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Abstract 

 

The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br•/Br2
−•, with 

rate constant (2-4)⋅109 M−1 s−1 that depends on the pH. Similar processes are expected to take place 

between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter 

(3CDOM*). The brominating agent Br2
−• could thus be formed in natural waters upon oxidation of 

bromide by both •OH and 3CDOM*. Br2
−• would be consumed by disproportionation into bromide 

and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter 

(DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a 

second-order reaction rate constant of ∼ 3⋅102 L (mg C)−1 s−1 was measured between Br2
−• and 

DOM. It was thus possible to model the formation and reactivity of Br2
−• in natural waters, 

assessing the steady-state [Br2
−•] ≈ 10−13 - 10−12 M. It is concluded that bromide oxidation by 

3CDOM* would be significant compared to oxidation by •OH. The 3CDOM*-mediated process 

would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide 

would completely scavenge •OH. Under such conditions, •OH-assisted formation of Br2
−• would be 

limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of 3CDOM* is 

much higher compared to that of •OH in most surface waters and would provide a large 3CDOM* 

reservoir for bromide to react with. A further issue is that nitrite oxidation by Br2
−• could be an 

important source of the nitrating agent •NO2 in bromide-rich, nitrite-rich and DOM-poor 
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environments. Such a process could possibly account for significant aromatic photonitration 

observed in irradiated seawater and in sunlit brackish lagoons. 

 

Keywords: Anthraquinone-2-sulphonate; photosensitised reactions; Dissolved organic matter; 

Bromide; Dibromide radical; Environmental photochemistry.     

 

 

Introduction 

 

The bromide ion is an important saltwater component. It can also be present in surface waters that 

are affected by mixing with seawater (e.g. estuarine areas), in brackish or hyper-saline lakes and 

lagoons and, although more rarely, as a consequence of human activities (WHO, 1996; Leroy et al., 

2006; Jiang et al., 2009). The ion Br− is usually the main •OH scavenger in seawater, where it 

prevails over dissolved organic matter (DOM) that is the main •OH sink in most freshwaters 

(Brezonik and Fulkerson-Brekken, 1998; Nakatani et al., 2007). Bromide oxidation by •OH 

produces the radical Br•, which in solution would mainly react with a further bromide ion to yield 

the dibromide radical, Br2
−• (Neta et al., 1988; Jiao et al., 2001). Less important reactions of Br•, as 

far as environmental conditions are concerned, would take place with H2O, OH− and BrO− (Neta et 

al., 1988).  
The radical Br2

−• is a moderately strong oxidant ( VE
BrBr

63.1
2/2

=−•− ) and a brominating agent 

(Neta et al., 1988; Nair et al., 2001), which is for instance able to transform phenol into 

bromophenols with very remarkable yield (Vione et al., 2008). The photochemical formation of 

bromoderivatives in the environment is potentially very important, because these compounds are 

usually persistent and toxic pollutants (Steen et al., 2009). Although bromide oxidation by •OH is 

presently the main (known) source of Br2
−• in natural waters, other processes such as the 

photocatalytic oxidation of bromide by, e.g., Fe(III) oxides could play a secondary but significant 

role (Calza et al., 2005). Graetzel and Halmann (1990) observed Br2
−• formation upon irradiation of 

Dead Sea water, the process being enhanced in the presence of triplet sensitizers such as the 

anthraquinones. The ability of reactive triplet states to oxidise bromide to Br2
−• was recently 

confirmed by some of us in the case of 1-nitronaphthalene, showing that such a reaction could be a 

significant Br2
−• source in atmospheric aerosols (Brigante et al., 2010). Because triplet states are 

supposed to play a substantial role in surface-water photochemistry (Canonica et al., 2006; 

Canonica, 2007; Halladja et al., 2009), triplet-sensitised bromide oxidation could be an important 

Br2
−• source in environmental waters. 

