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Abstract

We consider the nonlinear Klein-Gordon equation with nonnegative potential, which makes the
equation suitable for physical models, and prove the existence of solitary wave solutions with nonvan-
ishing angular momentum and enough largely prescribed charge (c-vortices). This is done by solving
the following minimization problem:

inf
(u,ω)∈H,−ω8u82

L2(R3)
=c

1

2 R3

|∇u|2 dx+ 1

2 R3

k2

|y|2
+ ω2 u

2
dx+

R3

V (u) dx

where x = (y, z) ∈ R2 ×R, k �= 0 and H is a suitable subspace of H1(R3)× R.

1. Introduction

In this paper we are concerned with the existence of solitary waves with nonvanishing angular momentum
(vortices) and given charge for the nonlinear wave equation

ψ +W 3 (ψ) = 0, (1.1)

where ψ is a complex field defined on the spacetime R4, i.e., ψ (t, x) ∈ C and (t, x) ∈ R×R3. The operator
= ∂2

∂t2 −7 is the d’Alembert operator and W 3 (ψ) = V 3 (|ψ|) ψ
|ψ| is (under the standard identification

between C and R2) the gradient of a function W : C→ R satisfying

W (ψ) = V (|ψ|) for some V ∈ C2 (R,R) . (1.2)

Roughly speaking, a solitary wave is a nonsingular solution which travels as a localized packet in such
a way that the physical quantities corresponding to the Noether invariances of the equation are finite
and conserved in time. Accordingly, solitary waves preserve intrinsic properties of particles such as the
energy

E (ψ) =
R3

1

2
|∂tψ|

2 +
1

2
|∇ψ|2 +W (ψ) dx, (1.3)
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the angular momentum

M (ψ) = Re
R3

∂tψ (x ∧∇ψ) dx (1.4)

and the charge

C (ψ) = Im
R3

∂tψ ψ dx , (1.5)

and can thus be regarded as a model for extended particles, in contrast with point particles. In this
respect, they arise in many problems of mathematical physics, such as classical and quantum field theory,
nonlinear optics, fluid mechanics, plasma physics and cosmology (see for instance [37, 29, 26]). In addition,
the solitary waves of (1.1) exhibit all the most characteristic features of relativistic particles, such as space
contraction, time dilation and equivalence between mass and energy (for an introduction to the theory
of solitary waves in nonlinear field equations we refer, e.g., to [1, 11, 34]).
Here we are interested in vortices with prescribed charge c 9= 0 (in the following, c-vortices) for

equation (1.1) with nonnegative potentials, that is,

W ≥ 0 , M (ψ) 9= 0 and C (ψ) = c .

Observe that the assumptionW ≥ 0, which implies E ≥ 0, is an important requirement for the consistence
of physical models related to the equation, since, by the Einstein equation, the existence of field con-
figurations with negative energy would yield negative masses. Furthermore, the positivity of the energy
also provides good a priori estimates for the solutions of the corresponding Cauchy problem and these
estimates allow to prove that, under very general assumptions on W , the problem is well posed (cf. [11]).
The most natural way for finding solitary waves for (1.1) is to look for static waves, i.e., time-

independent solutions of the form ψ (t, x) = ϕ (x), and then to obtain travelling waves by Lorentz trans-
forming. Unfortunately, this forces to assume that W takes negative values, for it is well known, since
the renewed paper [22] of Derrik, that W ≥ 0 implies that any finite-energy static solution of (1.1) is
necessarily trivial.
Such a difficulty can be overcome by looking for standing waves, namely, finite-energy solutions having

the following form:
ψ (t, x) = ϕ (x) e−iωt , ω 9= 0. (1.6)

In the mathematical literature, a lot of work has been done in proving the existence of standing waves
with ϕ (x) ∈ R (we recall, e.g., [15, 16, 31, 32, 33]). Also in the physical literature, where the spherically
symmetric standing waves are called Q-balls according to the name coined by Coleman in [19], there are
many papers dealing with this topic, among which we recall the pioneering paper of Rosen [30] and the
first rigorous existence paper [18]. In particular, from the results of [15] (see also [11]) it follows that, if
W satisfies (1.2) together with

