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ABSTRACT 

We present the results of one year of continuous radon monitoring at Stromboli volcano collected at 

two automated real-time stations. These were deployed on the NE flank (at 520 m a.s.l.) and within 

the summit area (900 m a.s.l.). Higher daily emissions at the lower station approached 4,200 Bq/m3, 

with bulk averages around 1,800 (±980) Bq/m3; whereas the summit station reached peak values of 

23,000 Bq/m3 and bulk averages of 12,500 Bq/m3 ( ±4,000). Negative correlations are observed 

between radon emissions, soil temperature and, to a lesser extent, atmospheric pressure. In contrast, 

an increases in radon concentrations were observed during periods of higher rainfall conditions. 

Therefore, trends in radon concentrations may be decoupled from those of other geochemical 

parameters (CO2 fluxes and CO2/SO2 plume ratios) during periods of heavy to moderate rainfalls. 

Multiple Linear Regression statistics (including the effects of soil temperature, atmospheric 

pressure and tidal forces) led us to compute the residuals given by the difference of measured and 

calculated 222Rn concentrations. The cross-check between the daily measured radon activities and 

the absolute variations in radon residuals, for the data collected at the summit station, give us the 

opportunity to suggest a methodological approach that can be used in the attempt of predicting 

some major changes in volcanic activity. 

 

Introduction 

It is generally accepted that decoding anomalous radon emissions, together with those of other 

geochemical and geophysical parameters, may better assess volcanic alert procedures and eruption 

and earthquake forecasting. Radon is an alpha emitting radioactive gas produced from the decay of 
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uranium and thorium bearing rocks, soils and magmas. It plays a crucial role in the outgassing 

process of the earth and its spatial and temporal variations have been regarded as precursors of 

earthquakes and volcanic eruptions. Earth scientists use the isotope 222Rn (with a half life of 3.82 

days) as a “geochemical tracer”, since its anomalies have been observed before, during and after the 

onset of regional seismic events (e.g., Scholtz et al., 1973; Fleischer and Mogro-Campero, 1985; 

Igarashi et al., 1995; Planicić et al., 2004; Pulinets et al., 2009; Cigolini, 2010). These issues have 

been challenged by Wyss (1991; 1997) and Wakita (1996) who discuss the limits identifying 

earthquake precursors solely based on radon monitoring. Moreover, variations in radon emissions 

have been associated with changes in volcanic activity and volcanically-related earthquakes (Cox, 

1980; Thomas et al., 1986). At Somma-Vesuvius (Italy), Cigolini et al. (2001) used a network for 

radon monitoring to discriminate radon anomalies related to regional earthquakes from those 

associated to local volcanic seismicity. In addition, Burton et al. (2004) inferred, on the basis of 

radon measurements, the geometry of a hidden fault during the seismic crises of October, 2002 at 

Mount Etna. More recently, Cigolini et al. (2007) were able to detect earthquake-volcano 

interactions at Stromboli in terms of a time-delay of radon anomalies in respect to the onset of 

major seismic events within the southern Tyrrhenian region.  

High radon emissions across active faults have the capability of generating ionization of the near-

ground layer of the atmosphere since its decay products may become clusters for water 

condensation and local temperature anomalies (due to the release of the latent heat from 

evaporation), eventually leading to thermal anomalies that may precede earthquakes (Ouzounov and 

Freund, 2004; Pulinets et al., 2009). However, radon anomalies have also been regarded as 

precursors to volcanic eruptions (e.g., Chirkov, 1975; Connors et al., 1996; Alparone et al., 2005; 

Cigolini et al., 2005; Neri et al., 2006; Giammanco et. Al., 2007). Su and Huh (2002) recorded 

increased contents of 210Po (a daughter product of 222Rn) deposited by the plume of Mayon volcano 

prior to its last eruption.  
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Diffuse and concentrated degassing in volcanic areas may release high amount of gas and its 

monitoring can be helpful in volcano surveillance (e.g., Allard et al., 1991; Viveiros et al., 2008). In 

recent years this approach has been undertaken at several volcanoes (Varley et al., 2001; Carapezza 

et al., 2004; Williams-Jones et al., 2000; Hernandez et al., 2004; Neri et al., 2006). Radon transport 

towards the surface occurs preferentially along faults or cracks of the substrate, and it is controlled 

by the physical properties of the underlying rocks (e.g. porosity and permeability). Radon can 

migrate throughout soil pores not only by gas-phase diffusion but also by convection and advection. 

