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The vibrational contribution to static and dynamic (hyper)polarizability tensors of polyacetylene
are theoretically investigated. Calculations were carried out by the finite field nuclear relaxation
(FF-NR) method for periodic systems, newly implemented in the CRYSTAL code, using the coupled
perturbed Hartree-Fock scheme for the required electronic properties. The effect of the basis set is
also explored, being particularly important for the non-periodic direction perpendicular to the poly-
mer plane. Components requiring a finite (static) field in the longitudinal direction for evaluation by
the FF-NR method were not evaluated. The extension to that case is currently being pursued. Whereas
the effect on polarizabilities is relatively small, in most cases the vibrational hyperpolarizability
tensor component is comparable to, or larger than the corresponding static electronic contribution.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731266]

I. INTRODUCTION

Even before the advent of quantum mechanics there has
been much interest in the various properties exhibited by
molecules and materials in response to external electric fields.
For spatially uniform perturbing fields this response is gov-
erned by the electric dipole moment or polarization vector.
The dipole moment, in turn, contains a permanent compo-
nent plus induced components arising from the linear polariz-
ability and the nonlinear hyperpolarizabilities. Each of these
properties includes contributions from both the electronic and
nuclear motions. In this paper, we will focus on the role of
nuclear motions as they affect both the static and dynamic
(hyper)polarizabilities.

A major advance in the field occurred about 20 years
ago, with publication of Bishop and Kirtman’s general per-
turbation treatment (BKPT) (Ref. 1) based on a double (me-
chanical and electrical) harmonic initial approximation. They
developed closed form expressions for the ω-dependent (ω
is the frequency of the electric field) pure vibrational (hy-
per)polarizabilities, which are due to vibrational transitions
on the Born-Oppenheimer ground electronic state potential
energy surface (much smaller zero-point vibrational averag-
ing contributions are treated separately).

Although there continue to be many applications of
BKPT, the computations can be extensive since they require
determination of harmonic and anharmonic vibrational force
constants as well as first and higher order (anharmonic) elec-
trical property derivatives. Even in the double harmonic ap-
proximation the calculation of quadratic vibrational force
constants can be computationally demanding. In order to
streamline the computational effort a closely related, but non-
perturbative, finite field nuclear relaxation (FF-NR) method

was proposed about five years later by Bishop, Hasan, and
Kirtman.2 The key step in the FF-NR method is a geometry
optimization carried out in the presence of a finite static field.
This optimization implicitly contains the information about
harmonic and anharmonic vibrational parameters needed to
obtain vibrational (hyper)polarizabilities. Thus, no force con-
stants or electric property derivatives need to be explicitly
calculated. The vibrational (hyper)polarizabilities thus deter-
mined take into account all double harmonic contributions
plus all first-order anharmonic terms and, in one case, a
second-order anharmonic contribution. A simple extension of
the original procedure leads to a treatment that, in principle,
can account for all remaining contributions not evaluated in
the original FF-NR method.3

Both static and dynamic properties are determined by the
FF-NR method. The latter are obtained within the so-called
infinite optical frequency approximation (IOFA), which cor-
responds to ignoring terms involving (ν2/ω2) compared to
unity where ν is a vibrational frequency. At typical laser-
optical frequencies, the IOFA is found to be well-satisfied.
Among all the linear and nonlinear optical processes for
which the infinite frequency limit is applicable, the only one
not contained in the original formulation is the intensity-
dependent refractive index, i.e., γ nr(−ω; ω, −ω, ω), also
known as degenerate four-wave mixing. Recently, a modifi-
cation has been presented that fills in this lacuna.4

It should be noted that the FF-NR method, as well as
BKPT, applies specifically to the non-resonant regime. That
is to say, it is assumed that the laser-optical frequency may be
neglected in comparison with electronic transition frequen-
cies. A response formalism that can be used to calculate the
terms that are thereby omitted has recently been presented.5
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However, in the IOFA and in the static limit (the cases stud-
ied here) these additional contributions have been shown to
vanish.6

The FF-NR method has been widely applied to
molecules. The first application to an infinite periodic nano-
material, namely, an (n, 0) zigzag BN nanotube, was pub-
lished very recently.7 Preliminary coupled perturbed Kohn-
Sham calculations were performed, in that case, for transverse
(hyper)polarizabilities of small diameter tubes at the B3LYP
level, using the CRYSTAL code.8, 9 Even more recently, these
results were extended to larger nanotubes – up to (36, 0) – and
to the non-diagonal or mixed tensor components.

In the present work, we apply the FF-NR method to an-
other typical 1D periodic system, i.e., polyacetylene (PA),
which has served as the prototype for the effect of π -electron
conjugation on (linear and) nonlinear optical properties since
the 80’s.10, 11 π -conjugated quasi-linear polymers have been
of great interest for technological applications as they show
very large and ultrafast nonlinear optical (NLO) responses. In
addition, they are easy to modify chemically in order to meet
specific design requirements. In the case of PA, we focus on
several of the most common third-order properties (second-
order properties are annihilated by centrosymmetry) includ-
ing the static second hyperpolarizability γ (0; 0, 0, 0), electric
field induced second harmonic generation γ (−2ω; ω, ω, 0)
and the DC Kerr effect γ (−ω; ω, 0, 0). Here, ω is the non-
resonant optical frequency of an external electric field.

