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Abstract
A correspondence between the sextic anharmonic oscillator and a pair of third-
order ordinary differential equations is used to investigate the phenomenon of
quasi-exact solvability for eigenvalue problems involving differential operators
with order greater than 2. In particular, links with Bender–Dunne polynomials
and resonances between independent solutions are observed for certain second-
order cases, and extended to the higher-order problems.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

PACS numbers: 03.65.−Ge, 11.15.Tk, 11.25.HF, 11.55.DS

1. Introduction

Despite the simplicity of one-dimensional quantum-mechanical systems, full solvability is very
much an exception rather than the rule. The archetypal example is the harmonic oscillator,
for which exact solvability breaks down completely under almost any kind of perturbation.
Nevertheless, Turbiner [1] found the surprising fact that in some cases, corresponding to certain
multi-parameter families of second-order differential eigenvalue problems, there are regions
of the parameter space for which a finite subset of the spectrum can be found algebraically.
Turbiner and Ushveridze [2] dubbed these models quasi-exactly solvable, or QES. For the QES
problems of [1], and almost all other examples, the differential operators H act invariantly
in a finite dimensional subspace Pn+1 spanned, possibly after a gauge transformation, by the
monomials 1, x, . . . , xn.

It is natural to ask whether similar ideas might apply to eigenvalue problems involving
higher-order differential operators. Turbiner has given a general classification of differential
operators of order k with finite dimensional subspace Pn+1 [3] for which n + 1 eigenfunctions
have the form of a polynomial of order at most n. Examples of higher-order QES operators
arising in multi-mode bosonic Hamiltonians relevant to nonlinear optics may be found
in [4–8].
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In this paper we consider third-order problems, motivated by a link between a specific
family of third-order differential equations and the Schrödinger equation for the sextic
anharmonic oscillator that was discovered and explored in [9, 12]. By tuning the parameters
so that the second-order eigenproblem is at the points at which its spectrum is QES, the
corresponding isospectral third-order eigenproblem must also be QES. It turns out that the
quasi-exact solvability of these third-order differential equations is rather subtle, and even
though a finite subset of eigenvalues can be found exactly, the most natural ansatz for the
corresponding eigenfunctions turns out not to hold. Nevertheless, we shall exhibit a number of
interesting properties of these and related second-order eigenproblems, and show in particular
that the QES eigenfunctions are the generating functions for sets of Bender–Dunne polynomials
whose zeros correspond to the QES eigenvalues.

2. Isospectral second and third order eigenproblems

Turbiner showed [1] that the sextic potential

H2(α, l) ψ(x) ≡
[
− d2

dx2
+ x6 + αx2 + l(l + 1)

x2

]
ψ(x) = E ψ(x), (2.1)

with regular boundary conditions imposed on the positive real axis at x = 0 and x → ∞ by
requiring for l > −1/2

ψ |x→0 = xl+1(1 + O(x2)), ψ(x) = O(x−3/2−α/2e−x4/4) as x → ∞, (2.2)

is quasi-exactly solvable along the lines

α = αJ = −(2l + 1 + 4J), J = 1, 2, 3, . . . . (2.3)

The operator H2(αJ, l) is quasi-exactly solvable because it acts invariantly in the finite
dimensional subspace 〈 f0, f1, . . . , fJ−1〉 where fn(x) = xl+1 exp(−x4/4) x2n. The gauge
transformation x−l−1 exp(x4/4)H2 xl+1 exp(−x4/4) and variable change x2 = w transforms
the Schrödinger equation (2.1) into a second-order differential equation which acts invariantly
on PJ ≡ 〈|, w, . . . , wJ−1〉 [1].