(i) V (0) = V 3 (0) = 0 and V ≥ 0

(ii) V 33 (0) =: Ω2 > 0

(iii) V (s0) <
1
2Ω

2s20 for some s0 > 0,

then equation (1.1) has standing waves (1.6), with ϕ (x) ∈ R, for every frequency ω ∈ (Ω0,Ω), where

Ω0 := inf ω > 0 : V (s) < 1
2ω

2s2 for some s > 0 . (1.7)
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However ϕ (x) ∈ R implies M (ψ) = 0 and thus, in order to get vortices, one has to consider complex
valued ϕ’s.
Making an ansatz of the form

ψ (t, x) = u (x) ei(kθ(x)−ωt) , u (x) ≥ 0, θ (x) ∈ R

2πZ
, ω 9= 0, k ∈ Z, (1.8)

equation (1.1) turns out to be equivalent to the system

−7u+ k2 |∇θ|2 u− ω2u+ V 3 (u) = 0

u7θ + 2∇u ·∇θ = 0

and, denoting x = (y, z) = (y1, y2, z), assuming

u (y, z) = u (|y| , z) (1.9)

and choosing the angular coordinate with respect to the z axis as phase function, i.e., θ ∈ C∞(R3\Σ, R

2πZ )
defined by

θ (x) := Im log (y1 + iy2) for every x ∈ R3 \ Σ, Σ := x ∈ R3 : y = 0 , (1.10)

one gets 7θ = 0, ∇θ ·∇u = 0 and |∇θ|2 = 1
|y|2
, so that the above system reduces to

−7u+ k2

|y|
2u+ V

3 (u) = ω2u . (1.11)

Direct computations then show that for a field (1.8)-(1.10) the integrals (1.3)-(1.5) become

E (ψ) =
R3

1

2
|∇u|2 + 1

2

k2

|y|2
+ ω2 u2 + V (u) dx, (1.12)

M (ψ) = 0, 0,−ωk
R3

u2dx , (1.13)

C (ψ) = −ω
R3

u2dx (1.14)

(see [2] for a derivation of (1.13)). HenceM (ψ) does not vanish if k 9= 0 and u 9= 0. By such arguments,
the following results on vortices have been proved in [3] and [4] respectively:

� if W satisfies (1.2) together with (i), (iii) (with Ω given by (ii*) below) and

(ii*) V 3 (s) = Ω2s+O(sq−1) as s→ 0+ for some Ω > 0 and q > 2

(ii**) V 3 (s) = O(sp−1) as s→ +∞ for some p < 6,

then equation (1.1) has a nonzero finite-energy classical solution of the form (1.8)-(1.10) for every
wave number k 9= 0 and every frequency ω ∈ (Ω0,Ω), where Ω0 is still given by (1.7) and the limit
value ω = Ω is also admitted if q > 6 in (ii*);
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� if W satisfies (1.2) together with (ii*), (iii) and

(i*) V (0) = V 3 (0) = 0 and V 3 ≥ 0 on (0,+∞) ,

then for every k 9= 0 end every ρ > 0 large enough there exists ω ∈ (0,Ω] such that equation (1.1)
has a nonzero finite-energy classical solution of the form (1.8)-(1.10) with nun2L2(R3) = ρ.

Besides papers [3, 4], the existence of vortices in nonlinear scalar field equations has been also obtained
in [2, 5, 6, 9, 13, 14, 21] (see [7, 8, 10, 12] for related results in gauge theories), but the requirement
W ≥ 0 is only permitted in [5, 6], where the evolution equations are considered with an additional
singular and cylindrical potential, and in [13], where the main theorem contains a weaker result than the
above mentioned one from [3] as a particular case. In the physical literature as well, where vortices are
called spinning Q-balls (even if they are not spherically symmetric), the existence of vortices in classical
field theories seems to be an interesting open issue, which has been recently addressed in a number of
publications: see for instance [35, 20, 17] and the references therein. In particular, the existence of vortices
for equation (1.1) has been investigated in [25] and [36], for very particular potentials.
Instead, no results on the problem of c-vortices are available in the literature, at least to our knowledge.