Our major emphasis is on establishing the relative mag-
nitude of vibrational versus electronic contributions. In doing
so, we confirm and extend the methodology previously em-
ployed for BN nanotubes. Moreover, the results allow us to
generalize some of the conclusions found earlier.

The FF-NR method involves calculating the structural
distortion due to a finite field followed by evaluation of the
electronic dipole moment μ, polarizability α, and first hy-
perpolarizability β tensors at the relaxed geometry. Then, by
comparison with static electronic (hyper)polarizabilities at the
equilibrium geometry, the vibrational hyperpolarizability ten-
sors are obtained. As in the previous paper on BN nanotubes,
although many tensor components are determined, there are
some exceptions due to the fact that the special treatment for
a finite field in the periodic direction has not yet been imple-
mented in the CRYSTAL code.12 Contributions from so-called
collective modes, which are known to be small for PA13, 14

(i.e., compared to the corresponding electronic property), are
also omitted. In addition to the geometry relaxation, the effect
of the applied field on the band-gap and minimum energy is
determined.

Our calculations were carried out at the Hartree-Fock
(HF) level of theory since previous literature has shown that
conventional density functionals form the Density Functional
Theory (DFT) do not perform nearly as well for the elec-
tronic polarizability and hyperpolarizability of PA (in com-
parison with correlated MP2 results; see, for example, Refs.
15 and 16). By introducing an effective counteracting field,
the exact exchange included in HF tends to compensate for
the large overpolarization obtained with conventional DFT
functionals;15, 17–22 electron correlation, it turns out, plays a
much smaller role.

In Secs. II and III we review the FF-NR methodology and
provide computational details for treatment of π -conjugated
systems by means of the CRYSTAL program. Our results are
presented and analyzed in Sec. IV. Finally, Sec. V contains a
summary of key aspects and a brief discussion of possible fur-
ther applications/development of the FF-NR method for peri-
odic systems.

II. METHOD

A. The vibrational contribution to polarizability

The electronic (hyper)polarizabilities (with zero-point
averaging included) do not take into account so-called pure
vibrational effects, which can be quite important. Diagonal
components of the static polarizability, for example, may be
approximated as the sum of two terms,

α0 = αe +
∑

j

Z
2
j

ν2
j

, (1)

where αe is the electronic contribution, frequently indicated
by α∞. The (pure) vibrational (sometimes known as ionic)
contribution is given, in the double harmonic approximation,
by the second term on the right hand side. In that term, Zj is
a mass-weighted effective mode Born charge (also known as
the dipole moment derivative in molecular theory) and ν j is
a harmonic vibrational frequency. For periodic systems Born
charges may be estimated, as in the CRYSTAL code, either
through the Berry phase approach23, 24 or by using Wannier
functions, i.e., localized crystal orbitals.25

The (double harmonic) vibrational contribution may, al-
ternatively, be computed by the FF-NR method without ex-
plicitly evaluating either Zj or ν j. As previously shown for-
mally, and numerically verified for molecular systems,2 the
FF-NR result is identical (within numerical accuracy) to that
obtained from Eq. (1). This has been confirmed for periodic
systems (see Ref. 26) and for the computational schemes im-
plemented in the CRYSTAL code (at this time for non-periodic
directions only) in connection with application to periodic BN
nanotubes (see Ref. 12). In the following, we will show the
equivalence for PA as well.

B. The FF-NR scheme

In the current paper, we evaluate components not only of
the static (double harmonic) vibrational linear polarizability,
α0, but also of static and dynamic (nuclear relaxation) vibra-
tional hyperpolarizabilities by means of the FF-NR method.2

If we denote the equilibrium geometry in a static electric field
(F) by RF, and without the field by R0, then a Taylor series
expansion for a field-dependent dipole moment component at
the two geometries yields,

μt (R0, F ) = μt (R0, 0) +
∑

u

αe
tuFu + 1

2

∑

u,v

βe
tuvFuFv

+ 1

6

∑

u,v,w

γ e
tuvwFuFvFw + · · · (2)
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and

μt (RF , F ) = μt (R0, 0) +
∑

u

a
μ
tuFu + 1

2

∑

u,v

b
μ
tuvFuFv

+ 1

6

∑

u,v,w

g
μ
tuvwFuFvFw + · · · . (3)

In Eq. (2) the superscript e refers to the static pure elec-
tronic value. Experimentally it may be obtained by carrying
out non-resonant measurements at sufficiently high frequency
so that vibrations cannot contribute and, then extrapolating
to the zero frequency limit. On the other hand, static field
measurements yield directly the coefficients on the right hand
side of Eq. (3), which include vibrational contributions at the
field-free equilibrium geometry. In using Eqs. (2) and (3) it is
implicitly assumed that zero-point vibrational averaging ef-
fects may be neglected. Thus, the dipole moment at the field-
dependent equilibrium geometry yields the coefficients (see
again Ref. 2),

a
μ
tu = αe

tu + αnr
tu (0; 0), (4)

b
μ
tuv = βe

tuv + βnr
tuv(0; 0, 0), (5)

g
μ
tuvw = γ e

tuvw + γ nr
tuvw(0; 0, 0, 0), (6)