However, to the best of our knowledge, very scarce data exist in the literature on triplet-

sensitised oxidation of bromide in the environment and its possible importance. The most likely 

explanation deals with the lack of quantitative data, and with the unavailability of a comparison 

between triplet states vs. •OH as oxidants for bromide in environmental waters. Knowledge gaps of 

this kind are presently a very important limitation to the full acknowledgement of the importance of 
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surface-water photochemistry in the field of environmental science. To help addressing such 

problems, we have recently developed a photochemical model that foresees the steady-state 

concentration of reactive species in surface waters as a function of chemical composition and water 

depth (Albinet et al., 2010; Vione et al., 2010; Maddigapu et al., 2010a). The model was originally 

conceived to predict the photochemical persistence of pollutants in the aqueous environment, a field 

in which it has been validated (Maddigapu et al., 2011; Vione et al., 2011). However, the model can 

be easily extended to the general study of photochemical reactions, including the long-term effects 

of human disturbance and climate change on surface-water photochemistry (Minella et al., 2011). 

The aim of the present paper is the quantitative assessment of: (i) the importance of triplet-

sensitised bromide oxidation in environmental waters, and (ii) the environmental occurrence of 

Br2
−• that depends on its formation-transformation budget. Our aim was achieved by combining 

laser flash photolysis measures and modelling, using anthraquinone-2-sulphonate (AQ2S) as a 

proxy for the triplet sensitizers that occur naturally in CDOM. Indeed, natural CDOM with its 

complex chemical composition is not suitable for flash photolysis measures, and AQ2S has often 

been used as model compound for 3CDOM*-sensitised degradation reactions (Maddigapu et al., 

2011; Vione et al., 2011; Sur et al., 2012). The main reasons for this choice are that (i) quinones as 

CDOM components are very important photoactive compounds in environmental waters (Cory and 

McKnight, 2005), and (ii)  AQ2S is very suitable in the present context because it is easily studied 

by laser flash photolysis and its triplet state does not yield interfering transients such as •OH or 1O2 

(Loeff et al., 1983; Maddigapu et al., 2010b), differently from e.g. 1-nitronaphthalene (Brigante et 

al., 2010; Sur et al., 2011). Furthermore, AQS photochemistry is very well known (Ma et al., 2000; 

Sheng et al., 2004) and a kinetic model has recently been proposed, which successfully describes 

the processes that follow radiation absorption and that account for the transformation of AQ2S itself 

and other molecules in solution (Bedini et al., 2012). In the present work, by combining 

experiments and modelling, we were able to show the potential importance of triplet-sensitised 

bromide oxidation to Br2
−• in environmental waters. 

 

 

Experimental 

 

Materials 

Anthraquinone-2-sulphonic acid, sodium salt (AQ2S), phenol, NaBr, HClO4 and NaOH were 

purchased from Sigma-Aldrich (purity grade 97-99%) and were used as received, without further 

purification. The water used to prepare the solutions was purified with a Millipore water system 

(Millipore αQ, resistivity 18 MΩ cm, DOC < 0.1 mg L−1). All stock solutions were stored in the 

dark at 4° C. Before each experiment, solutions were prepared by diluting appropriate volumes of 

stock solutions in a 50 mL volumetric flask. The Co(NH3)5Br2+ complex was prepared as previously 

described (Booth, 1939) and stored in the dark. 
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Laser Flash Photolysis 

For 355 nm excitation, experiments were carried out using the third harmonic of a Quanta Ray GCR 

130-01 Nd:YAG laser system instrument, used in a right-angle geometry with respect to the 

monitoring light beam. The single pulses were ca. 9 ns in duration, with energy of ~ 60 mJ/pulse. 

Individual cuvette samples (3 mL volume) were used for a maximum of four consecutive laser 

shots. The transient absorbance at the pre-selected wavelength was monitored by a detection system 

consisting of a pulsed xenon lamp (150 W), monochromator and photomultiplier (1P28). A 

spectrometer control unit was used for synchronising the pulsed light source and programmable 

shutters with the laser output. The signal from the photomultiplier was digitised by a programmable 

digital oscilloscope (HP54522A). A 32 bits RISC-processor kinetic spectrometer workstation was 

used to analyse the digitised signal. 

Solutions were prepared in Milli-Q water and an appropriate volume of reactants was mixed in a 

flask before each experimental series, in order to obtain desired concentration of both compounds. 