According to Gauthier et al. (1999), in volcanic areas, the radon gas is essentially carried by water 

and carbon dioxide. Environmental parameters are critical in modulating radon emissions (e.g., 

Mogro-Campero and Fleischer, 1977; Pinault and Baurbon, 1996; Pérez et al., 2007; among others). 

In particular, Zimmer and Erzinger (2003) found a positive correlation between radon 

concentrations, atmospheric pressure and water contents during their monitoring of high 

temperature fumaroles at Merapi Volcano. Moreover, the effects of environmental parameters on 

volcano degassing led Viveiros et al. (2008) and Carapezza et al. (2009) to analyze CO2 fluxes by 

taking into account the effects of environmental parameters on the CO2 signals. However, radon 

concentrations can be diluted by major fluxes of CO2 and vapor water (e.g., Giammanco et al., 

2007; 2009; Siniscalchi et al., 2010). 

The use of automatic alpha particles detectors allow us to better decode the interplay among seismic 

signals and others geochemical parameters that may precede the onset of volcanic eruptions (Ripepe 

et al., 2005; Allard et al., 2008).  

Real-time radon measurements strategically increase the potential role of radon in volcano 

monitoring since the data are automatically transferred and previously elaborated, filtering the 

effects of environmental parameters on radon degassing (Cigolini et al., 2009). Thus, systematic 

time series analysis and signal processing give us the opportunity to better track degassing at active 

volcanoes and substantially contribute to refine surveillance strategies and alert procedures. 
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However, the applications of these methods could also be easily applied in monitoring the 

relationships between radon and seismicity in tectonically active areas. 

In this framework, we analyze the radon signals by means of Multiple Linear Regression analysis, 

in the light of environmental parameters (soil temperature and atmospheric pressure) and tidal 

forces, that may be used to identify a correlation between radon emissions and other key 

geochemical parameters. We finally discuss how our methodological approach and our results may 

contribute to improve geochemical monitoring and, consequently, volcano surveillance. 

 

Stromboli Volcano 

Stromboli is an active stratovolcano located in the southern Tyrrhenian region, the north-eastern 

island of the Aeolian arc (Fig. 1). The volcano rises 924 m above sea level but the base of the cone 

reaches a depth of about 2,000 m below sea level. The volcanic edifice has grown on a NE strike-

slip fault known as the Stromboli-Panarea alignment. This structure is connected to the NNW 

trending Tindari-Letojanni faulting system: a major structure that propagates though Eastern Sicily 

to the Ionian sea (e.g., De Astis et al., 2003; Acocella et al., 2009). 

Stromboli volcano shows a rather unique and persistent open-system activity with moderate 

eruptions of ash, lapilli, scoriae and bombs from summit vents  (e.g., Rosi et al., 2000). This mild 

and persistent activity may be associated with major explosions with ejection of blocks and bombs 

that affect the summit area and the surrounding sectors. The onset of a major eruptive period occurs 

with lava effusions eventually leading to high risk paroxysmal explosions. These are characterized 

by the projection of ash, pumices, bombs and blocks of several tonnes that may reach the villages of 

Stromboli and Ginostra (e.g., Barberi et al., 1993). 

The onset and the evolution of the major eruptive period of 2002-2003 further attracted the 

scientific interest on this volcano. Lava effusion from the summit vents started on December 28, 

2002 and was followed, on December 30, 2002, by a composite slump down the “Sciara del Fuoco” 

(a horse-shoe shaped scarp open northeast inherited from a multiple flank collapse, see Tibaldi et al. 
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(2009) and references therein), triggering a tsunamis that damaged parts of the Stromboli village 

and reached the coasts of Sicily and Calabria. In the following days the lava effusion continued, 

summit vents were dismissed and the typical strombolian activity temporarily ceased until the end 

of July 2003. Lava outflow was accompanied, on April 5, 2003, by the onset of a paroxysmal 

explosion with the ejection ash, abundant pumices bombs and lithic blocks (Bonaccorso et al., 

2003; Ripepe et al., 2005; Calvari et al., 2005). The geochemical anomalies that preceded these two 

eruptive events were discussed by Carapezza et al. (2004) and Cigolini et al (2005). The 

relationships among geophysical signals (VLP events basically related to the Stromboli explosive 

activity), thermal anomalies and SO2 plume degassing were discussed by Ripepe et al. (2005). 