A convenient way to handle the quasi-exact solvability of (2.1) is through the Bender–
Dunne polynomials introduced in [10]. The idea is to write a solution to (2.1) in the following
factorized form

ψ(x) = e−x4/4xl+1
∞∑

n=0

(
−1

4

)n Pn(E, α, l)

n!�(n+l+3/2)
x2n. (2.4)

For (2.4) to solve (2.1), the coefficients Pn must satisfy the recursion relation

Pn(E ) = EPn−1(E ) + 16(n − 1)(n − j − 1)(n + l − 1/2)Pn−2(E ) (n � 1) (2.5)

with j = j(α, l) = −(α+2l+1)/4 and P0(E ) = 1. From (2.5), P1 = E, and Pn is a polynomial
of degree n in E, known as a Bender–Dunne polynomial. As long as l �= −n−3/2 for any
n ∈ Z

+, (2.4) will yield an everywhere-convergent series solution to (2.1). This solution
automatically satisfies the boundary condition at the origin, but at general values of E, it will
grow exponentially as x → ∞. However, if α and l are such that j(α, l) = J is a positive
integer, the second term on the rhs of (2.5) vanishes at n = J+1, and all subsequent Pn

factorize:

Pn+J(E, αJ, l) = PJ(E, αJ, l)Qn(E, αJ, l) (n > 0, J = −(αJ+2l+1)/4 ∈ N). (2.6)
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Thus, if PJ(E ) vanishes then so do all Pn�J(E ) and the series (2.4) terminates, automatically
giving a normalizable solution to (2.1). The J roots of PJ(E ) are the J exactly-solvable energy
levels for the model. For J = 1 and J = 2, the exactly-solvable eigenvalues are

J = 1 : E0 = 0, J = 2 : E± = ±2
√

2
√

3 + 2l. (2.7)

For all real values of the parameter α and l > −1/2 the sextic eigenproblems (2.1), (2.2) have
up to scaling exactly the same eigenvalues as a family of third-order eigenproblems [9, 12].
The relevant third-order differential equation is

H3 φ(x) ≡
[

d3

dx3
+ x3 + L

x3
− G

(
1

x2

d

dx
− 1

x3

)]
φ(x) = Ē φ(x) (2.8)

where4

G = 2 − (g0g1 + g0g2 + g1g2), (2.9)

L = −2 − g0g1g2 + (g0g1 + g0g2 + g1g2), (2.10)

g0 + g1 + g2 = 3, (2.11)

and the boundary conditions on the positive real axis are

φ|x→0 = xg1 (1 + O(x3)), φ(x) = O(x−1e−x2/2) as x → ∞ (2.12)

with g0 < g1 < g2. The asymptotic condition ensures the other two possible behaviours of
the solution at infinity are ruled out. The isospectrality of H2, H3 with boundary conditions
(2.2), (2.12) respectively was first discussed in [9] for l = 0 and, with the help of results from
[11], generalized to l �= 0 in [12]. The result is that the eigenvalues E, Ē associated to H2, H3

satisfy

Ē = E/κ, κ = 4/(3
√

3), (2.13)

whenever the parameters {α, l} and {g0, g1, g2} in the two models are related as

α = 2(2 − g0 − g2), l = (2g2 − 3 − 2g0)/6, (2.14)

and

g0 = (1 − α − 6l)/4, g1 = (1 + α/2), g2 = (7 − α + 6l)/4. (2.15)

The result was obtained by showing that the associated spectral determinants—functions
constructed to vanish at the eigenvalues—are proportional. By analytical continuation from l
to −1−l, the isospectrality result also extends to l � −1/2 [9, 12].

If α is now tuned to the quasi-exactly solvable points α = −(4J + 2l + 1) of H2 for
positive integer J, then via the isospectrality (2.13) the third-order problem H3 with

g0 = 1/2 + J − l, g1 = 1/2 − 2J − l, g2 = 2 + J + 2l (2.16)

has a hidden QES sector and J eigenvalues can be found exactly. Since the isospectrality
proof relates the eigenvalues and makes no conclusions about the eigenfunctions, we cannot
immediately state that H3 at the points (2.16) is itself ‘fully’ quasi-exactly solvable, if for
full quasi-exact solvability one would insist on being able to find algebraically not only
a subset of the eigenvalues but also the corresponding eigenfunctions. One might expect
that H3 acts invariantly in a finite-dimensional subspace spanned by functions of the form
xg1 exp(−x2/2) xn. If that is the case, the QES eigenfunctions will take a simple factorized
form generalizing (2.4). We shall show that this is not in general the case.