The second-order rate constants for the quenching of AQ2S excited species by bromide were 

determined from the plots of the first-order decay constants against bromide concentration. All 

experiments were performed at ambient temperature (295 ± 2 K) in aerated solution. Excitation of 

Co(NH3)5Br2+ (7⋅10-4 M) at 355 nm in the presence of Br− (5 mM) leads to the formation of Br2
−• 

(Edincott et al., 1965 and 1975) as shown by the presence of a long-lived transient species that 

absorbs from 300 to 420 nm (maximum at 355 nm with ε ∼ 104 M−1 cm−1; Hug, 1981). To derive 

the second-order rate constant for the quenching of Br2
−• by phenol, plots were made of the first-

order decay constant of Br2
−• (monitored at 355 nm) against phenol concentration. All first-order 

decay constants were determined from regression lines of logarithmic decays of the relevant 

absorbance values. 

The UV-Vis absorption spectrum of Co(NH3)5Br2+ was taken with a Varian CARY 300 

spectrophotometer, adopting quartz cuvettes with b = 1 cm. 

 

 

Results and discussion 

 

Reaction kinetics between excited AQ2S and bromide 

The generation of Br2
−• was achieved by laser excitation of AQ2S in the presence of bromide. To 

verify the actual formation of Br2
−•, spectra of transient species produced by laser-pulse irradiation 

of AQ2S + Br− were compared with literature data, and with the spectrum of Br2
−• produced by 

photolysis of Co(NH3)5Br2+ + Br− (Hug, 1981). Figure 1 shows the UV-vis spectrum of 

Co(NH3)5Br2+ and the transient absorption spectrum obtained after excitation at 355 nm. The 

obtained spectrum has a maximum around 355 nm and can be attributed to Br2
−•, in agreement with 

literature data (Hug, 1981). 

Laser irradiation of AQ2S at 355 nm produces the excited singlet state, which is efficiently 

transformed into the triplet 3AQ2S* by inter-system crossing (the quantum yield of triplet formation 
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is 0.18; Alegría et al., 1999). The transient 3AQ2S* is quite reactive and can oxidise a wide range of 

water-dissolved molecules and ions (Maddigapu et al., 2010b). The main 3AQ2S* transformation 

pathway is reaction with water to yield two transient water adducts, which are termed in the 

literature as B and C (Loeff et al., 1983; Phillips et al., 1986). In this context, 3AQ2S* is indicated 

as A. The species B is an adduct where the water molecule is attached to a carbonyl group, while in 

the case of C (usually more reactive than B) the water molecule interacts with one of the two 

aromatic rings (Bedini et al., 2012). 

The reactivity of A (3AQ2S*), B and C with bromide was studied by laser flash photolysis, by 

measuring the pseudo-first order decay constants of the three transient species (kA, kB and kC) in the 

presence of variable concentration values of Br−. The values of kA, kB and kC were determined by 

fitting the decay traces at the relevant absorption maxima (380, 520 and 600 nm, respectively) with 

first-order kinetic equations. Experiments were carried out at pH 3.7, 6.0 (natural pH of AQ2S 

solutions) and 7.7. The plots of {kA, kB, kC} vs. [Br−] are reported in Figure SM1 (hereafter, SM = 

Supplementary Material). When statistically significant, the slope of the fit line to the relevant 

experimental data represents the second-order reaction rate constant between each transient and 

bromide. Table 1 reports the relevant rate constants (ki,Br−, with i = A, B, C) at the different pH 

values. All linear fits were statistically significant (p < 0.05 by Pearson correlation), with the 

exception of kC vs. [Br−] at pH 6.0 and 7.7. At representative pH values for surface waters, triplet 

state A (3AQ2S*) would be by far the most reactive transient. The rate constants of B (kB,Br−) are 

almost three orders of magnitude lower than kA,Br−, and kC,Br− values are insignificant. Considering 

that 3AQ2S* is the AQ2S transient that is most representative of CDOM triplet states (Maddigapu 

et al., 2010a, 2010b and 2011), rate constant values of the order of kA,Br− (2÷4⋅109 M−1 s−1) will 

hereafter be assumed as representative of the reactivity between 3CDOM* and bromide. 

 

Reaction kinetics between Br2
−−−−•••• and phenol 

In surface waters, the most reasonable transformation pathways of Br2
−• are disproportionation and 

reaction with DOM. Reaction (3) with nitrite is supposed to play a secondary role (Neta et al., 

1988).  