We observe that the solutions found in [4] have charge C (ψ) = −ωρ, which is not known even if ρ is
prescribed, because ω is not known.
Here we prove the following existence (and multiplicity) result on c-vortices.

Theorem 1.1. Let W : C→ R satisfy (1.2) and assume

(W1) V (0) = V 3 (0) = 0 and V ≥ 0
(W2) V 3 (s) = Ω2s+O(sq−1)s→0+ for some Ω > 0 and q > 2

(W3) V (s0) <
1
2Ω

2s20 for some s0 > 0

(W4) V 3 (s) = O(sp−1)s→+∞ for some p < 10/3.

Fix any k ∈ Z, k 9= 0. Then for every |c| large enough equation (1.1) has a nonzero classical solution of
the form (1.8)-(1.10), satisfying the following properties:

� E(ψ) <∞,M(ψ) = (0, 0, kc) and C(ψ) = c;

� u (y, z) = u (|y| , |z|) is nonnegative and nonincreasing in |z| .

The assumptions of Theorem 1.1 are satisfied for example by the model potential

W (ψ) =
1

2
Ω2 |ψ|2 − b

q
|ψ|q +

1

p
|ψ|p , Ω 9= 0, 2 < q < p < 10

3
, (1.15)

which is nonnegative provided that b > 0 is small enough.

Remark 1. Theorem 1.1 also gives travelling c-vortices, since, by Lorentz invariance, a solution ψ
v

travelling with any vector velocity v can be obtained from a standing one by boosting. For instance, if
ψ (t, x) = u (x) ei(kθ(x)−ωt) is a standing c-vortex and v = (0, 0, v), |v| < 1 , then

ψ
v
(t, x) = u (y, γ (z − vt)) ei(kθ(x)−ωγ(t−vz)), γ = 1− v2 −1/2 ,
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is also a c-vortex, representing a bump which travels in the z-direction with speed v. Moreover, the same
arguments leading to Theorem 1.1 also yield the existence of standing and travelling c-vortices for the
nonlinear Schrödinger equation

i∂tψ = −7ψ +W 3 (ψ) , ψ (t, x) ∈ C, (t, x) ∈ R×R3.

Nevertheless, we stated the result for the nonlinear Klein-Gordon equation (1.1) because it is for this
equation that, as already mentioned, the assumption W ≥ 0 has special importance on physical grounds.

We end this introductory section by summarizing the notations of most frequent use throughout the
paper.

� We shall always write x = (y, z) ∈ R2 ×R.
� By u (y, z) = u (|y| , z) we always mean u (y, z) = u (gy, z) for all g ∈ O (2) (orthogonal group) and
almost every (y, z) ∈ R2 × R. Similarly for u (y, z) = u (|y| , |z|). The request that u is nonincreasing in
|z| then reads as: |z1| ≤ |z2|⇒ u (y, z1) ≥ u (y, z2) for almost every (y, (z1, z2)) ∈ R2 ×R2.
� BR (ξ0) := ξ ∈ Rd : |ξ − ξ0| < R is the open ball of Rd, centered at ξ0 and with radius R.
� |A| denotes the Lebesgue measure of any measurable set A ⊆ Rd.
� By → and - we respectively mean strong and weak convergence in a Banach space E, whose dual
space is denoted by E3. The symbol /→ denotes continuous embeddings.
� C∞c (A) is the space of the infinitely differentiable real functions with compact support in the open set
A ⊆ Rd.
� If 1 ≤ p ≤ ∞ then Lp(A) and Lploc(A) are the usual Lebesgue spaces (for any measurable set A ⊆ Rd).
We recall in particular that un → 0 in Lploc(R

d) if and only if un → 0 in Lp(BR) for every R > 0.
� H1(R3) = {u ∈ L2(R3) : ∇u ∈ L2(R3)} is the usual Sobolev space.