4 In equations (2.9) and (2.10) we have corrected an overall sign typo in the corresponding equations of [12].
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In [13] and [14], the spectral link between H2 and H3 was naturally extended to the
adjoint operator H†

3 to (2.8):

H†
3 χ†(x) ≡

[
d3

dx3
− x3 + L†

x3
− G†

(
1

x2

d

dx
− 1

x3

)]
χ†(x) = −Ē χ†(x) (2.17)

where G† ≡ G, L† ≡ −L. The appropriate boundary conditions are specified by

χ†|x→0 = xg†
0 (1 + O(x3)), χ†|x→∞ → 0(g†

0 = 2 − g0). (2.18)

It is important to note that the eigenfunctions φn of H3 and the eigenfunctions χ†
n of H†

3
with eigenvalues Ēn and −Ēn respectively are substantially different functions, not related to
each other by simple conjugation. Provided the roots of the indicial equation are ordered as
g0 < g1 < g2 then for g1 > −1/2 the φns are square integrable on R

+,

lim
x→0

χ†
n (x)φm(x) = O(x2−g0+g1 ) → 0, lim

x→∞ χ†
n (x)φm(x) → 0, (2.19)

and the sets {χ†
n } and {φn} can always be normalized such that

〈n|m〉 =
∫ ∞

0
χ†

n (x)φm(x) dx = δn,m. (2.20)

The properties described above are reminiscent of the well-studied properties of non-self-
adjoint spectral problems and biorthogonal systems in quantum mechanics. These systems
were introduced and studied in the early days of quantum mechanics, and were more recently
revisited in the context of PT -symmetric quantum mechanical models [15]. The reader is
addressed to [16] for a recent review of this material.

3. Bender–Dunne polynomials and projective triviality

It is natural to ask whether a simple factorization similar to (2.4) also characterizes the
exactly-solvable energy levels of H3 and H†

3. To answer this question we first identify a simple
necessary condition for the existence of a factorizable solution to equation (2.1) of the form

ψ(x) = xl+1P2J−2(x, E ) e−x4/4, (3.1)

where P2J(x, E ) is a polynomial of order 2J in x. The large-x behaviour of ψ should match
the general WKB result

ψ(x) = O(x−3/2−α/2e−x4/4) x → ∞. (3.2)

The ansatz (3.1) agrees with (3.2) for α = αJ = −(2l + 1 + 4J), a result which precisely
matches the set (2.3). Let us now assume the existence of a solution to (2.8) of the form

φ(x) = xg1P2J−2(x, E ) e−x2/2. (3.3)

The relevant WKB asymptotic for the third-order ODE (2.8) is

φ(x) = O(x−1 e−x2/2) x → ∞. (3.4)

Comparing with (3.3) we find g1 = 1 − 2J, a very restricted set of values compared to (2.3).
Starting from equation (2.17) leads to a similar conclusion. It is easy to check that when
g1 = 1−2J the ansatz (3.3) produces a single eigenfunction with eigenvalue E = 0 for all
odd integers g1 satisfying g0 < g1 < g2. However, away from these points we conclude
that the eigenfunctions do not take the simple factorized form (3.3). Although other types of
wavefunction factorization cannot be ruled out by this simple argument, we have checked that
H3 is not one of the higher-order operators that appear in Turbiner’s classification [3]. The
surprise is that despite this, a subset of the eigenvalues of H3 with parameters (2.16) can be
found algebraically as zeros of certain polynomials.