 

 2 Br2
−•  →  Br3

−  +  Br−       (1) 

 Br2
−•  +  DOM  →  2 Br−  +  DOM+•      (2) 

 Br2
−•  +  DOM  →  Br−  +  DOM-Br•     (2’) 

 Br2
−•  +  NO2

−  →  2 Br−  +  •NO2       (3) 

 

To get insight into the reactivity of Br2
−• in the presence of DOM, the radical Br2

−• was produced by 

photolysis of Co(NH3)5Br2+ and its decay monitored at 355 nm (see Figure 1). Phenol was adopted 

as model organic molecule, the choice being motivated by the widespread occurrence of lignin-

derived phenols in DOM (Benner and Kaiser, 2011). Moreover, phenol-like antioxidants occurring 

in humic and fulvic acids are able to inhibit the triplet-sensitised oxidative degradation of pollutants 
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(Canonica and Laubscher, 2008; Wenk and Canonica, 2012). Phenol has the additional advantage of 

not to absorb radiation at 355 nm, differently from whole humic substances that yield triplet states 

that would interfere with the detection of Br2
−•. 

The first-order decay constant of Br2
−• ( •−

2Br
k ) was measured in the presence of different phenol 

concentration values, to obtain the plot of •−
2Br

k  vs. [Phenol] reported in Figure 2. The statistically 

significant linear fit to the experimental data (p < 0.001) yielded, as the line slope, the second-order 
reaction rate constant between Br2

−• and phenol, PhenolBrk ,2
•−  = (2.20±0.24)⋅107 M−1 s−1. Such a value 

compares reasonably well with literature data (Neta et al., 1988). The intercept •−
2Br

k  = (7.6±0.6)⋅104 

s−1 represents the kinetics of additional Br2
−• transformation pathways (most notably 

disproportionation; Neta et al., 1988) under the adopted experimental conditions.  

 

Modelling of Br2
−−−−•••• formation and reactivity in natural waters 

The formation of Br2
−• in natural waters would take place upon oxidation of bromide by •OH 

(reaction rate constant 1.1⋅1010 M−1 s−1; Buxton et al., 1988) and by 3CDOM*. As far as the latter 

process is concerned, by adopting AQ2S as CDOM proxy and based on the data of Table 1, one 
derives a second-order rate constant −BrCDOM

k
*,3  ≈⋅3⋅109 M−1 s−1. By comparison, the reaction rate 

constant between bromide and the triplet state of 1-nitronaphthalene is 7.5⋅108 M−1 s−1 (Brigante et 

al., 2010), thus always in the ∼109 M−1 s−1 range. To summarise, the main formation processes of 

Br2
−• in natural waters would be the following: 

 

Br−  +  •OH  →  Br•  +  OH−        (4) 

Br−  +  3CDOM* →  Br•  +  CDOM−•       (5) 

Br−  +  Br•  →  Br2
−•          (6) 

 

Here it is assumed that all Br• reacts with bromide in reaction (6) to give Br2
−•, which is quite 

reasonable (Neta et al., 1988). The main quenching processes of Br2
−• would be disproportionation 

and reaction with DOM and nitrite (reactions (1)-(3); Neta et al., 1988; Fu et al., 2009). We assume 

that the reaction rate constant between Br2
−• and phenol is representative of Br2

−• reactivity with 

DOM, from which one gets k2+2’ = (2.20±0.24)⋅107 M−1 s−1 = (3.06±0.33)⋅102 L (mg C)−1 s−1. The 

rate of Br2
−• scavenging by DOM is R2+2’ = k2+2’ DOC [Br2

−•], where DOC (dissolved organic 

carbon) is a measure of DOM. Disproportionation involving two Br2
−• radical ions has rate constant 

k1 ≈ 2⋅109 M−1 s−1, and reaction with nitrite has k3 = 2⋅107 M−1 s−1 (Neta et al., 1988). By applying 

the steady-state approximation to Br2
−• (and to Br•) one gets: 

 

1

1
2

23'2223'22

2 2

4])[(])[(
][ 2

k

RkNOkDOCkNOkDOCk
Br

Br •−++++−
=

−
+

−
+•−  (7) 
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where ][*])[][( 3
54

2

−• +=•− BrCDOMkOHkR
Br

 is the formation rate of Br2
−•. It is possible to assess 

the steady-state concentration values of •OH and 3CDOM*, based on water chemical composition 

and column depth, by means of a model that has been validated for the prediction of the 

photochemical degradation kinetics of organic pollutants (Maddigapu et al., 2011; Vione et al., 