The most recent effusive event, that replaced the mild strombolian activity, started on February 27, 

2007 and persisted until April 2, 2007. A new and violent paroxysmal explosion occurred on March 

15, 2007. with the ejection of ash, pumices bombs and projectiles that damaged two houses in the 

village of Ginostra. The explosion was preceded by a marked increase in volcanic seismicity 

accompanied and followed by a progressive vertical collapse of the crater area (Barberi et al., 2008; 

Neri and Lanzafame, 2008). A transitional phase, characterized by moderate seismic and infrasonic 

activity (and absence of explosions at the summit vents) persisted until the end of June-beginning of 

July, 2007 when the mild strombolian activity finally resumed. Geochemical data on precursory 

signals for this eruption were provided by Rizzo et al. (2009) and Aiuppa et al. (2009).  

Currently activity is typically strombolian but major explosions (intermediate between paroxysmal 

explosions and the typical mild explosive activity) have been more frequent when compared to the 

earlier and recent eruptive history. Current scientific goals are thus focused in decoding the 

precursory signals associated with onset of these explosive events that may threaten the life of 

hikers and scientists occasionally exposed in the summit area. 

During our monitoring (May 2008 - May 2009), Stromboli was essentially characterized by its 

typical Strombolian activity, and a total of 3 major explosions explosions stronger then the ordinary 

activity with an overpressure at the vents > 2 bar (measured according to the methods of Ripepe et 
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al., 2007). A minor lava overflow from the summit crater occurred on March 29, 2009. The mild 

strombolian activity substantially increased during March-May 2009, with a marked increase in the 

explosive rate at the summit vents. 

 

 

Radon measurements and techniques 

Earlier radon measurements, starting May 2002, were performed by track-etch detectors (LR115, 

finely calibrated according to Bonetti et al. (1991) and E-PERM® electretes (Kotrappa et al., 1993) 

at 25 selected sites located on the major structural features of the volcano. Detectors were placed in 

pipe-like samplers (1.20 m long with a diameter of 12 cm) inserted into soil at an approximate depth 

of about 60 cm. Repeated periodic surveys in the following years allowed us to identify the sites of 

more efficient degassing. Two of these sites were chosen to install real-time radon stations. The first 

one, named Liscione (LSC in Fig. 1a, a locality in northeastern sector at 520 m a.s.l.), is located 

between the N40°E and N60°E fracture zones (the main structural alignments of the island). The 

station lays on top of a 10-15 m deposit consisting of fine to coarse ash that covers the Cannestrà 

lava flow (Fig. 1a) that was erupted from a N40°E fracture 13-6 ky before present (Gillot & Keller, 

1993; Keller et al., 1993; Finizola et al., 2002; Tibaldi, 2001; Tibaldi et al., 2009). 

The second station, named Pizzo (PZZ in Fig. 1 at 900 m of altitude a.s.l.) is located in the summit 

area above the N40°E fracture zone parallel to craters alignment, at a distance of about 150 m from 

the active fumaroles (Fig. 1b). In addition, several automated stations were periodically deployed at 

selected sites where data could be seasonally downloaded by means of a portable PC.  

The assemblage and set ups for real time stations were presented in an earlier paper (Cigolini et al., 

2009); here we will briefly recall the main features and then focus our attention on spectral 

signatures and real-time measurements. 

A single station for real-time measurements consisted of an electronic radon detector (DOSEman 

made by Sarad GmbH, Dresden, Germany) integrated by an electronic board that transfered the 
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output signal to a radio modem. These units were assembled and stored in a in a polycarbonate case 

(permeable to radon) positioned within a PVC box (open downward). This box was inserted into the 

soil down to a depth of  ~1 m. The space inside the box was occupied by “free soil air” and the gas 

flux into the atmosphere was promoted by a tube positioned at the top of the box. The tube was 

interconnected with a cylindrical “expansion reservoir” that attenuated the effects of atmospheric 

perturbations.  

Collected data were sent, through a directional antenna, to a receiving station at the volcano 

observatory. The sampling time for radon measurements and acquisition of environmental 

parameters (site soil temperature and atmospheric pressure) was set at 15 minutes. Data were 

systematically trasferred, processed and visualized as a time series that could be easily checked via 

web.  