4
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Since we may not have identified the QES sector of H3 without the link to the isospectral
problem H2, it is natural to ask whether there are any alternative ways to detect the appearance
of this hidden quasi-exact solvability in our third-order equations or in other models.

To answer this question it is convenient to step back to [12] where, amongst other results,
a series of full and partial isospectralities for H2(α, l) ≡ H2 with boundary conditions (2.2)
were observed. Four of them are summarized by the following diagram

H2(−(4J+2l+1), l) −→ H2(2J−2l−1, J+l)
⏐� 
⏐�
H2(2J+4l+2,−J− 1

2 ) −→ H2(2J+4l+2, J− 1
2 ).

Vertical arrows correspond to eigenproblems that have exactly the same eigenvalues, while a
horizontal arrow connects two problems that have the same eigenvalues up to the elimination
of all the QES levels present in the left hand models. The two problems on the bottom
row correspond to the same Schrödinger equation, and differ only in the boundary condition
imposed at the origin. It follows from the diagram that the ‘regular’ eigenvalue problem for
this equation, that with the behaviour xJ+1/2 at the origin, has exactly the same spectrum as
the irregular problem with the x−J+1/2 behaviour at the origin, with the exception of the first
J eigenvalues.

For general l, the eigenproblem H2(2J+4l+2,−J− 1
2 ) also does not appear in Turbiner’s

list of QES models [1]. Nonetheless, it is isospectral to the QES sextic Schrödinger problem
and J of its eigenvalues can be found exactly. In [12], after noticing an interesting symmetry in
the recursion relation for the Bender–Dunne polynomials, it was (erroneously) stated that the
appearance of QES eigenvalues in H2(2J+4l+2,−J− 1

2 ) corresponds also to a factorization
of the eigenfunctions in the form (2.4). The latter statement can be checked using the simple
consistency criteria introduced above. Setting

ψ(x) = x−J+1/2P2K−2(x, E ) e−x4/4, (3.5)

at large x the wavefunction behaves as x−J−3/2+2Ke−x4/4 while the WKB prediction is
x−5/2−J−2le−x4/4. Hence (3.5) is a suitable ansatz only for

l + 1/2 = −K, K = 1, 2, 3 . . . . (3.6)

Again, the constraint (3.6) is much stronger than (2.3) and we should conclude that for general
values of l the QES wavefunctions of H2(2J+4l+2,−J− 1

2 ) do not take a factorized form
such as (3.5). We have not ruled out that the eigenfunctions can be written in terms of other
elementary functions, a point to which we return at the end of this section. However, the key
point is that with the standard techniques the quasi-exact solvability of H2(2J+4l+2,−J− 1

2 )

would not be evident and we would not know a priori how to determine the QES eigenvalues.
Returning to the question of how to detect quasi-exact solvability in such problems, we

note that the eigenfunction ψ(x, E, l) selected by the boundary conditions (2.2) is one of two
solutions to (2.1), characterized by their small-x behaviour

ψ(x, E, l) = O(xl+1), ψ(x, E,−1−l) = O(x−l ) x → 0. (3.7)

Provided the roots l and −1−l of the indicial equation do not differ by an integer, then the ψ-
functions (3.7) are linearly independent. Moreover the solutions are automatically projectively
trivial around the origin, by which we mean that for arbitrary E the monodromy of ψ(x, E, l)
around x = 0 is such that

ψ(ei2π x, E, l) = ei2π(l+1)ψ(x, E, l). (3.8)

The monodromy of ψ(x, E,−1−l) follows via analytical continuation l → −1−l.