2011). The relevant model approach is here described as SM. The photochemically relevant water 

parameters are nitrate, nitrite, DOC, carbonate, bicarbonate, bromide, and depth. It is possible to use 

the model, coupled with equation (7), to assess the formation rate and steady-state concentration of 

Br2
−• under a variety of environmentally significant conditions. Note that here the model adopts a 

sunlight UV irradiance of 22 W m−2, which can for instance be observed in a summer sunny day (15 

July) at 45°N latitude, at 10 am or 2 pm (Frank and Klöpffer, 1988). 
Figure 3 shows the modelled initial formation rate of Br2

−•, •−
2Br

R , as a function of DOC, 

bromide, nitrite, and of the rate constant of reaction (5) between bromide and 3CDOM* 
( −BrCDOM
k

*,3 ). The value of −BrCDOM
k

*,3  was varied in a range ((0.5-5.0)⋅109 M−1 s−1) that includes the 

reaction rate constants of bromide with 31NN* (Brigante et al., 2010) and 3AQ2S* (this work). 

When not varying in the range shown on the relevant plots, water parameters were set as follows: 

0.1 mM nitrate, 1 µM nitrite, 2 mM bicarbonate, 10 µM carbonate, 10 µM bromide, and 1 m depth. 
Furthermore, when not varying, −BrCDOM

k
*,3  was set at 3⋅109 M−1 s−1. 

Figure 3A shows that •−
2Br

R  would increase with increasing bromide, as expected, while the 

trend with DOC would depend on bromide concentration. At low bromide, •−
2Br

R  would slightly 

decrease with DOC, and it would increase with DOC at high bromide. Because bromide oxidation 

involves •OH and 3CDOM*, and naturally-occurring organic matter is a source of 3CDOM* and 

mostly a scavenger of •OH (CDOM is also an •OH source, but scavenging of •OH usually prevails), 

a DOC-inhibited process is likely to involve •OH. Conversely, a DOC-enhanced process would 

involve CDOM-derived transients (3CDOM* in the present case). Therefore, it is suggested that 

Br2
−• production by •OH (reaction (4)) prevails at low bromide, while Br2

−• production by 3CDOM* 

(reaction (5)) prevails at high bromide. The most likely explanation of this phenomenon is that 

elevated [Br−] would scavenge nearly all •OH. Under such conditions, the formation rate of Br2
−• 

upon bromide oxidation by •OH would be 
OH

BrOH

Br
RR •

−•

•− ≈+

2
, where 

OH
R•  is the formation rate of 

•OH. Bromide would not scavenge all 3CDOM*, because reaction (5) is not fast enough. Therefore, 

it would be 
−

•−
+> BrCDOM

BrCDOM
RR *

*

3

2
3 , where 

*3CDOM
R  is the formation rate of 3CDOM*. However, 

because 
*3CDOM

R  » 
−•

•−•
+≈ BrOH

BrOH
RR

2
, it would be 

−•

•−

−

•−
++ > BrOH

Br

BrCDOM

Br
RR

2

3

2

* . Interestingly, at 

intermediate [Br−] values the trend of •−
2Br

R  vs. DOC has a minimum, which can be seen (although 

with difficulty) on the 3A plot. This issue will be clarified below. 
Figure 3B reports the trends of •−

2Br
R  vs. DOC and nitrite. The fixed bromide concentration is 

here 10 µM, which would be an “intermediate” value in Figure 3A. Note that nitrite enhances •−
2Br

R , 

very significantly at low DOC and almost unnoticeably at high DOC. At low DOC, nitrite is a very 

important •OH source and its increasing concentration enhances reaction (4), thereby increasing 



 9

•−
2Br

R . At high DOC, CDOM would be the main producer of Br2
−• via reactions (5,6) that depend on 

3CDOM*. One should also observe that, under high-DOC conditions, CDOM would be the main 
•OH source, more important than nitrite. Furthermore, the role of •OH in bromide oxidation to Br2

−• 

(reactions 4,6) would be decreased by DOM upon •OH scavenging. All these issues account for the 
low effect of [NO2

−] on •−
2Br

R  at high DOC. The already-described minimum of •−
2Br

R  vs. DOC, 

which is very evident in Figure 3B, represents the DOC level where reactions (4) and (5) have 

comparable importance. At lower DOC, reaction (4) prevails and organic matter inhibits the 

formation of Br2
−• through •OH scavenging. At higher DOC, reaction (5) prevails and DOC is 

expected to enhance Br2
−• formation via 3CDOM*. 