where the superscript nr indicates the nuclear relaxation
approximation for the (field-free) equilibrium vibrational
contribution and the (circular) frequencies of the applied
fields are given (as usual) in parentheses, e.g., β(0; 0, 0)
= β(−ωσ ; ω1, ω2) with static applied fields ωi = 0 and
ωσ = ω1 + ω2. Note that the right hand side of Eq. (4) is,
in principle, identical to the total static polarizability given
by Eq. (1), since in either case only harmonic vibrational
terms are included. However, the static hyperpolarizabilities
also contain contributions due to anharmonic force constants
and anharmonic electrical property derivatives (see, for ex-
ample, Ref. 27). In order to isolate the nuclear relaxation term
one can either subtract the analytically determined electronic
term or calculate the difference between numerical values
from Eqs. (2) and (3). Similar expansions may be carried out
for αe,

αe
tu(R0, F ) = αe

tu(R0, 0) +
∑

v

βe
tuvFv

+ 1

2

∑

v,w

γ e
tuvwFvFw + · · · (7)

αe
tu(RF , F ) = αe

tu(R0, 0) +
∑

v

bα
tuvFv

+ 1

2

∑

v,w

gα
tuvwFvFw + · · · (8)

as well as βe,

βe
tuv(R0, F ) = βe

tuv(R0, 0) +
∑

w

γ e
tuvwFw + · · · (9)

βe
tuv(RF , F ) = βe

tuv(R0, 0) +
∑

w

g
β
tuvwFw + · · · , (10)

where

bα
tuv = βe

tuv + βnr
tuv(−ω; ω, 0)|ω→∞, (11)

gα
tuvw = γ e

tuvw + γ nr
tuvw(−ω; ω, 0, 0)|ω→∞, (12)

g
β
tuvw = γ e

tuvw + γ nr
tuvw(−2ω; ω,ω, 0)|ω→∞. (13)

In those instances where the geometry is not specified it is
R0, and omitted frequencies are zero. The subscript ω → ∞
in Eqs. (11)–(13) refers to the IOFA (see Sec. I). In addition
to harmonic terms, first-order anharmonic contributions are
also included for γ nr(−ω; ω, 0, 0)|ω → ∞ (see Ref. 2); for the
other two nonlinear optical processes, βnr(−ω; ω, 0)|ω → ∞
and γ nr(−2ω; ω, ω, 0)|ω → ∞, the first-order anharmonicity
terms vanish.

The measured values of NLO properties ordinarily corre-
spond to the sum of vibrational and electronic contributions.
In principle, the two may be separated experimentally as well
as computationally. For the former this requires frequency-
dependent measurements, as discussed above for α and im-
plied in passing for hyperpolarizabilities by Shelton.28

C. Geometry, symmetry, and non-zero
components of the tensors

A finite field is applied along the non-periodic directions
(y, z, and mixed y = z) to obtain the various non-zero ten-
sor components of the vibrational (hyper)polarizabilities dis-
cussed below. We consider here an all-trans polyacetylene ly-
ing in the xy plane, with alternating double and single C−C
bonds along the x periodic direction (a double C−C bond is
included within each unit cell). The center of the unit cell is
an inversion center (which annihilates odd order energy per-
turbation terms, i.e., μ and β in our case) and lies on a C2 axis
perpendicular to the σ

xy

h mirror plane. The σ
xy

h mirror plane
relates directions z and −z, so that all the components of the α

and γ tensors containing an odd number of z indices vanish.
γ is a fourth-order tensor consisting of 34 = 81 compo-

nents, γtuvw. Several tensor components are null or equivalent
either by point group symmetry or permutation of indices, the
latter depending on the number of static field indices. For ex-
ample, in the case of γ nr

tuV W (−ω; ω, 0, 0)|ω→∞ only the per-
mutations Pt,u (associated with the ω → ∞ limit) and PV,W

(between two static fields) leave the property invariant.
Given the number (m = 4, 2, or 1) of static fields, the nu-

clear relaxation contributions to the second hyperpolarizabil-
ity can be distinguished into (a) γ nr

4,tuvw = γ nr
T UV W (0; 0, 0, 0),

(b) γ nr
2,tuvw = γ nr

tuV W (−ω; ω, 0, 0)|ω→∞, and (c) γ nr
1,tuvw

= γ nr
tuvW (−2ω; ω,ω, 0)|ω→∞. Table I reports the independent

components for the three cases above. The components
γ nr

m,tuvw are divided, in turn, into four subsets, namely, (i) tttt,
(ii) tttu, (iii) ttuu, and (iv) tuvv. Parentheses indicate com-
ponents which are null by symmetry (z ↔ − z). Highlighted
components are those calculated in the present work since
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TABLE I. Independent components of PA nuclear relaxation second hyper-
polarizability tensor, γ nr

n . There are four classes (first column), depending
upon the number of repeated indices and three subgroups within each class.
The latter depend upon whether the static field(s) in the nonlinear process are
associated with 4 (column (a)), 2 (column (b)), or 1 (column(c)) directional
indices (in capital letters). Components that vanish due to planar symmetry
are included in parentheses. Of the remainder only the highlighted ones were
calculated as they do not require application of a finite field along the periodic
direction in the FF-NR method. The row labelled M specifies the multiplic-
ity. There are Nind independent components, of which N�=0 do not vanish due
to symmetry, and Ncalc were computed in the present work.