Streil et al. (2002) and Gründel and Postendörfer (2003) reported the technical features of the 

electronic radon dosimeter. In DOSEman, radon diffuses passively through a leather membrane into 

a measurement chamber (cylindrical in shape and 12 cm3 in volume) where the charged particles 

concentrate onto a Si-doped semiconductor detector and are counted by means of an automated 

alpha spectrometer. Detected particles’ decays are stored and processed by means of a multichannel 

analyzer that splits the counts into energetic domains or Regions of Interest (ROIs), and generates 

the spectrum of the radon gas. The sensitivity of the instrument is between 10 Bq/m3 to 4 millions 

of Bq/m3.  The DOSEman detects alpha-particle decays within an energy window between 4500 

and 10000 keV that includes the peaks of 222Rn itself plus the peaks of the daughter products (218Po 

and 214Po; at 6200 and 8000 keV, respectively) as well as the energy interval represented by 220Rn 

(thoron, due to the decay of the 232Th chain) and 212Po. The total decays measured for each 

radionuclides are automatically processed by an internal multichannel analyzer and the counts are 

arranged in five adjusted ROIs (regions of interest) (Gründel and Postendörfer;2003). According to 

Gründel and Postendörfer (2003; p. 290) the counts for 214Po need to be corrected, since the higher 

side of the 220Rn spectrum overlaps the 214Po peak. Their calibrations suggest that 7.5 % of the 
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counts are ascribed to thoron. Radon concentration is expressed in Bq/m3 and is computed from the 

total counts of specific ROIs, acquired during a given sample-time, by introducing an instrumental 

calibration factor (
if

C ) related to the volume of the measurement chamber (Gründel and 

Postendörfer, 2003): 

 

                                            1000*))(1/t*/Cts(C][Bq/mC sf
3

i i
=     (1) 

 

where Cts are the counts, ts is the sample time (in minutes) and 1000 is the conversion factor from 

kBq/m3 to Bq/m3. Radon can be computed in fast mode taking into account the counts for 222Rn and 

218Po (sum of the ROI1 and ROI2 counts), and in slow mode if we include the counts of 214Po (sum 

of the ROI1, ROI2 and ROI4 counts) as well. A summary of calibration factors is reported by 

Gründel and Postendörfer (2003). In our analysis we preferred to use the fast mode option because 

214Po tends to cluster with aerosol particles. In addition, we did not have to take into account thoron 

interferences on the 214Po peaks. In Table 1, we present the count values for each ROI as well as the 

calibration factors used for fast and slow mode at both stations. The average error at radon 

concentration of 1000 Bq/m3 was observed to be ± 25%, drastically decreasing at higher emissions 

(Streil et al., 2002). 

In Fig. 2 we report the spectral distribution of the different isotopes of the radon progeny detected at 

the two real-time stations during a year long monitoring, together with the daily counts for each 

isotope (subdivided into Region of Interest, ROIs) cumulated for the whole year. In general, it can 

be observed that the counts at the PZZ station were substantially higher, likely due to the fact it was 

located near the summit fracture within a sector of concentrated degassing. In addition, the overall 

shape of the left side of both spectra (namely ROI 1) was quite similar in shape, whereas the peaks 

of 218Po and 214Po were definitely sharper at the PZZ station. This may reflect minor differences in 

the experimental calibration of single detectors. However, it was possible that differences in gas 
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ascent rates, as well variations in porosities and permeabilities of the underlying rock-soil units may 

have affected spectral shapes. However, the uncorrected counts of 220Rn (obtained by detecting the 

peak of the daughter isotope 216Po) were considerably lower than those of the other short-lived 

isotopes.  