5



J. Phys. A: Math. Theor. 45 (2012) 444013 P Dorey et al

When l = −J − 1
2 the roots of the indicial equation differ by 2J and so for J

integer there is a ‘resonance’ between the two solutions ψ(x, J) ≡ ψ(x, E,−J− 1
2 ) and

ψ(x,−J) ≡ ψ(x, E, J− 1
2 ). This pair is no longer a basis of solutions to H2 and a linearly

independent solution ψ̃ (x, E ) to ψ(x, E, J) must be constructed. In contrast to the regular
solution ψ(x,−J), the final solution will in general posses an additional logarithmic branch
point at x = 0 and thus the projective triviality property will therefore be lost:

ψ̃ (ei2π x, E ) �= ei2π(−J+1/2)ψ̃ (x, E ). (3.9)

We now show that the eigenfunctions corresponding to the QES eigenvalues of
H2(2J+4l+2,−J − 1

2 ) do not acquire logarithmic terms and so remain projectively-trivial.
We suggest that this may be a means of detecting the hidden quasi-exact solvability of such
models. To illustrate this we apply the Bender–Dunne method to H2(2J+4l+2,−J− 1

2 ) by
setting

ψ(x) = e−x4/4x−J+1/2
∞∑

n=0

(
−1

4

)n Qn(E, J, l)

n!
x2n. (3.10)

In comparison with (2.4), the gamma function has been dropped from the denominator of
(3.10) to ensure the coefficients in the series remain finite for all n and (3.10) is a—by
construction—projectively-trivial solution ψ(x). Consequently the polynomials Qn(E ) now
satisfy

(n − J)Qn(E ) = EQn−1(E ) + 16(n − 1)(n + l − 1/2)Qn−2(E ). (3.11)

Setting Q0(E ) = 1, the recursion relation defines Qn(E ) in terms of E and J for n < J just as
before. The first difference occurs when n = J since the lhs of (3.11) vanishes. The rhs is a Jth-
order polynomial in E which must be zero. Its roots therefore determine the QES eigenvalues
En, n = 1, . . . , J. However, the recursion relation (3.11) has left QJ(E ) unspecified and
provided l is such that n+l−1/2 �= 0 the remaining coefficients do not factorize. In general,
all Qn>J(E ) will be a function of the unknown coefficient QJ(E ). For example

QJ+1(E ) = EQJ(E ) + 16J(J + l + 1/2)QJ−1(E ). (3.12)

Since QJ−1(En) �= 0, from (3.12) we see that the choice QJ(En) = 0 does not lead to a
truncation of the series. More precisely, the resulting solution (3.10) will always have the
desired monodromy properties but only for a precise value of the constant QJ(En) will it be
asymptotically subdominant and satisfy the boundary condition at infinity.

Returning to the question of determining the exact eigenfunctions of the family
H2(2J+4l+2,−J−1/2), we note that for all odd integers J one of the QES eigenvalues
is E = 0. In this case the eigenproblem can be solved in terms of a Whittaker function

ψ(x) = 2J/4�
(

3
4+ J

2+ l
2

)
√

πx3/2
W− J

4 − 1
4 − l

2 , J
4

(
x4

2

)
, (3.13)

which exactly matches (3.10) when E = 0 for the choice

QJ(0) = (−1)J/2−1/225J/2√π�
(

J
2+ 1

2

)
�

(
J
2+ 3

4+ l
2

)
�

(
J
2

)
�

(
3
4+ l

2

) . (3.14)

Noticing that for small J the solution (3.13) when l is an integer can be written in terms of
Bessel functions multiplied by polynomials in x, we were motivated to try an ansatz of the
form

ψ(x) = x3/2−J
∞∑

n=0

(
an(E ) x2n K 1

4

(
x4

4

)
+ bn(E ) x2n K 3

4

(
x4

4

))
(3.15)

6
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where Kn(x) are modified Bessel functions of the second kind and an(E ), bn(E ) depend on
E, l. Acting with H2(2J+4l+2,−J−1/2) for integer l on (3.15) and comparing powers of
x, we found for J = 1 that E must be zero, the two series on the rhs of (3.15) truncated
at n = 1 + l and (3.15) reproduces (3.13) as anticipated. Setting J = 3, we solved for the
coefficients {a0, a1, . . . , a3+l, b0, b1, . . . , b3+l} and found one solution with E = 0 and two
further solutions with eigenvalues E = ±8

√
2 + l, exactly reproducing the three solutions of

P3(E ) = 0. Repeating this process for odd J, we found that (3.15) generates J wavefunctions
and constrains the QES eigenvalues to be solutions of PJ(E )=0. The series on the rhs of (3.15)
truncated at n = 2(J + l).

