinoma cells was compared, in cell proliferation assays (see Suppl. 

Methods). Plotted values represent the mean ±SD of three independent experiments 

performed in triplicate; *p<0.01; **p<0.001; ***p<0.0001. 

D. Wild type or point-mutated Nrp1 unable to bind VEGF (Nrp1_3mut, see Fig. 1A 

and Suppl. Fig. 3B) were overexpressed in U87MG tumor cells, and cell growth was 

assessed in culture (compared to controls) as in panel C. Data shown are the mean 

±SD of three independent experiments performed in triplicate; **p<0.001; 

***p<0.0001. Immuno-blotting analysis of protein expression is shown on the right. 

E. U87MG cells engineered as described above were transplanted s.c. in 

immunodeficient mice. Tumor growth was assessed by periodical volumetric 

measurements (left panel), and tumor weight was eventually measured after excision 
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(right panel). Values reported in graphs represent the average ±SD of 6 mice per each 

experimental condition; *p<0.01; ***p<0.0001. 

 

 

 

 

Figure 2. The extracellular domain of Nrp1 is sufficient to promote tumor cell 

viability/proliferation.  

A. Immuno-blotting analysis of expression of the isolated extracellular domain of 

Nrp1 (Nrp1ec) in MDAMB435 cells, and its secretion in the conditioned medium.  

B. The growth of tumor cells expressing Nrp1ec or mock (illustrated above) was 

assessed as in Fig. 1C. The graph shows mean values ±SD of three independent 

experiments performed in triplicate; *p<0.01. 

C. The viability of MDAMB45 and A549 tumor cells overexpressing Nrp1ec was 

assessed by MTT conversion assays (in 1% FBS-containing medium). Data shown are 

the mean ±SD of three independent experiments performed in triplicate; *p<0.01; 

**p<0.001.  

D. MDAMB435 cells expressing recombinant Nrp1ec, or transfected with an empty 

vector (EV), were furthermore subjected to knock down of endogenous Nrp1 by 

treatment with three independent siRNA sequences (siNrp1) or a control (siC). On the 

left, are shown the results of MTT assays; average values (from two independent 

experiments performed in triplicate) were normalized to the respective siC-treated 
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conditions. Unlike EV-control cells, Nrp1ec-overexpressing cells were unaffected by 

silencing endogenous Nrp1; *p<0.01; **p<0.001. On the right: immunoblotting 

analysis of Nrp1 expression in the different conditions. 

 

Figure 3. Nrp1ec elicits EGFR activation and downstream signaling.  

A-B. Western blotting analysis of different tumor cell lines incubated with affinity 

purified soluble Nrp1ec (or mock) for 15 minutes, revealing AKT (A) and MAPK (B) 

activation by means of phospho-specific antibodies. Detection of total AKT and 

MAPK levels in the same samples (shown at the bottom) provided protein loading 

controls. 

C. By applying a Proteome Profiler antibody array (ARY001, by R&D systems), we 

assessed the tyrosine phosphoryation of 42 different RTKs in protein lysates of T47D 

tumor cells incubated with mock, 300 ng/ml Nrp1ec, or Heregulin (0.2 nM, as internal 

positive control). Nrp1ec selectively induced EGFR phosphorylation.  

D. EGFR phosphorylated in tyrosine 1068 was detected by immunoblotting with anti-

phosphospecific antibodies in total protein lysates of different tumor cells incubated 

with 2 ng/ml EGF or 300 ng/ml Nrp1ec. Vinculin was also detected in the same 

lysates to provide a reference of protein loading. 

E. A549 cells were treated with EGF or Nrp1ec (as above), in absence or presence of 

the EGFR-blocking antibody Cetuximab (100 μg/ml). Western blotting analysis (as in 

panels A-B) showed that EGFR blockade prevented AKT and MAPK 

phosphorylation induced by both Nrp1ec and EGF.  
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Figure 4. Nrp1 associates with EGFR and regulates ligand-induced EGFR 

clustering on the cell surface. 

A. Nrp1ec and EGFR (transfected in HEK-293T cells) were co-immunopurified from 

cell lysates, as demonstrated by Western blotting.  

B. Endogenous EGFR and Nrp1 co-purified from protein lysates of A549 cells, 

especially upon stimulation with EGFR cognate ligands 2 ng/ml EGF and 20 ng/ml 

TGF� for 15 minutes.  

C. A549 cells were transfected with GFP-EGFR in presence of a non-targeting siRNA 

(siC) or a siRNA targeting Nrp1 (siNrp1) and plated onto glass-bottomed dishes. Cells 

were treated with 2ng/ml EGF, and images were acquired with a TIRF microscope 

(Nikon, objective 100x). Scale bar: 5μm. Image-J software was used to score the 

number of EGFR-positive clusters per cell (n= 65, per condition); and measure the 

length (μm) of their major axis (shown in left and right graph, respectively). Data 

represent mean value ± SEM from three independent experiments; ***p<0.001 

(Mann-Whitney test). 