Figure 3C reports •−
2Br

R  vs. DOC and −BrCDOM
k

*,3 . Intuitively, the importance of reaction (5) 

would increase with increasing its rate constant −BrCDOM
k

*,3 .  

Figure 4 reports the trends of the steady-state [Br2
−•] vs. DOC, bromide, nitrite and −BrCDOM

k
*,3 . 

Apart from the rather obvious increase of [Br2
−•] with increasing bromide and −BrCDOM

k
*,3 , the latter 

most notably at high DOC where reactions (5,6) are more important, one can easily see that DOC is 

by far the main factor that influences [Br2
−•]. The very significant decrease of [Br2

−•] with 

increasing DOC is accounted for by reaction (2+2’) of Br2
−• with DOM. The increase of [Br2

−•] 

with increasing nitrite suggests that the scavenging of Br2
−• by NO2

− would be less important than 

the role of nitrite as •OH source, which enhances reaction (4). Model calculations suggest that 

[Br2
−•] would be in the 10−13 - 10−12 M range under most environmental conditions, if sunlight UV 

irradiance is 22 W m−2. Note that [Br2
−•] would be roughly proportional to the irradiance. 

Figure 5 reports the fraction fDOM of Br2
−• that would be produced by reaction (5), which 

involves bromide and 3CDOM*. This process is in competition with reaction (4) that involves 

bromide + •OH. Of course, both reactions have to be followed by (6) to yield Br2
−•. The value of 

fDOM increases with increasing bromide and DOC (Figure 5A). DOM is an •OH scavenger that 

would inhibit the competitive reaction (4), while at elevated bromide it would be 
−•

•−

−

•−
++ > BrOH

Br

BrCDOM

Br
RR

2

3

2

*  as explained before. Moreover, reaction (5) is in competition with other 

deactivation processes for 3CDOM* (internal conversion and reaction with O2 to yield 1O2), thus at 

higher bromide there would be a higher fraction of 3CDOM* that is involved in the formation of 

Br•/Br2
−•. Interestingly, at high DOC one expects very low [Br2

−•] due to scavenging of Br2
−• by 

DOM, but at the same time the oxidation of bromide by 3CDOM* would be the main Br2
−• source. 

Therefore, under high-DOC conditions, irradiated CDOM would be the main Br2
−• source and 

DOM its main sink.  

The rate of reaction (5) obviously has considerable impact on fDOM, which increases with 
increasing −BrCDOM

k
*,3  (Figure 5C). In contrast, fDOM decreases with increasing nitrite (Figure 5B) 

because the production of •OH upon NO2
− photolysis would increase the relative importance of 

reaction (4). Quite interestingly, depending on environmental conditions, reaction (5) could be 

unimportant or could be the main pathway involved in the generation of Br2
−•. 
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Assessment of the Br2
−−−−••••-induced formation of nitrogen dioxide 

One of the possible processes of Br2
−• scavenging is reaction (3) with nitrite to yield •NO2 (rate 

constant 2⋅107 M−1 s−1; Neta et al., 1988). While being a secondary sink for Br2
−• (the main one is 

reaction 2+2’ with DOM), such a process might be a significant •NO2 source. In addition to (3), the 

following reactions would be other important •NO2 sources in natural waters (Mack and Bolton, 

1999; Vione et al., 2001):  

 

NO3
−  +  hν  →  •OH  +  •NO2      (8) 

NO2
−  +  •OH  →  •NO2  +  OH−      (9) 

NO2
−  +  3CDOM*  →  •NO2  +  CDOM−•     (10) 

 

Reaction (8) has quantum yield 0.01 (Warneck and Wurzinger, 1988), reaction (9) has rate constant 

1.0⋅1010 M−1 s−1 (Buxton et al., 1988), and reaction (10) has rate constant 2.3⋅109 M−1 s−1 