2. A variational principle for c-vortices and proof of Theorem 1.1

In this section, we first show that vortices of charge c can be found as constrained critical points of
a suitable functional E on a suitable manifold Γc, and then we deduce Theorem 1.1 by solving the
minimization problem of E on Γc.
Fix any k ∈ Z, k 9= 0, and define the weighted Sobolev spaces

H := u ∈ H1
R
3 :

R3
u2

|y|2
dx <∞ , Hs := {u ∈ H : u (y, z) = u (|y| , z)} (2.1)

equipped with the hilbertian norm given by

nun2 :=
R3

|∇u|2 + k2

|y|2
+ 1 u2 dx for all u ∈ H . (2.2)

Clearly Hs /→ H /→ H1(R3), so that, by well known embeddings of H1(R3), one has H /→ Lp(R3) for
2 ≤ p ≤ 6 and H /→ Lploc(R

3) for 1 ≤ p ≤ 6. In particular, the latter embedding is compact if p < 6 and
thus it assures that weak convergence in H implies (up to a subsequence) almost everywhere convergence
in R3.
Now let W be as in Theorem 1.1. Notice that in the hypotheses of the theorem it is not restrictive to

assume p > 2 and q < 6.
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For (u,ω) ∈ H ×R, we define

E (u,ω) : =
1

2 R3

|∇u|2 + k2

|y|
2 + ω2 u2 dx+

R3

V (u) dx

C (u,ω) : = −ω
R3

u2dx,

Λ (u,ω) : =
E (u,ω)

|C (u,ω)|
if C (u,ω) 9= 0.

Thanks to (W2), (W4) and the continuous embedding H /→ Lp(R3) ∩ Lq(R3), standard arguments
(see for instance [27]) assure that the functional E is of class C1 on H × R and has Fréchet derivatives
E3u (u,ω) ∈ H 3 and E3ω (u,ω) ∈ R given by

E3u (u,ω)h =
R3

∇u ·∇h+ k2

|y|
2 + ω2 uh+ V 3 (u)h dx, (2.3)

E3ω (u,ω) = ω
R3

u2dx. (2.4)

For any given c 9= 0, we set

Γc := {(u,ω) ∈ Hs ×R : C (u,ω) = c} ,

which defines a C1 manifold in Hs ×R, as C is of class C
1 on H ×R and C 3ω (u,ω) = − R3

u2dx 9= 0 on
Γc. Notice that (u,ω) ∈ Γc implies u 9= 0 and ω 9= 0.

Proposition 2.1. Let c 9= 0. If (u,ω) is a critical point of E constrained to Γc and u is nonnegative, then
the vortex ψ (t, x) = u (x) ei(kθ(x)−ωt) is a finite-energy classical solution of (1.1) with charge C (ψ) = c.

Proof. Let (u,ω) be as in the assertion. Then there exists a Lagrange multiplier λ ∈ R such that

E3u (u,ω)h = λC 3u (u,ω)h for all h ∈ Hs ,
E3ω (u,ω) = λC 3ω (u,ω) in R ,

that is (see (2.3)-(2.4)),

−7u+ k2

|y|
2u+ ω2u+ V 3 (u) = −2λωu in H 3s ,

ω
R3

u2dx = −λ
R3

u2dx .