D. A549 were transfected with GFP-EGFR and siNrp1 (or siC), as above. The cells 

were then incubated with 2 ng/ml EGF or 20 ng/ml TGF�, in the presence of the 

dynamin inhibitor Dynasore (to prevent receptor internalization; see (50). Confocal 

fluorescence microscopy analysis in non-permeabilized conditions, revealed the 

presence of large EGFR clusters on the cell surface, induced upon ligand stimulation 

in Nrp1-dependent manner. Cell treatment with 400 ng/ml Nrp1ec basally induced 

EGFR clusters and promoted EGF-mediated effects. The fraction of EGFR clusters-

containing cells (out of a count of 100 cells in different fields) was normalized to that 

observed in non-treated siC control condition. Representative microscopic fields and 
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magnified insets are shown on the left (scale bars: 20 μm; insets are magnified 2-

fold). 

 

Figure 5. Nrp1 regulates ligand-induced EGFR internalization. 

A. A549 cells, either control or Nrp1-depleted by siRNA, were incubated with 2 

ng/ml EGF at 4°C, and subsequently surface biotinylated, either directly (on the left) 

or after allowing protein internalization to occur by shifting cells at 37°C for 25 

minutes (on the right).  

B. EGFR internalization was tracked by “antibody feeding” experiments (see Suppl. 

Methods for a detailed description, and Suppl. Fig. 9A for a schematic protocol and 

microscopic images of representative fields). The graphs show a quantification of the 

ratio between internalized EGFR and total EGFR staining in control and Nrp1-

silenced cells, as the mean ±SD of  20 independent fields acquired in three 

independent experiments; ***p< 0.0001.  

C. EGF-EGFR endocytosis was assayed in A549 cells, either control or Nrp1-

depleted, upon incubation with 2 ng/ml fluorescent-labeled EGF555 (red) (see Suppl. 

Methods for details). Representative images are shown on the right: Nrp1 staining in 

green allows to identify few non-silenced cells in siRNA-Nrp1 treated samples that 

provide a convenient internal control for EGF555 binding and internalization. Scale 

bars: 25 μm. The graph on the left shows a normalized signal quantification of 

internalized EGF-EGFR complexes, as the mean ±SD of 50 fields derived from four 

independent experiments; **p< 0.001; ***p< 0.0001.  

D. Nrp1 wild type or the indicated mutant constructs (non-targetable by siRNAs) were 

re-expressed in Nrp1-depleted (siNrp1) or control (siC) A549 cells. Fluorescent EGF 

internalization experiments were performed as above. The graph shows mean values 
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±SD of at least 20 fields derived from three independent experiments (normalized to 

siC controls); **p< 0.001. Nrp1 constructs expression was verified by immuno-

blotting analysis (shown in Suppl. Fig. 12A). 

E. Nrp1 wild type or the indicated mutant constructs (non-targetable by siRNAs) were 

re-expressed in Nrp1-depleted (siNrp1) or control (siC) A549 cells. Fluorescent EGF 

internalization experiments were performed and quantified as above (panels C-D) 

**p< 0.001. Protein expression was verified by immuno-blotting (see Suppl. Fig. 

12A). Co-treatment of Nrp1-deficient cells with 400 ng/ml purified soluble Nrp1ec 

(rightmost bars) reconstituted the functional response to EGF.  

 

 

Figure 6. Nrp1 regulates EGFR signaling in cancer cells. 

A. Western blotting analysis of EGFR and AKT phosphorylation in control and Nrp1-

depleted A549 cells, upon stimulation with 2 ng/ml EGF. In the upper rows, EGFR 

was immunopurified and then analyzed by anti-phosphotyrosine antibodies. In lower 

rows, total protein extracts were analyzed with anti-phospho-AKT antibodies.  

B. Analysis of EGF-induced EGFR and AKT phosphorylation in total lysates of 

control and Nrp1-depleted Hela cells. Data shown are representative of three 

independent experiments. 

C. Nrp1-depleted A549 cells were stimulated with 2 ng/ml EGF, 0.2 nM Heregulin-

�1 or 10nM Insulin and AKT phosphorylation was assessed as above. 

D. Immunoblotting analysis of EGFR and AKT phosphorylation induced by 2 ng/ml 

EGF in tumor cells pre-treated for 1hour with a Nrp1-blocking antibody (3) (or an 

unrelated antibody). Data shown are representative of four independent experiments. 
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Figure 7. Constitutive EGFR activation by autocrine ligand stimulation in cancer 

cells is dependent on Nrp1 expression. 

A. Western blotting analysis of EGFR tyrosine phosphorylation in control and EGFR-

transfected A549 cells, recapitulating constitutive receptor activation in tumors due to 

receptor overexpression. Constitutive EGFR tyrosine phosphorylation (left panel) was 

associated with increased cell viability (right panel), independent of Nrp1 expression 

(knocked down by targeted shRNA expression). Values are the mean ±SD of three 

independent experiments performed in triplicate; **p< 0.001; ***p< 0.0001.  

B. Immunoblotting analysis of EGFR tyrosine phosphorylation in control and TGF�-

transfected A549 cells. In presence of constitutive TGF� loop, EGFR phosphorylation 

is strongly induced at the steady state, but this effect is lost upon Nrp1 knock down.  

Consistent results were observed by analyzing cell viability (right panel). Results are 

the mean ±SD of three independent experiments performed in triplicate; *p< 0.01; 

***p< 0.0001.  
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Figure 6
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