(Maddigapu et al., 2010a). By adopting the model approach described above, it is possible to 

quantify and compare the four relevant processes involved in •NO2 generation, and to obtain the 

relative role of reaction (3) as •NO2 source. 
Figure 6 reports the fraction 

BrNO
f

,2
−  of •NO2 that would be produced by reaction (3) (Br2

−• + 

NO2
−), as a function of DOC, bromide and −BrCDOM

k
*,3 . Understandably, 

BrNO
f

,2
−  increases with 

increasing bromide, which would enhance [Br2
−•]. The decrease of 

BrNO
f

,2
−  with DOC is most likely 

accounted for by reactions (2, 2’) of Br2
−• scavenging by DOM. Moreover, at high DOC one 

expects nitrite oxidation by 3CDOM* (reaction 10) to be more important in the production of •NO2 

(Maddigapu et al., 2010a), at the expense of reactions (3) and (9). There is also an expected increase 
of 

BrNO
f

,2
−  with −BrCDOM

k
*,3 . Finally note that, under favourable circumstances (e.g. brackish waters 

having elevated [Br−] and low DOC) it would be 
BrNO

f
,2

−  > 0.5. This means that reaction (3) would 

be the main •NO2 source under such conditions.  

Although our model has worked very successfully in describing the photochemistry of 

estuarine waters (Maddigapu et al., 2011; Sur et al., 2012), presently it does not take salinity into 

account. Therefore, great care should be taken when extrapolating model results to seawater. 

However, under seawater-like circumstances (around 1 mM bromide; Jiang et al., 2009) one would 

expect reaction (3) to be the main •NO2 formation process if nitrite is present in sufficient amount 

(around 1 µM). The occurrence of bromide, in addition to enhancing reaction (3), would also lead to 

considerable •OH scavenging and to the inhibition of reaction (9). The replacement of reaction (9) 

with reaction (3) as •NO2 source would preserve significant •NO2 formation, also under conditions 

of strong •OH consumption. Considering that •NO2 is able to nitrate phenols under photochemical 

conditions (Dzengel et al., 1999) via the intermediacy of the phenoxy radical (Bedini et al., 2012), 

our model results could account for the significant detection of phenol nitroderivatives upon 

irradiation of seawater (Calza et al., 2008) and for important aromatic photonitration processes in 

the brackish lagoons of the Rhône delta (S. France) (Chiron et al., 2009). 
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Conclusions 

 

The excited triplet state of AQ2S is able to oxidise bromide to the radical Br•, finally leading to the 

formation of Br2
−• upon further reaction with bromide. The primary process (3AQ2S* + Br−) has a 

rate constant of about (2-4)⋅109 M−1 s−1, which is higher than the rate constant for the reaction 

between bromide and the triplet state of 1-nitronaphthalene (31NN*). By use of AQ2S and 1NN as 

CDOM proxies, one could assume a rate constant of around 109 M−1 s−1 for the reaction between 
3CDOM* and bromide. 

By using phenol as model molecule for DOM, we assessed a reaction rate constant between 

DOM and Br2
−• of about 3⋅102 L (mg C)−1 s−1. This value, which is a couple of orders of magnitude 

lower than the rate constant between DOM and •OH (Brezonik and Fulkerson-Brekken, 1998), is 

comparable to the proposed rate constant between DOM and CO3
−• (Canonica et al., 2005). This 

finding looks reasonable, because the radicals Br2
−• and CO3

−• have similar reduction potential 

(around 1.6-1.8 V; Wardman, 1989). 

With the above data it is possible to model the formation and reactivity of Br2
−•, obtaining its 

formation rate and steady-state concentration as a function of water parameters. The steady-state 

[Br2
−•] would be around 10−13 - 10−12 M under most conditions that are relevant to environmental 

waters, under 22 W m−2 sunlight UV irradiance. Furthermore, the oxidation of bromide by 
3CDOM* would be a competitive process, as Br2

−• source, compared to oxidation by •OH. In 

particular, the 3CDOM*-mediated process would prevail in DOM-rich and bromide-rich 

environments. Because DOM is involved at the same time in both •OH scavenging and 3CDOM* 

formation, the formation rate of Br2
−• would reach a minimum as a function of DOC. Such a 

minimum would be located below 2 mg C L−1 DOC, and its exact position would depend on the 

actual environmental conditions. We also found that high-DOC conditions are expected to produce 

low [Br2
−•], because of Br2

−• scavenging by DOM. Under such circumstances, irradiated CDOM 

would be the main Br2
−• source and DOM its main sink. 