 

One year of real-time radon monitoring 

The time series for daily averages in radon concentrations at the LSC and PZZ stations from May 1, 

2008 to May 31, 2009 are reported in Fig. 3 and Fig. 4, together with those of soil temperatures and 

atmospheric pressure. The time series for the data collected at the LSC station (Fig. 3) showed that 

higher daily emissions approached 4200 Bq/m3, whereas the average, calculated on the entire 

dataset, was 1800 Bq/m3 (±980) (see Table 2). It can be observed that the relative maximum in the 

activity of radon was reached in the second half of November 2008. Although there was an overall 

similarity with the LSC trend, daily average concentrations recorded at PZZ were considerably 

higher and reached 23000 Bq/m3 during the end of November 2008 (Fig. 4). In this case, the 

average concentration was 12500 Bq/m3 ( ±4000). The time series for soil temperatures at the LSC 

station basically reflected seasonal variations, these also affected the yearly trend at the PZZ station 

but this time series was also affected by the higher local temperature gradient since the detector was 

placed at about 150 m from the active fumaroles of the summit. Therefore fluctuations in this 

parameter at PZZ were more evident with a more discontinuous trendthe trend was more 

discontinuous. However, a cross-correlation between temperature and radon emissions showed a 

negative correlation for both measurement sites, and the PZZ station exhibited a higher correlation 

(Fig. 5 and Table 2). In general, the trend for radon activity showed that radon was higher during 

the fall and winter and it substantially decreased during late spring and summer (with relative 

minima recorded during June-August 2008). This is consistent with the observations of Mogro-

Campero and Fleischer (1977) who first ascribed this phenomenon to be the result of the summer 

time heating of the earth's surface that would cause a seasonal inversion in the near surface 
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temperature gradient. This would create a barrier to the upward migration of radon since the 

efficiency of hydrothermal convection at the surface will be drastically reduced (Cigolini et al., 

2001; 2009). 

The relationship with atmospheric pressure was rather cryptic. In few cases there seemed to be a 

delay time in the response of radon to variations in atmospheric pressure (increasing and/or 

decreasing trends, particularly during those months that follow seasonal changes). However, if 

signals were analyzed strictly in terms of correlation coefficient, we obviously come to the 

conclusion that there was only a minor negative correlation between the in-soil radon signal and 

atmospheric pressure (Fig. 3 and 4, Tab. 2).  

In order to have a more reliable radon signal and following Viveiros et al. (2008), Pérez et al. 

(2007), Carapezza et al. (2008), a Multiple Linear Regression Analysis was performed on the raw 

data in order to minimized the effects of environmental parameters (soil temperature and air 

pressure) and tidal forces. Multiple linear regression analysis was carried out to predict the values of 

a dependent variable (Y) given a set or predictor variables (x1, x2,…., xn). We used the relationship 

between the dependent variable (Ycalc) and the explanatory variables according to: 

Ycalc = Y0 + b1X1 + b2X2 + … + bnXn                                          (2) 

the Y0 is the intercept, Xn the acquired variables and bn the regression coefficients (e.g., Hernandez 

et al., 2004). Thus, we used the above analysis to find and then remove (to calculate residuals) the 

contribution of the given environmental parameters that may affect radon concentrations (at both 

real time stations).  

In a recent paper (Cigolini et al., 2009), we showed that tidal forces actively modulate radon 

degassing at Stromboli volcano, supporting the earlier findings of Barnet et al. (1997). Therefore, in 

analyzing our data we considered the normalized sinusoidal signal constructed from the values of 

Ephemerids at Stromboli (composed by declination, distance and moon phases). Following this 

procedure, residuals were obtained by the difference between measured and calculated 222Rn 

concentrations (Figs. 6 and 7, respectively). The results give light on the role played by 
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environmental parameters in modulating 222Rn soil concentrations and, consequently, can be used in 

filtering the radon signal. 

 

Radon and other geochemical parameters 

In order to have a more comprehensive overview for the behavior of radon during Strombolian 

activity, we compared the radon signal recorded at the summit station with other geochemical and 

geophysical data. We must recall that during the period of analysis, (May 2008-May 2009) 

Stromboli was more active in fall/winter, with the ordinary activity punctuated by a summit lava 

flow (March 29, 2009; indicating the conduit was completely filled with magma) and 3 stronger 

explosions (December 6 and 17, 2008, and May 3, 2009) with the first explosion being the strongest 

event recorded since the onset of the last 2 paroxysms (April 5, 2003 and March 15, 2007). 

The recorded time series were compared with the weekly data for radon concentrations and the 

cumulative curve for daily rain-falls. This analysis is focussed on the summit stations where all the 

measured parameters are available (Fig. 8). An increasing trend in gaseous emissions, for radon and 

CO2 and to a lesser extent CO2/SO2 ratios, was recorded from early August to September 2008. 