Since (u,ω) ∈ Γc implies u 9= 0, the second equation is equivalent to λ = −ω and thus the first equation,
which equivalently holds in H 3s and H

3 by the Palais’ principle of symmetric criticality [28], means that
u satisfies

−7u+ k2

|y|
2u+ V

3 (u) = ω2u in H 3. (2.5)
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Then a simple extendibility argument aimed at removing the singularity of ∇θ on the plane y = 0 shows
that ϕ (x) = u (x) eikθ(x) satisfies

−7ϕ+W 3 (ϕ) = ω2ϕ (2.6)

in the distributional sense on R3 (see [3, Lemma 29 and Lemma 30]), so that the standard elliptic
regularity theory (see for example [23]) assures that ϕ actually defines a classical solution to (2.6) on
R3. A straightforward substitution then shows that the vortex ψ (t, x) = ϕ (x) e−iωt classically solves
equation (1.1) on R×R3. Finally, by definitions of E and C, the energy and charge (1.12) and (1.14) of
ψ are given by E (ψ) = E (u,ω) <∞ and C (ψ) = C (u,ω) = c.

In order to get critical points of E constrained to Γc, we consider problem of minimizing E (u,ω) on
Γc. Our result is the following, which is the main result of the paper and will be proved in Section 3.

Theorem 2.2. Let k ∈ Z, k 9= 0, and let V ∈ C1 (R,R) be even and satisfying assumptions (W1)-(W4)
with Ω = 1. Then there exists c∗ < 0 such that for every c < c∗ the minimization problem

inf
(u,ω)∈Γc

E (u,ω) (2.7)

has a solution (u,ω), satisfying u (y, z) = u (|y| , |z|) nonnegative and nonincreasing in |z|.

Remark 2. In fact, we will prove that the minimization problem (2.7) has a solution (u,ω) as in Theorem
2.2 whenever c < 0 is such that inf(u,ω)∈Γc Λ (u,ω) < 1. For this, we do not need assumption (W3) (not
even in Lemma 3.5), which only will play a role in Lemma 3.1 in order to assure that the condition
inf(u,ω)∈Γc Λ (u,ω) < 1 occurs indeed for c < 0 large enough.

We can now give the proof of Theorem 1.1, which follows from Theorem 2.2 and Proposition 2.1.

Proof of Theorem 1.1. Fix k ∈ Z, k 9= 0. In order to apply Theorem 2.2, we first observe that, for any
Ω > 0, the vortex ψ (t, x) = u (x) ei(kθ(x)−ωt) is a finite-energy solution to (1.1) if and only if the vortex

ψ̃ (t, x) = ψ (t/Ω, x/Ω) = u (x/Ω) ei(kθ(x)−ωt/Ω)

is a finite-energy solution to ψ̃+W 3(ψ̃)/Ω2 = 0. Moreover C(ψ̃) = Ω2C(ψ). Hence it is not restrictive to
assume Ω = 1 in Theorem 1.1, whose hypotheses simultaneously hold for W and W/Ω2. Similarly, there
is no loss of generality in proving Theorem 1.1 under the assumption that V is even, since the hypotheses
of the theorem simultaneously hold for V (s) and V (|s|). Then, by Theorem 2.2 and Proposition 2.1,
there exists c∗ < 0 such that for every c < c∗ the equation (1.1) has a classical solution ψ (t, x) =
u (x) ei(kθ(x)−ωt), u ∈ H1(R3), such that E(ψ) <∞, C(ψ) = c,M(ψ) = (0, 0, kc) and u (y, z) = u (|y| , |z|)
is nonnegative and nonincreasing in |z|. This completes the proof for negative prescribed charges. The
case of positive charges then follows by simply changing sign to the frequency of the solution, since
C(uei(kθ+ωt)) = −C(uei(kθ−ωt)).

3. Proof of Theorem 2.2

In this section we give the proof of Theorem 2.2, which will be achieved through several lemmas. Ac-
cordingly, we hereafter assume all the hypotheses of the theorem, supposing p > 2 and q < 10/3 without
restriction.
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The requirement p, q < 10/3 will not be explicitely used in the following and thus it may seem
unnecessary. On the contrary, it will be needed in Lemma 3.5, in order to apply the result of [4, Theorem
5.1]).

Lemma 3.1. There exists c∗ < 0 such that for every c < c∗ one has inf(u,ω)∈Γc Λ (u,ω) < 1.