(a)
(b) (c)

Class M 1 1 2 4 1 3 6

(i) XXXX xxXX . . . . . . xxxX . . . . . .
YYYY yyYY . . . . . . yyyY . . . . . .
ZZZZ zzZZ . . . . . . zzzZ . . . . . .

M 4 1 2 4 1 3 6
(ii) XXXY - xxXY . . . xxxY xxyX . . .

(XXXZ) . . . (xxXZ) . . . (xxxZ) (xxzX) . . .
YYYX . . . yyYX . . . yyyX xyyY . . .

(YYYZ) . . . (yyYZ) . . . (yyyZ) (zyyY) . . .
(ZZZX) . . . (zzZX) . . . (zzzX) (xzzZ) . . .
(ZZZY) . . . (zzZY) . . . (zzzY) (yzzZ) . . .

. . . . . . xyXX . . . . . . . . . . . .

. . . . . . (xzXX) . . . . . . . . . . . .

. . . . . . xyYY . . . . . . . . . . . .

. . . . . . (zyYY) . . . . . . . . . . . .

. . . . . . (xzZZ) . . . . . . . . . . . .

. . . . . . (yzZZ) . . . . . . . . . . . .

M 6 1 2 4 1 3 6
(iii) XXYY xxYY . . . xyXY . . . xxyY . . .

XXZZ xxZZ . . . xzXZ . . . xxzZ . . .
YYZZ yyZZ . . . yzYZ . . . yyzZ . . .

. . . zzYY . . . . . . . . . yzzY . . .

. . . yyXX . . . . . . . . . xyyX . . .

. . . zzXX . . . . . . . . . xzzX . . .

M 12 1 2 4 1 3 6
(iv) (XXYZ) . . . (xxYZ) (xyXZ) . . . (xxyZ) (xyzX)

(YYXZ) . . . (yyXZ) (yzXY) . . . (yyxZ) (xyzY)
ZZXY . . . zzXY yzXZ . . . zzyX xyzZ

. . . . . . (yzXX) (xzXY) . . . (xxzY) . . .

. . . . . . (xzYY) (xyYZ) . . . (yyzX) . . .

. . . . . . xyZZ xzYZ . . . zzxY . . .
Nind 15 36 30
N�=0 9 20 16
Ncalc 3 10 10

they do not require application of a finite field along the
periodic direction x.

Finite fields with different intensities (up to 0.02
a.u.) were applied along each non-periodic direction (y, z,
and y = z). Field-dependent geometry optimizations followed
by first-order perturbation theory (CP-SC1) calculations were
used to generate the data for the left hand side of Eqs. (3),
(8), and (10). In order to extract the nuclear relaxation (hy-
per)polarizabilities from Eqs. (4)–(6) and (11)–(13) an addi-
tional set of CP-SC1 calculations was performed at the field-
free optimized geometry to obtain the pure static electronic
(hyper)polarizabilities (and compare with coupled perturbed
HF (CPHF) at the second-order perturbation level, CP-SC2).

III. COMPUTATIONAL DETAILS

Calculations were performed using a development ver-
sion of the periodic ab initio CRYSTAL09 code,9 that adopts a
Gaussian-type basis set for constructing the Bloch functions.
The latter are the variational basis for building the crystalline
orbitals.

We have chosen to employ the HF level of theory in
order to avoid the large overshoot in calculating the elec-
tronic (hyper)polarizability of PA (and other quasi-linear
systems)15–18, 29–32 obtained with conventional DFT func-
tionals, a phenomenon sometimes described as the DFT
catastrophe.

Two computational parameters have been shown32 to
have a large influence on the calculated (hyper)polarizability
tensors, namely, the shrinking factor S – defining the number
of �k points at which the self-consistent field (SCF) and CPHF
equations are solved – and the pair of tolerances, collectively
denoted as Tx, controlling the accuracy of the Hartree-Fock
exchange series.9, 33 We set Tx = T4 = 1

2T5 for the current
calculations (see Ref. 9 for details). Optimal parameter val-
ues have been found in our previous work,32 which shows
that the smaller the band gap Eg the larger the values of
S and Tx that need to be used. PA has a small energy gap
due to π -electron conjugation (1.6 ≤ Eg ≤ 1.8 eV) (Ref.
34) which, we note in passing, is severely underestimated
by pure DFT methods (for local-density approximation,
LDA, and generalized-gradient approximation, GGA, 10−2

≤ Eg ≤ 10−1 eV).32 Although HF overestimates the band
gap it yields much more reasonable (hyper)polarizabilities.
Thanks to the large HF gap (about 7 eV),32 it is sufficient to
use S = 30 and Tx = 100. Convergence thresholds on the SCF
energy and CP-SC (CP-SC1 and CP-SC2) steps were set to
TE = 10 and TCP = 4, respectively.