Since then, the cited parameters fluctuated and were partly decoupled until they returned to an 

increasing trend from the end of November to the end of 2008. In particular, anomalous peaks 

preceded the sequence of the major explosion of December 6 2008, with vent overpressure of 9 bar. 

While the trends in CO2 and CO2/SO2 fluctuate and decreased during the following months, radon is 

growing until March 2009 and then decreases with other parameters as well. This anomalous radon 

increase during late winter-early spring seemed to be related to the marked increase in rain waters 

(see the cumulative curve reported in Fig. 8). This is consistent with the observations of Perrier et 

al. (2009) who recorded a positive response of radon concentrations (somehow delayed in time) to 

rainfalls. Moreover, it is well known that higher water contents in soils are capable of increasing the 

radon emanation factor; at the same time, increase in soil humidity drastically enhances its mobility 

through the soil pores (Nazaroff et., 1992). However, radon migration may be reduced in moist soil 
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because radon is soluble in the pore water, but this will contribute to increase its background 

concentration at the measurement site. At Stromboli, this process was associated with general 

decrease in soil temperatures accompanied by a marked increase in radon emissions. In addition, 

meteoric waters percolating though the fracture network will dilute the carbon-dioxide 

concentrations, thus momentarily reducing CO2 fluxes through the hydrothermal system of the 

summit (Finizola et al., 2003). Finally, we attempted to correlate the variations in radon 

concentrations with two major explosions that occurred during our monitoring. These occurred on 

December 6, 2008 (with a vent overpressure Pov = 9 bar measured by Laboratorio di Geofisica 

Sperimentale of the University of Florence, cfr. Ripepe et al., 2007), and May 3, 2009 (Pov = 5.2 

bar). The first was the stronger major explosion recorded at Stromboli since the end of 2002. Only 

paroxysmal explosions develop higher overpressures (e.g., Harris and Ripepe, 2007). During our 

recent monitoring, a minor lava overflow occurred on March 29, 2009, from the NE crater.  

During mild Strombolian activity, explosions are essentially below 1-2 bar, and only occasionally 

may reach higher overpressures. We thus emphasize that major explosions are characterized by 

higher vent overpressure. Therefore, we expect that the most violent major explosions (with Pov>>5 

bar) could eventually provide some precursory signals. In all other cases, it would be impossible to 

detect anomalies since most of major explosions are only somehow higher those occurring during 

the typical mild activity. 

In Fig. 9 we report the absolute variations of the daily residuals obtained by Multiple Linear 

Regression statistics compared with the raw data of radon daily emissions (at the Pizzo station, 

PZZ) and the onset times for the above events. It must be emphasized that our previous 

measurements (Cigolini et al., 2005) indicated that prior to the onset of lava effusion (on December 

28, 2002) and the paroxysmal explosion of April 5, 2003, some of the summit stations reached 

values above 20,000 Bq/m3, respectively 12 and 14 days the above events. Therefore, we have 

indicated this value as a reference in Fig. 9. 
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It can be seen that peak values in daily absolute residuals (drastically higher than 3σ values) were 

obtained 14 days before the onset of the major explosion of December 6, 2008 (which is the most 

energetic) and one day before the lava overflow of March 29, 2009. In the first case radon 

concentrations reached peak values of 25,000 Bq/m3 on November 22, 2008, whereas radon values 

dropped down to values of ~ 6,000 Bq/m3 on March 28, 2009, i.e., one day before the lava 

overflow. We must stress that we are analyzing two distinct volcanic processes (that, in turn, 

occurred under similar and moderate rainfall conditions, Fig. 8): in the first case radon showed a 

definite increasing trend due to higher “secondary” degassing along the fracture zone of the summit 

area, in the second case the most plausible explanation is that gas release was essentially 

concentrated within the conduit during the ascent of the degassing magma column; this would 

explain the drop in radon concentration just before lava effusion (this view is consistent with the 

relative increase in CO2/SO2 ratios within the plume one week before the overflow, Fig. 8). In terms 

of absolute residuals, both cases were characterized by marked peak values, suggesting that under 

critical conditions drastic variations in radon emissions were indicative of changes in the eruption 

style of the volcano. However, these changes should be carefully evaluated by taking into account 

other geochemical and geophysical parameters, as well as remote observations by means of optical 

and thermal cameras on the “state of the volcano”.  

Vent overpressure for the major explosion of May 3, 2009 was drastically lower and a precursory 

radon signal cannot be identified. 