Proof. Here c1, c2, ... denote different positive constants, whose precise values will not be relevant. By
assumption (W3), fix α > 0 such that αs20 + V (s0)− s20/2 < 0 and set

A := (y, z) ∈ R2 ×R : |y| > |k|√
2α

.

Let R > Rα := 1 + |k| /
√
2α and consider two mappings ϕR,ψR ∈ C∞ ((0,+∞)) such that

� ϕR (t) ≡ s0 on (R, 4R), ϕR (t) ≡ 0 on [0, R− 1) ∪ (4R+ 1,+∞), 0 ≤ ϕR ≤ s0 on [0,+∞) ,

� ψR (t) ≡ 1 on [0, 5R), ψR (t) ≡ 0 on (5R+ 1,+∞), 0 ≤ ψR ≤ 1 on [0,+∞) ,

� supR>Rα
nϕ3RnL∞((0,+∞)) <∞, supR>Rα

ψ3R L∞((0,+∞)) <∞.

Define uR (x) := ϕR (|y|)ψR (|x|) for all x = (y, z) ∈ R2×R. Note that uR ∈ C∞c (A)∩Hs and 0 ≤ uR ≤ s0.
Moreover, it is easy to build ϕR end ψR in such a way that the mapping R ∈ (Rα,+∞) :→ uR ∈ Hs is
continuous. We will estimate Λ (uR, 1) as R→∞. Letting

A1 := x ∈ R3 : |x| < 5R+ 1, R− 1 < |y| < 4R+ 1 ,

A2 := x ∈ R3 : |x| < 5R, R < |y| < 4R ⊂ A1,
A4 := x ∈ R3 : 5R ≤ |x| ≤ 5R+ 1 ,

A5 := x ∈ R3 : |x| < 5R, R− 1 ≤ |y| ≤ R or 4R ≤ |y| ≤ 4R+ 1 ,

A3 := A1 \A2 ⊂ A4 ∪A5 ,

one has uR (x) ≡ 0 on R3 \A1, uR (x) ≡ s0 on A2, and |y| > R− 1 > Rα − 1 = |k| /
√
2α on A1. Notice

that

|A4| = c1 (5R+ 1)
3 − (5R)3 = c2R

2 + o R2
R→∞ ,

|A5| ≤ c3 R2 − (R− 1)2 + (4R+ 1)2 − (4R)2 R = c4R
2 + o R2

R→∞ ,

|A3| ≤ |A4|+ |A5| ≤ c5R2 + o R2 R→∞ ,

|A2| = 4π
4R

R

25R2 − r2rdr = 4π

3
24

3
2 − 9 32 R3,

|A1| = 4π
4R+1

R−1
(5R+ 1)2 − r2rdr = 4π

3
24R2 + 12R

3
2 − 9R2 + 2R

3
2 = |A2|+ o R

3
R→∞ .

Hence

E (uR, 1) =
1

2 A3

|∇uR|2 +
A1

k2

2 |y|2
u2R +

1

2
u2R + V (uR)
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≤ 1

2 A4∪A5
|∇uR|2 +

A1

αu2R + V (uR)−
1

2
u2R +

A1

u2Rdx

≤ c6 (|A4|+ |A5|) +
A2

αs20 + V (s0)−
1

2
s20 +

A3

αu2R + V (uR)−
1

2
u2R + s20 |A1|

≤ αs20 + V (s0)−
1

2
s20 |A2|+ c7 |A3|+ s

2
0 |A2|+ o R

3
R→∞

= s20 |A2|− c8R3 + o R3 R→∞ ,

where we have used the fact that

αs20 + V (s0)−
1

2
s20 |A2| = −c8R3,

since αs20 + V (s0)− s20/2 < 0. On the other hand, we have

C (uR, 1) = −
R3

u2Rdx ≤ −
A2

u2Rdx = −s20 |A2| . (3.1)

Therefore, since |A2| = c9R
3, we obtain

Λ (uR, 1) =
E (uR, 1)

|C (uR, 1)|
≤
s20c9R

3 − c8R3 + o R3 R→∞
s20c9R

3
= 1− c8

s20c9
+ o (1)R→∞ ,

so that one can find R∗ > Rα such that for every R ≥ R∗ it holds

Λ (uR, 1) < 1.