Given the ansatz (3.15) unexpectedly generated not just the zero eigenvalues but all of the
QES eigenvalues for l integer when J is an odd integer, we then checked if it also works for
even integers J. It turns out the ansatz (3.15) indeed gave two solutions satisfying the boundary
conditions (2.2) when J = 2 provided E = ±2

√
2
√

3 + 2l, exactly matching (2.7). We find
that the ansatz (3.15) worked for all integers J, l ∈ N

+ with the series on the rhs of (3.15)
truncating at n = 2(J + l). However, at present we are not able to generalize this ansatz to
non-integer values of l.

Differential operators that act invariantly on a subspace spanned by polynomials multiplied
by special functions of either hypergeometric, Airy or Bessel type have been constructed in
[17]. With the variable change x = √

2w1/4 and the gauge transformation w−9/8H2 w5/8, we
find H2(2J+l+2,−J−1/2) becomes proportional up to an additive constant to the differential
operator J+

5 presented in [17] for the cases when E = 0 and l is an integer. To reproduce the
solutions (3.13), the invariant subspace given in [17] for J+

5 must be extended to include Bessel
functions multiplied by certain rational powers of x. We leave further details of these exact
wavefunctions and the investigation of the cases when l is not an integer to future work.

4. Projective triviality and third-order QES models

Continuing the discussion of the last section, we now show that the hidden QES sectors of H3

andH†
3 can be detected by using the projective-triviality test discussed above on χ† ≡ χ

†
(0)

, one
of the three linearly independent solutions {χ†

(i)} to (2.17). These solutions are characterized
by their small-x behaviour

χ
†
(i)(x, Ē ) = O(xg†

i ), x → 0 (4.1)

where g†
i = 2 − gi(i = 0, 1, 2) are the roots of the indicial equation. These solutions are

projectively trivial around the origin

χ
†
(i)(e

i2π x, Ē ) = ei2πgiχ
†
(i)(x, Ē ) (4.2)

for (gi − g j) /∈ Z with i �= j. The QES eigenvalues of H3,H†
3 appear when

g0 = 1/2 + J − l, g1 = 1/2 − 2J − l, g2 = 2 + J + 2l, (4.3)

and

g†
0 = 3/2 − J + l, g†

1 = 3/2 + 2J + l, g†
2 = −J − 2l. (4.4)

Hence we have

g†
0 = g†

1 − 3J, J = 1, 2, 3 . . . . (4.5)

Furthermore, for l > −1/2 and J > 0 the ordering is g†
2 < g†

0 < g†
1, and we are in the

presence of a resonance phenomena for the solutions {χ†
i }. Again, this circumstance usually

leads to the loss of the projective triviality property (4.2) due to the appearance of logarithmic

7
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contributions to the wavefunction. The analysis of section 3 suggests that imposing projective
triviality on the eigenfunctions may be a way to identify the set of exactly known eigenvalues.