We also emphasize that peaks in absolute residuals, recorded from January to late February 2009, 

were accompanied by the extreme variability in soil temperatures, atmospheric pressure and rainfall 

conditions. Therefore the application of this methodology should be restricted to periods 

characterized by a moderate variability of environmental parameters. 
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Conclusions 

We have analyzed the radon signals recorded at Stromboli from May 2008  to May 2009 at two 

real-time stations deployed in sectors of diffuse and concentrated degassing (located onto the NE 

flank and summit of the volcano, respectively). Radon data together with environmental parameters 

(soil temperature and atmospheric pressure) were automatically transferred and plotted as time 

series. We found a general agreement among the trends of radon data and those of other 

geochemical parameters (CO2 fluxes and the CO2/SO2 plume ratio) during periods of minor to 

moderate rainfalls. In addition, we investigated the radon signals together with those associated 

with the variations of environmental parameters, and found a negative correlation between radon 

emissions, soil temperature and atmospheric pressure. Multiple Linear Regression analysis 

(including the effects of tidal forces, e.g., Cigolini et al., 2009) gave us the opportunity to calculate 

the residuals obtained by the difference between measured and calculated radon concentrations.  

By considering the time series of absolute variations of the daily radon residuals for the summit 

station, we suggest a methodological approach that can be used in predicting a “violent”, a major 

explosion and/or an overflow during periods characterized by a moderate variability of 

environmental parameters. In summary, high radon values coupled with high radon daily residuals 

are indicative of significant changes in Stromboli eruptive style. The application of these methods 

could be regarded as a reference point in further analyzing the radon signal. 
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Figure Captions 

 

Figure 1. a) Simplified geological map of Stromboli with major collapses and faults (modified after 

Tibaldi et al., 2009) and location of the two real-time stations (LSC and PZZ); inset shows the 
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structural setting of the southern Tyrrhenian region; b) topographic DEM image of the summit area 

with the locations of active fumaroles (modified after Finizola et al., 2002). 

 

Figure 2. Total daily decays count computed by the two DOSEMan alpha-spectrometers (SARAD 

Gmbh) of the 222Rn monitoring stations; see text for details. 

Spectral distribution of the different isotopes of the radon progeny detected by DOSEman 

(subdivided into Region of Interest, ROIs) for both the real-time stations operative at Stromboli.  

 

Figure 3. Time series of 222Rn concentration at the Liscione station (LSC) displayed with soil 

temperature and atmospheric pressure. The black curve refers to average daily concentrations, grey 

circles represent 4 hour average values. 

 

Figure 4. Time series of 222Rn concentration at the Pizzo station (PZZ) displayed with soil 

temperature and atmospheric pressure. The black curve refers to average daily concentrations, grey 

circles represent 4 hour average values. 

 

Figure 5. Cross-correlation for soil temperature versus 222Rn concentrations (daily average values) 

for the data collected at LSC and PZZ real-time stations, respectively.  

 

Figure 6. Summary of the observed 222Rn time series measured at LSC station compared with 

calculated radon values (black curve) obtained by Multiple Linear Regression. Residuals are shown 

separately. 

 

Figure 7. Summary of the observed 222Rn time series measured at summit PZZ station compared 

with calculated radon values (black curve) obtained by Multiple Linear Regression. Residuals are 

shown separately. 
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Figure 8. Time-series of the observed 222Rn concentrations, reported as weekly average 

concentrations compared with weekly average soil CO2 flux and plume CO2/SO2 ratios. The latter 

data are from the weekly reports provided by INGV (cf., 

http://www.pa.ingv.it/comunicati/Stromboli/comunicati_stromboli.php). The cumulate curve for 

regional rainfalls (in mm) has been obtained from the data of the Messina station (Servizio 

Metereologico dell’Aeronautica). Black bars are the major explosions and dotted bar represent the 

lava overflow. From May 2008 to mid-January 2009 the Rn-CO2 correlation coefficient is 0.52, 

since then it becomes slightly anti-correlated. Similar results are also found for Rn-CO2/SO2 data. 

 

Figure 9. Raw data of daily radon concentrations and relationships between absolute daily 

variations (gradient) computed for the residuals of the PZZ station, and the onset of significative 

volcanic events during our year-long monitoring at Stromboli volcano. (see text for details). 
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