A. Basis set

For molecules the calculation of optical properties re-
quires the use of diffuse and polarization functions in con-
junction with, say, an ordinary split-valence basis. However,
in the case of periodic systems, the additional diffuse func-
tions can lead to numerical problems due to linear depen-
dence. Such functions are unnecessary for 3D systems where
the ordinary split-valence basis functions of neighboring
atoms compensate for their absence. This is not the situation
for lower dimensionality systems (1D and 2D), e.g., PA, since
the compensation is missing along non-periodic directions.

To tackle this problem, we added ghost atoms to a con-
ventional 6-31G (all-electron) split-valence basis set in the
following way. The yz space is tessellated by a number of
equivalent ghost PA chains, surrounding the infinite periodic
PA symmetrically. Ghost chains are arranged in parallel to the
polymer plane (above/below, on the left/right) and in-phase
with the original one (i.e., double bonds are lined up with dou-
ble bonds and single bonds with single bonds). Distances with
respect to an origin at the center of a C=C double bond are
set to 3.5, 1.5, and 4.0 Å (and multiples) along directions y,
z, and yz, respectively. Thus, a crown of ghost neighbors is
defined around PA and the ghost atoms carry one valence sp
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TABLE II. Static electronic (hyper)polarizability tensors, αe and γ e (in
a.u.), of PA calculated by the CPHF method at different basis set levels. The
6-31G basis set has been used as a starting point and added with ghost func-
tions progressively increasing in number and arranged according different (y,
z) configurations with the origin at the mid-point of the carbon−carbon dou-
ble bond and z perpendicular to the molecular plane. Configuration A includes
4 ghost molecules/cell at (0.0, ±1.5) and (± 3.5, 0.0) Å ; configuration B in-
cludes 10 ghost molecules/cell at (0.0, ±1.5), (± 3.5, 0.0), (0.0, ±3.0), and
(± 2.0, ±3.5) Å ; configuration C includes 12 ghost molecules/cell at (0.0,
±1.5), (± 3.5, 0.0), (0.0, ±3.0), (± 2.0, ±3.5), and (± 7.0, 0.0) Å . Column
|	| reports the percentage improvement between the numbers on the leftside
column and those at the previous step. Values of the second hyperpolarizabil-
ity along the longitudinal direction x in 106 a.u. Computational parameters:
TE = 10, TC = 10, Tx = 100, S = 30.

6-31G + ghosts

6-31G A |	| (%) B |	| (%) C |	| (%)

α xx 165.29 170.7 3.3 171.5 0.5 171.5 0.0
yy 18.46 19.81 7.3 19.89 0.4 19.89 0.0
zz 5.996 13.07 118 13.45 2.9 13.45 0.0

γ xxxx 6.193 6.040 2.5 5.968 1.2 5.964 0.1
yyyy −678.4 916.2 235 1250 36.4 1257 0.6
zzzz 10.70 1486 1.38 × 104 2472 45.8 2472 0.0

shell (the same AO as the most diffuse one in the 6-31G basis
set for C) attached to each atomic position. A similar method
was adopted by Kirtman et al. in Ref. 35 for determining the
(non)linear optical properties of LiF in quasi-linear and 2D
structures.

Table II shows the effect of adding an increasing num-
ber of ghost AOs placed according to three different con-
figurations (A, B, C, see the caption for details) around PA.
The field-free equilibrium geometry has been used in each
case. Neither αe nor γ e is substantially affected along the lon-
gitudinal direction x. The change in these properties due to
the addition of the first set of ghost AOs arranged along the
pure directions y and z (column A) does not reach 4% in ei-
ther case. This is consistent with an extensive literature (e.g.,
Refs. 11, 14, and 32) which, since the late 80s,11 has shown
that the static longitudinal (hyper)polarizabilities of long
chain polyenes are well-described using an ordinary split-
valence 6-31G basis set.

On the contrary, the effect of the ghost functions on the
non-periodic components is very large, particularly for γ e.
Addition of ghost AOs in configuration A, causes γ e

yyyy to
change by 235% – including a change of sign – and increases
γ e

zzzz by a factor of nearly 150, while the non-periodic diago-
nal components of αe are altered by up to 118% (cf., αe

zz).
Further addition of ghost functions along directions z and

yz (column B) does not have a significant effect on the polar-
izabilities αe

yy or αe
zz. However, γ e

zzzz increases by about 50%
while γ e

yyyy grows simultaneously by 36%. Nonetheless, the
further addition of another set of ghost chains along y (col-
umn C) has a negligible (less than 1%) effect on every prop-
erty. Thus, configuration B was adopted for all calculations in
the present work.

One may wonder about the accuracy of the present
scheme. As a check we considered the shortest oligomer
of PA, i.e., ethylene, C2H4, and performed CPHF cal-

TABLE III. Static electronic CPHF (hyper)polarizabilities – αe and γ e (in
a.u.) – of ethylene calculated by using different molecular basis sets, specifi-
cally optimized for the estimation of optical properties.36–39 Comparison with
the split-valence 6-31G basis set and the [6-31G+B] set (used for periodic 1D
calculations) is made. Computational parameters as in Table II.