Oxidation of nitrite by Br2
−• could play a potentially important role as •NO2 source in natural 

waters, in particular in bromide-rich, nitrite-rich and DOM-poor environments. Alternative •NO2 

formation pathways are nitrate photolysis and the oxidation of nitrite by •OH and 3CDOM*. The 

latter process is expected to prevail in DOM-rich waters (Maddigapu et al., 2010a). Our model, 

validated for fresh- and brackish-water environments (Maddigapu et al., 2011; Vione et al., 2011; 

Sur et al., 2012), would not allow a straightforward application to seawater. Anyway, it is not 

excluded that nitrite oxidation to •NO2 by Br2
−• could account for the significant nitration of phenol 

that has been observed upon irradiation of seawater (Calza et al., 2008). Under conditions of full 

model validation, the cited reaction could also account for the effective aromatic photonitration 

observed in the brackish lagoon water of the Rhône delta (S. France) (Chiron et al., 2009). 

Additional studies should assess the actual formation of Br2
−• in irradiated natural waters. They 

could make use of the bromination reaction of phenol with Br2
−•, which has a practically 
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quantitative yield (Vione et al., 2008). Moreover, surface-water CDOM could be characterised on 

the basis of its ability to absorb sunlight (absorption spectrum and spectral slope), and its different 

components could be identified from their fluorescence spectra (excitation-emission matrices) 

(Loiselle et al., 2012; De Laurentiis et al., 2012). 
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Table 1. Reaction rate constants of bromide with the triplet state of AQ2S (A), and with two 

transient water adducts (B, C) derived from A. 

 

 pH 3.7 pH 6.0 pH 7.7 

kA,Br−−−−, M−−−−1 s−−−−1 (2.68±0.27)⋅109 (3.98±0.34)⋅109 (3.46±0.20)⋅109 

kB,Br−−−−, M−−−−1 s−−−−1 (2.40±0.26)⋅106 (6.30±0.71)⋅106 (4.34±1.15)⋅106 

kC,Br−−−−, M−−−−1 s−−−−1 (3.87±0.86)⋅108 < 1⋅107 < 3⋅107 
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Figure 1. Molar absorption coefficient of Co(NH3)5Br2+ in aqueous solution (left-axis) and 

absorbance of Br2
−• (right-axis), produced upon laser flash photolysis (355 nm, 60 mJ/pulse) of 0.7 

mM Co(NH3)5Br2+ in the presence of 5 mM Br−. The pH was 6.0 at ambient temperature. 
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Figure 2. Trend of the pseudo-first order degradation rate constant of the radical Br2
−•, as a function 

of phenol concentration. The fit line is dashed, the 95% confidence bands are dotted. 

The line slope represents the second-order reaction rate constant between Br2
−• and 

phenol. Laser flash experiments were performed at 355 nm and 60 mJ/pulse, at ambient 

temperature. 
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Figure 3. Modelled trends of Br2
−• initial formation rate as a function of: a) DOC and bromide; b) 

DOC and nitrite; c) DOC and the reaction rate constant between Br− and 3CDOM*. 

Solar UV irradiance: 22 W m−2. Other photochemically important parameters are 

reported in the text. 
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Figure 4. Modelled trends of Br2
−• steady-state concentration as a function of: a) DOC and 

bromide; b) DOC and nitrite; c) DOC and the reaction rate constant between Br− and 
3CDOM*. Solar UV irradiance: 22 W m−2. Other photochemically important parameters 

are reported in the text. 
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Figure 5. Modelled trends of the fraction of Br2
−• that is generated upon bromide oxidation by 

3CDOM*, as a function of: a) DOC and bromide; b) DOC and nitrite; c) DOC and the 

reaction rate constant between Br− and 3CDOM*. Solar UV irradiance: 22 W m−2. Other 

photochemically important parameters are reported in the text. 
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Figure 6. Modelled trends of the fraction of •NO2 that is generated upon nitrite oxidation by Br2
−•, 

as a function of: a) DOC and bromide; b) DOC and the reaction rate constant between 

Br− and 3CDOM*. Solar UV irradiance: 22 W m−2. Other photochemically important 

parameters are reported in the text. 
 

 