Instead of using a Bender–Dunne like ansatz for the wavefunction we will construct χ†

perturbatively using Cheng’s method [18]. The solution χ† to (2.17) is also a solution to the
equation

χ†(x) = x2−g0 + L[(x3 − Ē )χ†(x)], (4.6)

where

L(xp) = xp+3∏
k(p + 1 + gk)

(k = 0, 1, 2). (4.7)

The function χ† can be considered as the n → ∞ limit of a function χ†(n) constructed from
χ†(0) = x2−g0 using the following recursion relation

χ†(n)(x) = χ†(0)(x) + L[(x3 − Ē )χ†(n−1)(x)]. (4.8)

After a single iteration, we have

χ†(1) = x2−g0

(
1 − Ēx3∏

k(3 − g0 + gk)
+ x6∏

j(6 − g0 + gk)

)
. (4.9)

Using (4.9) we can study the QES problem at g0 − g1 = 3J when J = 1. As (g0 − g1) → 3
the second term in the parenthesis on the rhs of (4.9) is in general divergent. However if the
limit (g0 − g1) → 3 is taken simultaneously with Ē → 0 so that Ē/(3 − g0 + g1) → C with
C finite, the final result is again finite and, up to this order in the perturbative expansion, χ†

remains projectively trivial. The result Ē = 0 ↔ P1(E ) = 0 corresponds precisely to the only
exactly-solvable energy level at J = 1. Further, the result of a second iteration is

χ†(2) = x2−g0

(
1 − Ēx3∏

k(3 − g0 + gk)
+ x6∏

k(6 − g0 + gk)

− Ēx6∏
k(3 − g0 + gk)(9 − g0 + gk)

+ Ē2x6∏
k(3 − g0 + gk)(6 − g0 + gk)

− Ēx9∏
k(6 − g0 + gk)(9 − g0 + gk)

+ x12∏
k(6 − g0 + gk)(12 − g0 + gk)

)
.

(4.10)

At J = 1, the potential divergences again disappear in the limit Ē/(3 − g0 + g1) → C, and it
is easy to check that simultaneously all the subsequent χ†(n) remain finite. It is also possible
to check that the solution corresponding to C = 0 does not lead to the desired subdominant
solution (4.6). The exact solution for C = 0 is

χ†(x)|C=0 = x2−g0
0F2

[
1

2
, 2 − g0

2
,

x6

216

]
(J = 1, Ē = 0) (4.11)

which indeed grows exponentially as x−1 ex2/2. In order to find the proper wavefunction we
use the asymptotics

z(2−g0 )/6
0F2

[
1

2
, 2 − g0

2
, z

]
∼ �

(
2 − g0

2

)
2
√

3π
z−1/6 e3z1/3

z → ∞, (4.12)

and introduce the linearly independent solution

χ
†
1 = z(5−g0 )/6

0F2

[
3

2
,

5

2
− g0

2
, z

]
(4.13)

8
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which behaves asymptotically as

χ
†
1 ∼ �

(
5
2 − g0

2

)
4
√

3π
z−1/6 e3z1/3

z → ∞. (4.14)

Thus, the asymptotically vanishing solution is

χ†(x) = x2−g0

(
0F2

[
1

2
, 2 − g0

2
,

x6

216

]
− �

(
2 − g0

2

)
3
√

6�
(

5
2 − g0

2

)x3
0F2

[
3

2
,

5

2
− g0

2
,

x6

216

])
. (4.15)

The solution (4.15) corresponds to the choice C = 3
√

6 �(2 − g0

2 )/�( 3
2 − g0

2 ).
The case J = 2 can be treated in a similar fashion: as (g0 − g1) → 6 the x6 coefficient of

(4.10) diverges. This singular behaviour can be avoided in the double limit

lim
Ē→Ē±,(g0−g1 )→6

(
1 + Ē2

3(3 − g0 + g1)(3 − g0 + g2)

) /
(6 − g0 + g1) → C (4.16)

provided

Ē± = ±3
√

3
√

−2 − g1 = ±3

√
3

2

√
3 + 2l. (4.17)

The result (4.17) matches the exact energy levels (2.7) provided E/Ē = κ = 4/(3
√

3) (cf
(2.11)). Further, the numerator of (4.16) is simply related to the Bender–Dunne polynomial
P2(E ) (see below) and it is possible to argue that there always exists a value of C such
that the wavefunction decays exponentially at large x. This proves, therefore, that the
roots of the Bender–Dunne polynomials P2(E ) are indeed part of the spectrum of the dual
pair (2.8), (2.17).