αe γ e

yy zz yyyy zzzz

def2-SVPD36 23.27 20.53 1659 1122
def2-TZVPD36 23.93 22.02 2269 2575
def2-TZVPPD36 23.94 21.97 2251 2736
Sadlej-pVTZ37 23.91 22.34 2820 1.175 × 104

Z3PolX38, 39 24.20 21.91 2257 7492

6-31G 19.19 7.149 366.0 16.70
[6-31G+B] 23.68 21.97 2826 8965

culations using different basis sets specifically optimized
for molecular calculations of the polarizability36, 37 and
hyperpolarizabilities.38, 39 Even the shortest oligomer pro-
vides a good test because the (hyper)polarizabilities in the
non-periodic directions converge rapidly with chain length.
Table III compares the performance of our [6-31G+B] com-
bination (as defined in Table II) with that of the above men-
tioned molecular basis sets. Only the non-periodic directions
are considered since we have already established that the lon-
gitudinal properties of the infinite periodic chain are hardly
affected by adding the ghost functions. For αyy and αzz there
is excellent agreement between the [6-31G+B] basis set and
the better molecular basis sets. More critical is the assess-
ment of γ . In that event we find that the [6-31G+B] val-
ues agree reasonably well with those determined using the
Z3PolX basis set,38, 39 which was designed specifically for the
treatment of hyperpolarizabilities. Much smaller values, es-
pecially for γ zzzz, were obtained with the so-called def2 basis
sets,36 but the latter were designed for polarizability, rather
than hyperpolarizability, calculations. Thus, we conclude that
the diagonal components of γ in the transverse and perpen-
dicular directions provide a sensitive and successful test of the
[6-31G+B] basis set.

The addition of ghost functions to the 6-31G basis set
does not come without substantial cost. Using configuration
B of Table II increases the number of AOs per unit cell from
22 to 182. In comparison to 6-31G (running on 8 intel64 cores
and under the same computational conditions): (1) a very well
converged single point [6-31G+B] calculation takes about
1 h, or about 600 times longer; (2) each geometry optimiza-
tion point (i.e., SCF plus Hessian updating) takes about 7 h
vs. 7 s for 6-31G; and (3) a CPHF cycle takes about 3 h vs.
12 s for 6-31G. We believe that a more sophisticated choice
of distributed Gaussian functions can be made to achieve a
major savings of computer time, but leave that to future work.

IV. RESULTS AND DISCUSSION

A. Field free calculations and numerical accuracy

The field-free equilibrium geometry (R0) of PA has been
used to obtain the pure electronic tensors αe and γ e by the
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TABLE IV. Static electronic polarizability αe (in a.u.) of PA calculated by
the CPHF and FF methods at the field-free equilibrium geometry. Calcula-
tions have been performed using the [6-31G+B] basis set. Equation (2) was
employed to fit the dipole moment versus the finite field to provide numerical
estimates of αe. Computational parameters as in Table II.

CPHF Fitted values

xx 171.5 . . .
xy 17.48 . . .
yy 19.89 19.89
zz 13.45 13.45

analytical CPHF method40–43 (βe is null by symmetry). For
comparison, αe and γ e can also be found by expanding μe

t ,
αe

tu, and βe
tuv as functions of an applied (transverse and/or

perpendicular) finite field, according to Eqs. (2), (7), and (9).
The FF expansions yield the static αe

yy and αe
zz (Table IV),

as well as eight out of nine independent, non-zero compo-
nents of the static γ e tensor (Table V); since the FF scheme
along periodic directions is not yet implemented in CRYS-
TAL, γ e

xxxx is not available for this comparison. In fact, du-
plicate estimates for the γ e components were obtained from
the cubic, quadratic, and linear coefficients in the expansion
of μe(R0; F), αe(R0; F), and βe(R0; F) vs F, respectively. As
expected, the agreement with the analytical CPHF results is
better when fitting lower order finite field coefficients. In the
worst case the difference with CPHF does not exceed 5% and
in all other instances it is less than 2%. The uncertainty on
numerical fitting parameters is very small as well, i.e., always
within 2%. Moreover, the permutation symmetry is satisfac-
torily maintained, e.g., γ e

yyzz can be determined either by fit-
ting αe

yy(R0; F ) vs Fz, or αe
zz(R0; F ) vs Fy, or αe

yz(R0; F ) vs Fy

= Fz; the corresponding γ e coefficients in the three cases dif-
fer by no more than 2.5%. Tables IV and V document the
high accuracy achieved in all instances. This suggests that the
numerical procedure adopted for determining the vibrational
contribution to α and γ will be reliable as well.

TABLE V. Static electronic second hyperpolarizability γ e (in a.u.) of PA
calculated at the field-free equilibrium geometry by the CPHF and FF meth-
ods. Columns (a), (b), and (c) report numerical estimates obtained by fitting
the dipole moment, polarizability, and first hyperpolarizability (Eqs. (2), (7)
and (9)), respectively, versus a finite field. The four classes of components
(i. - iv.) are defined in Section II C and Table I. Basis set and computational
details as in Table IV.