Now observe that the mapping R ∈ [R∗,+∞) :→ C (uR, 1) ∈ R is continuous, since so are the mappings
C : Hs × R → R and R ∈ [R∗,+∞) :→ uR ∈ Hs. Then, since limR→∞ C (uR, 1) = −∞ (see (3.1)),
we conclude that for every c ≤ c∗ := C (uR∗ , 1) < 0 there exists R ≥ R∗ such that C (uR, 1) = c and
Λ (uR, 1) < 1.

From now till the end of the section, we fix c < 0 such that inf(u,ω)∈Γc Λ (u,ω) < 1 (which exists by
Lemma 3.1) and set

νc := inf
(u,ω)∈Γc

E (u,ω) . (3.2)

Notice that (u,ω) ∈ Γc implies u 9= 0 and ω > 0.

Lemma 3.2. The minimizing sequences of (3.2) are bounded in H ×R.

Proof. Let {(un,ωn)} be a minimizing sequence of (3.2). Then ωn > 0 and ωn R3
u2ndx = |c|, so that

E (un,ωn) =
1

2 R3

|∇un|2 +
k2

|y|
2u

2
n dx+

1

2
|c|ωn +

R3

V (un) dx.

Since {E (un,ωn)} is bounded and V ≥ 0 by assumption (W1), we readily get that {ωn} and {nunn2 −
nunn2L2(R3)} are bounded, so that we need only to prove that {nunnL2(R3)} is bounded. To this aim, we
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observe that V (0) = 0 and assumption (W2), together with the evenness of V , imply that there exists
δ > 0 such that V (s) ≥ 1

4s
2 for |s| ≤ δ, so that for all n we get

R3

u2ndx =
{|un|≤δ}

u2ndx+
{|un|>δ}

u2ndx ≤ 4
R3

V (un) dx+
{|un|>δ}

u2n
|un|

δ

4

dx

≤ 4E (un,ωn) +
1

δ4 R3

u6ndx.

By Sobolev inequality, this implies that {nunnL2(R3)} is bounded and the proof is complete.

For computational convenience, we henceforth denote

J (u) :=
1

2 R3

|∇u|2 + k2

|y|2
u2 − u2 dx+

R3

V (u) dx

and for any ρ > 0 we set

mρ := inf
u∈Mρ

J (u) , Mρ := u ∈ Hs :
R3

u2dx = ρ . (3.3)

Then for every (u,ω) ∈ H ×R we have

E (u,ω) = J (u) +
ω2

2 R3

u2dx+
1

2 R3

u2dx = J (u)− ω

2
C (u,ω) +

1

2 R3

u2dx. (3.4)

By Lemma 3.2, we now fix a minimizing sequence of (3.2) such that

ωn → ω0 , nunn2L2(R3) → ρ ,

un - u0 in Hs , 0 ≤ un → u0 in L
r
loc R

3 for 1 ≤ r < 6.
(3.5)

Notice that ω0 9= 0 and ρ 9= 0, since (un,ωn) ∈ Γc implies

ω0ρ = lim
n→∞

ωn
R3

u2ndx = |c| 9= 0. (3.6)

Lemma 3.3. One has

νc ≤ mρ +
1

2
ρ+

c2

2ρ
.

Proof. For every v ∈Mρ, we have C (v, |c| /ρ) = − |c| = c and thus, by (3.4), we get

νc ≤ E v,
|c|

ρ
= J (v) +

1

2

c2

ρ
+
1

2
ρ .

Hence the claim follows, by taking the infimum as v ∈Mρ.

Lemma 3.4. One has

νc ≥ mρ +
1

2
ρ+

c2

2ρ
.