More generally, for any {gi} the full Cheng solution can be written in the form

χ†(x) = x2−g0

( ∞∑
n=0

(−1)nP̄n(Ē )x3n∏2
k=0(3n − g0 + gk)

)
, (4.18)

where P̄n(Ē ) are degree n polynomials in Ē that satisfy

P̄n(Ē) = ĒP̄n−1(Ē ) +
2∏

k=0

(3(n − 1) − g0 + gk)P̄n−2(Ē ) (4.19)

with P̄0 = 1, P̄1 = Ē. Restricting {gi} to the QES points (4.3), the recursion relation (4.19)
matches the Bender–Dunne recursion relation (2.5) with κnP̄n(Ē ) = Pn(E ).

5. Other models and conclusions

In this paper we have reported some progress toward a more complete understanding of
the spectral equivalence between the sextic anharmonic oscillator (2.1) and the dual pair of
third-order ODEs (2.8) and (2.17), and the nature of the quasi-exact solvability of the third-
order problems that is thereby induced. Although more work will be needed to complete
the picture, and more generally to understand the emergence of standard and hidden quasi-
exact solvability in dual pairs {H,H†} of higher-order differential operators, we think that the
concept of projective triviality should be a useful tool in detecting QES sectors. In addition to
the examples discussed in section 3 and section 4, we have discovered that hidden quasi-exact
solvability is a property shared by many other models. For example, we have applied the same
analysis to the nth order differential equations introduced in [19]

[(−1)n+1D(gn−1 − (n−1))D(gn−2 − (n−2)) · · · D(g0) + xnM]ψ(x) = Eψ(x) (5.1)

9
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where

D(g) =
(

d

dx
− g

x

)
,

n−1∑
i=0

gi = n(n − 1)

2
(5.21)

and the boundary conditions are

ψ |x→0 = O(xg1 ), ψ = O(x(1−n)M/2e−xM+1/(M+1)) as x → ∞ (5.22)

with g0 < g1 < . . . < gn−1. These directly generalize the problems H2 with α = 0 and H3.
By imposing projective triviality on the wavefunctions of the adjoint problems at the resonant
points g0 − gi = nJ for M, J ∈ N, we found the Cheng solutions for the adjoint problems are

χ†(x) = xn−1−g0

( ∞∑
m=0

(−1)mPm(E )xmn∏m
j=1

∏n−1
k=0(n j − g0 + gk)

)
(5.23)

where the corresponding Bender–Dunne polynomials satisfy

Pm(E ) = EPm−1(E ) − (−1)M
M∏

j=1

n−1∏
k=0

(n( j+m−M−1) − g0 + gk)Pm−1−M(E ). (5.24)

The QES eigenvalues are the J roots of PJ(E ) = 0 and, in general, the associated wavefunctions
do not have an elementary form. As noted in section 3 for the second-order models, the non-
QES part of the spectrum is precisely the spectrum of the same differential equation subject
to a boundary condition that imposes regular behaviour of the wavefunction at the origin.

Finally, we should reiterate that for all the QES models encountered in this paper when
g0 − gi = nJ, the ordering g0 < g1 < g2 < · · · of the solutions of the indicial equations is
not fulfilled. Hence, the norm (2.20) of the exactly-solvable states

√〈n|n〉 is divergent and
the corresponding radial eigenvalue problem is always ‘irregular’. Higher-order differential
equations of the form (5.1) have recently been studied in the context ofPT symmetric quantum
mechanics and its generalizations for even n in [20, 21]. Additional motivation for the further
study of higher-order eigenproblems of the type considered in this paper comes from their
relevance to particular integrable quantum field theories, via the ODE/IM correspondence
[19, 13, 22–24].
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