Fitted values

CPHF (a) (b) (c)

(i) yyyy 1250 1300 1289 1246
zzzz 2472 2504 2498 2473

(ii) xxxy 1.344 × 105 . . . . . . 1.348 × 105

xyyy −3572 . . . −3541 −3570
(iii) xxyy −1.344 × 104 . . . −1.343 × 104 −1.345 × 104

xxzz 5706 . . . 5711 5692
yyzz 608.1 638.0 613.8 608.0

(iv) xyzz 219.9 . . . 221.1 218.9

B. Effect of applied electric field on energy,
band gap, and geometry

The relaxation energy as a function of the field intensity
(field along y or z) is relatively small (less than 1.5 mHa per
C2H2 unit for a field up to 0.02 a.u.). Likewise, the struc-
tural deformation is small, for example, a mixed field Fy =
Fz = 0.015 a.u. induces an extension of the C−C double
bond length by about 1.5 × 10−3 Å and a reduction in the
bond length alternation (BLA) of less than 2%. Perpendicu-
lar fields, of course, break planarity; the hydrogen atoms are
displaced by 0.017 Å out-of-plane under a field of magnitude
0.02 a.u. while the carbon atoms are displaced a like amount
in the opposite direction. Finally, a significant variation oc-
curs on the band gap Eg, which is reduced by about 23% for a
field of up to 0.02 a.u. along z.

C. Nuclear relaxation contributions to the
polarizability and the second hyperpolarizability

The nuclear relaxation (ionic) contributions to the diag-
onal transverse and perpendicular static polarizabilities, αnr

YY

= 0.04 and αnr
ZZ = 0.96 a.u., are both small compared to

the corresponding electronic contributions (Table VI). Nu-
merical values from fitting Eq. (3) and analytical values
from Eq. (1) (obtained using the full set of frequencies and
Born charges in the Berry phase approach) compare very
well (to the number of significant figures reported). The
numerical values are given by the difference in the inter-
cepts for the two curves in the top row of Figure 1, i.e.,
αnr

YY = 0.03 and αnr
ZZ = 0.97 a.u., which are plots of μ/F

vs F (y and z directions) with and without nuclear relax-
ation. Clearly, the nuclear relaxation contribution in the per-
pendicular direction is more important than in the trans-
verse direction: a

μ
zz = 14.42 a.u. exceeds αe

zz = 13.45 a.u.
by about 7% (the corresponding difference in the y direction
is less than 0.2%).

Table VI summarizes results obtained for all non-
vanishing components of αnr (the xx and xy components were
obtained by the Berry phase approach) as well as αe. We note
that the diagonal nuclear relaxation contribution along the pe-
riodic direction turns out to be very small (0.18 a.u.) com-
pared to the value extrapolated from finite chains by Cham-
pagne et al.,13 i.e., 14.35 ± 0.90 a.u. (which, itself, is only
about 10% of the corresponding electronic polarizability).
The large difference between the oligomer and periodic poly-
mer values is a consequence of the fact that the low frequency
transverse collective modes of oligomers, which give rise to
a longitudinal dipole moment,14 are not included in the peri-
odic polymer calculations. In the oligomer both the frequency
ν j and the longitudinal Born charge Zx decrease with increas-
ing chain length, but in such a way that a non-zero value is
obtained14 for the square of the ratio (see Eq. (1)) in the in-
finite chain limit. The treatment of this piezoelectric acoustic
vibrational contribution in 1D periodic calculations will be
addressed in future work.

Table VII summarizes our results for the contribution
to the second hyperpolarizability due to nuclear motions.
As expected, the vibrational components become larger (in
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FIG. 1. μ/F, α and β of PA vs a finite field F (in a.u.) applied along the non-periodic transverse (y; left) and perpendicular (z; right) directions. Calculations
at the field-free optimized structure provide the electronic contributions to α and γ (αe and γ e, respectively) as coefficients in the expansions (2), (7), and
(9). Structural relaxation in the presence of the field (RF) provides, in addition, the vibrational contributions according to Eqs. (3), (8), and (10). Calculations
performed at the HF/[6-31G+B] level. Computational parameters: TE = 10, TC = 10, Tx = 100, S = 30.
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TABLE VI. Static vibrational (nuclear relaxation), αnr, and electronic, αe

contributions to the independent, non-vanishing polarizability components of
PA. Analytical values obtained using the Berry phase approach (αnr) and the
CPHF method (αe) are reported. Basis set and computational details as in
Table IV.

αnr αe

xx 0.182 171.5
xy −0.087 17.48
yy 0.042 19.89
zz 0.959 13.45

absolute value) as the number of static field indices increases.
The γ nr

2 components are about 5 (yyzz) to 167 (xxyy) times
larger than the corresponding γ nr

1 components. The γ nr
4 hy-

perpolarizability components range up to about 3.3 times
larger than the corresponding γ nr

2 values, although they may
be smaller in some cases as well.

In general, the various components of γ nr
1 are nearly two

orders of magnitude smaller than the corresponding static
electronic term reported in Table V. Vibrational γ nr

2 values
are comparable in magnitude to, or a bit larger than, the static
electronic (γ e) contributions for those components involving
one or more x indices. In almost all other cases, the ratio
γ nr

2 /γ e is less than 0.5, whereas γ nr
4 tends to be comparable

to γ e also for transverse and perpendicular fields.