10



Proof. By (3.4) and (3.5), the minimizing sequence (un,ωn) satisfies

E (un,ωn) = J (un) +
1

2
|c|ωn +

1

2 R3

u2ndx = J (un) +
1

2
|c|ω0 +

1

2
ρ+ o (1)n→∞ ,

so that, by (3.6), we get

J (un)→ νc −
c2

2ρ
− 1
2
ρ.

We now show that vn := ωn/ω0 un satisfies J (vn) − J (un) → 0 and belongs to Mρ, which clearly
concludes the proof. By the definition of J and using (3.5) and Lemma 3.2, we get

|J (vn)− J (un)| ≤
1

2

ωn
ω0
− 1

R3

|∇un|2 +
k2

|y|
2u

2
n + u

2
n dx+

R3

|V (vn)− V (un)| dx

= o (1)n→∞ +
R3

|V 3 (ξn)| |vn − un| dx = o (1)n→∞ 1 +
R3

|V 3 (ξn)| |un| dx

where

ξn = ϑnvn + (1− ϑn)un = 1 + ϑn
ωn
ω0
− 1 un

for some 0 ≤ ϑn ≤ 1 (recall that V is of class C1). Observe that |ξn| = (1 + o (1)n→∞) |un|. Now we
use assumptions (W2) and (W4), which, together with the continuity and the evenness of V , imply the
existence of some constant c0 > 0 such that

|V 3 (s)| ≤ c0 |s|+ |s|p−1 + |s|q−1 for all s ∈ R.

Therefore one has

|V 3 (ξn)| |un| ≤ c0 |ξn|+ |ξn|
p−1 + |ξn|

q−1 |un| = (c0 + o (1)n→∞) u
2
n + |un|

p + |un|
q ,

which implies that

R3

|V 3 (ξn)| |un| dx is bounded,

since {un} is bounded in H (Lemma 3.2) and H /→ Lp(R3) ∩ Lq(R3) because p, q ∈ (2, 6). This proves
that |J (vn)− J (un)|→ 0. Finally, by (3.6) we have

R3

v2ndx =
ωn
ω0 R3

u2ndx =
|c|

ω0
= ρ,

which means vn ∈Mρ.

In order to conclude the proof of Theorem 2.2, we need the following result from [4] (see also [24]).

Lemma 3.5. If ρ > 0 is such that mρ < 0, then the minimization problem (3.3) has a solution u (y, z) =
u (|y| , |z|) ≥ 0 which is nonincreasing in |z|.
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Proof. It is Theorem 5.1 of [4], whose assumptions hold true for F (s) = 1
2s
2 − V (s), f (s) = F 3 (s),

thanks to (W2)-(W4) together with V (0) = 0 and the continuity and evenness of V .

Proof of Theorem 2.2. First observe that ρ 9= 0 and ρ2 − 2 |c| ρ+ c2 = (ρ− |c|)2 ≥ 0 imply

1

2
ρ+

c2

2ρ
≥ |c| . (3.7)

Then from Lemma 3.1 we deduce νc < |c| (take (ū, ω̄) ∈ Γc such that E (ū, ω̄) < |C (ū, ω̄)| = |c|), so that
(3.7) and Lemmas 3.3 and 3.4 yield

mρ + |c| ≤ mρ +
1

2
ρ+

c2

2ρ
= νc < |c| .

Hence we get mρ < 0 and thus Lemma 3.5 assures that there exists a nonnegative u ∈Mρ such that u
is radial and nonincreasing in |z| and J (u) = mρ. Therefore, by definition of C, we get

C u,
|c|

ρ
= − |c|

ρ
nun2L2(R3) = − |c| = c, (3.8)

so that, by (3.4) and Lemmas 3.3 and 3.4 again, we conclude

E u,
|c|

ρ
= J (u)− |c|

2ρ
C u,

|c|

ρ
+
1

2 R3

u2dx = mρ +
c2

2ρ
+
1

2
ρ = νc.

This proves that (u, |c| /ρ) attains the infimum (2.7), since (3.8) means (u, |c| /ρ) ∈ Γc.
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