D. Experimental implications

We are not aware of any experimental data that bears on
the major issue of this paper, namely the relative magnitude of
vibrational vs. electronic contributions to static and dynamic
third-order susceptibilities of PA. There are measurements of
third harmonic generation (THG) on non-oriented and ori-
ented thin films,44–46 but in that case the vibrational contri-
bution is predicted to be very small; in fact, it is zero in the

IOFA. A comparison with CPHF/6-31G calculations for the
pure electronic THG has been made47 and a number of rea-
sons advanced as to why the calculated result is too small.
These reasons include, among others, the theoretical treat-
ment being based on an isolated chain model and restricted to
the non-resonant regime. Moreover, there are the limitations
of the CPHF method which omits the effect of correlation on
the computed (hyper)polarizabilities in addition to yielding an
overly long BLA and an excessive band gap, as emphasized
in this paper and previously.32 All of the aforementioned as-
pects remain pertinent for the present calculations. The pur-
pose of our work is not to give a faithful reproduction of ex-
perimental data, but rather an estimate of the ratio between
vibrational and electronic contributions to the properties con-
sidered here. In this connection, it should be noted that typical
measurements only provide the sum of electronic and vibra-
tional contributions. From the ratio, however, one can separate
these two terms and, thereby, provide a further analysis of the
experiments.

V. CONCLUSIONS

The vibrational contribution to the linear polarizabil-
ity and (second)hyperpolarizability tensors of polyacetylene
was evaluated by means of the FF-NR scheme at the HF/[6-
31G+B] level. Here, the notation [6-31G+B] refers to a ba-
sis set containing ghost AOs that was specially developed in
order to provide accurate electronic hyperpolarizabilities, es-
pecially in the direction perpendicular to the molecular plane.
The FF-NR scheme yields values for dynamic (infinite optical
frequency approximation) as well as static processes. Our cal-
culations were carried out using an extension of the original
FF-NR method to periodic systems implemented in the CRYS-
TAL code. Approximately half of the independent, non-zero
components for each process were obtained. The remainder
require a geometry optimization in the presence of a finite

TABLE VII. FF-NR static and dynamic vibrational (nuclear relaxation) contributions to the second hyperpolar-
izability γ (in a.u.) of PA obtained by fitting (a) the dipole moment, (b) the polarizability and (c) the first hyper-
polarizability versus the finite field according to Eqs. (3), (8) and (9). The uncertainty in the fitted parameters is,
generally, within 5%; dashes indicate components that are currently inaccessible. For basis set, computational,
and other details see Table IV.

Fitted values

(a) (b) (c)

Class gμ γ nr
4 gα γ nr

2 gβ γ nr
1

(i) yyyy 2419 1169 1672 422 1223 −27
zzzz 2843 371 2780 308 2514 42

(ii) xxxy . . . . . . . . . . . . 1.373 × 105 2900
xyyy . . . . . . 1675 5247 −3614 −42

(iii) xxyy . . . . . . 9877 2.332 × 104 −1.358 × 104 −140
xxzz . . . . . . 1.158 × 104 5874 5766 60
yyzz 1541 933 861.9 253.8 658.1 50
yzyz 1541 933 1855 1247 658.1 50
zzyy 1541 933 672.4 64.3 602.6 −5.5

(iv) xyzz . . . . . . 879.4 659.5 250.2 30.3
xzyz . . . . . . 2740 2520 250.2 30.3
xzzy . . . . . . 2740 2520 220.0 0.1
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longitudinal (periodic direction) field, which involves
methodology that is in the development stage, but not cur-
rently available. Nonetheless, depending upon the process,
many components involving the longitudinal direction could
be accessed.

The correctness and numerical accuracy of our imple-
mentation was checked by comparing numerical finite field
results with analytical CPHF calculations for static electronic
properties. A similar comparison between vibrational contri-
butions to the linear polarizability, obtained either by the FF-
NR method or by the analytical Berry phase approach, also
indicated the reliability of our numerical results. By far the
largest source of uncertainty in the values reported lies in
the HF/[6-31G+B] method of calculation. A comparison for
ethylene shows good agreement with the Z3PolX basis set
of Refs. 38 and 39. However, the Hartree-Fock Hamiltonian,
chosen in order to avoid the DFT catastrophe, does not ac-
count for correlation effects that are known to be important in
molecular calculations. In this regard, a reliable DFT method
that would reduce the uncertainty is highly desirable.

Although vibrations play a minor role in determining the
linear polarizability, they are very important as far as the sec-
ond hyperpolarizability is concerned. Their contribution, as
compared to the corresponding static electronic component,
is dictated primarily by the number of static fields used to
characterize the nonlinear process. The ratio γ nr/γ e, which is
maximum for γ nr

4 (all static fields), decreases for two static
fields (γ nr

2 ; DC-Kerr effect), and more so for one field (γ nr
1 ;

DC-second harmonic generation). The ratio is on the order of
unity for the DC-Kerr effect and static γ , whereas the ionic
contibution to the DC-second harmonic generation is not as
important.

As noted above we are pursuing the treatment of finite
fields in the periodic direction. Our efforts are based on the
phase-smoothing procedure used in the so-called vector po-
tential approach described in Ref. 26 (and references therein).
This will set the stage for piezoelectric applications as well as
generalization to 2D and 3D periodic systems. In addition, ef-
forts along two lines are planned to reduce computation times:
(1) introduction of so-called field-induced coordinates, which
are known to be effective in molecular calculations;48, 49 and
(2) development of more compact basis sets for non-periodic
directions.
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