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Abstract 

Migration of neurons and neuronal precursors from the site of origin to their final location is a key 

process in the development of the nervous system and in the correct organization of neuronal 

structures and circuits. Different modes of migration (mainly radial and tangential) have been 

described in the last 40 years; for these, as for motility processes involving other cellular types, 

calcium signalling plays a key role, with influx from the extracellular medium representing the 

main mechanism, and a more delimited but specific role played by release from intracellular stores.  

Deciphering the involvement of the different calcium influx pathways has been a major task for 

cellular neurobiologists, and the availability – or lack – of reliable and selective pharmacological 

tools has represented the main limiting factor. This review addresses the strategies employed to 

investigate the role of voltage-dependent calcium channels and of neurotransmitter activated 

channels, either calcium permeable or not, that directly or indirectly can elicit cytosolic calcium 

increases; in addition, reference to recent findings on the involvement of other families of calcium 

permeable channels (such as the transient receptor potential superfamily) is presented. Finally, a 

brief description of the present  - and limited - knowledge of the perturbations of calcium signalling 

involved in neuronal migration pathologies is provided. 



 

1. Introduction: calcium signalling in the development of the nervous system 

 

Calcium is a second messenger unrivalled for ubiquity and pleiotropicity in all eukaryotic cells, and 

it is not surprising that in neuronal cells, a wide array of mechanisms is involved in the fine tuning 

of its intracellular concentration as a free ion, relying on an ample set of import and export 

pathways. Almost all aspects of neuronal function, both during development and in the adult 

organism, are under the control of calcium signals, tightly regulated in space and time. 

In the developing nervous system, the proliferation, survival and migration of neuronal precursors 

and postmitotic neurons [1-3] and the formation of functional networks thanks to the correct 

patterning of connections with the right targets [4,5] are all dependent on specific patterns of 

calcium signals; after the onset of the postnatal circuitry, the transfer and coding of information and 

its plastic changes in response to environmental inputs depend on intricate calcium signalling 

mechanisms [6].  

In this review we will focus on the former aspect, and will not deal with calcium dependent 

signalling in mature neurons. Moreover, we will not discuss the huge literature regarding the 

specificity of calcium mobilizing pathways in the control of neurite growth and orientation; we will 

restrict our review to the strategies to dissect specific contributions to calcium signalling involved in 

the control of neuronal motility. For general reviews on calcium-dependent effector proteins, 

neuronal motility, neurite growth and guidance  refer to [7-14]. 

 

2. The formation of neural circuitry  

During development, neuronal precursors are in general produced at sites different from the final 

localization, that is reached through a complex process of migration and stepwise differentiation.  

Two main modalities of neuronal migration have been described: radial migration, in which 

postimitotic neurons migrate from their place of origin (the surface of the cerebral ventricles) 

toward the different layers of the cortex moving along radial glia [15,16], and tangential migration, 

the process by which many interneurons migrate from the ganglionic eminences to the cortex [17-

20]. Other neuronal cells and precursors reach their final position by pathways that have been 

classified as tangential; examples are provided by olfactory and gonadotropin-releasing hormone  

(GnRH) neurons [20-23]. Some migratory patterns, such as for neural crest cells [24,25] cannot be 

easily classified into the above categories. All these processes are tightly regulated by extracellular 

signals and depend on changes in intracellular calcium. After having reached their final localization, 

neurons emit thin, highly dynamic protrusions, called neurites, that eventually, mainly depending on 



the signals present in the extracellular medium, will specialize into axons and dendrites. These 

structures grow until they reach the correct target; here the growth stops, and the last phase is that of 

stabilization of the connections and formation of functional synapses. This process is again under 

the control of attractive and repulsive extracellular cues, and calcium in a key player in this context, 

too: growth, orientation and stop signals are calcium dependent.(see e.g. [13]) 

 

3. Calcium signalling pathways involved in the control of neuronal migration. 

 

The diversity both of developmental events and of neuronal types is reflected in the diversity of 

calcium mobilizing mechanisms involved in their control. As a preliminary statement, it can be said 

that calcium influx from the extracellular medium is the main player, with a more restricted, but in 

some instances crucial, role of release from intracellular stores. As for calcium influx, ample 

evidence is available for both voltage dependent and independent pathways, deeply interwoven. 

Discriminating between these mechanisms is of relevance in basic science, but also, in perspective,  

in the understanding of the bases of migration-related neurological diseases (see Section 7). 

 

The present knowledge on the mechanisms and dynamics of neuronal migration has been strongly 

dependent on information gained from mouse mutants (mainly the reeler mouse; see e.g. [20,26]), 

and from knockout mice [27-30]. (Noteworthily, the ataxic phenotype of another mutant, the 

weaver mouse, that was ascribed to defective migration of granule cells in the developing 

cerebellum, has been shown to depend on granule cell death [19,31]). 

In contrast, the deciphering of calcium mobilizing mechanisms involved in neuronal migratory 

behaviour has relied mainly on pharmacological tools, with few exceptions [32-35]. This is 

particularly true for voltage dependent calcium channels and for calcium permeable, 

neurotransmitter activated channels. The relatively limited number of channel isoforms and the 

availability of selective blockers has contributed to an early understanding of the role of these 

channel families in neuronal motility.  

 

 4.  Voltage dependent and neurotransmitter activated calcium channels  

4.1  Radial  migration 

Interestingly, most of the available data on calcium signalling in radial migration of neurons have 

been obtained from mouse cerebellar granule neurons. Cerebellar cortex has some advantages, in 

particular a more defined architecture and a limited number of cell types [10]. The pioneering work 



of P. Rackic, H. Komuro and collaborators [7,10, 36-39] has elucidated the major role played in this 

context by voltage-dependent calcium channels (VDCCs).  

In the molecular  layer of the cerebellum, granule cells show a saltatory movement along glial 

fibres, with alternance of forward jumps and stationary phases; this behaviour is paralleled by the 

generation of spontaneous calcium oscillations, strongly dependent on influx from the extracellular 

medium, that show a time course and a frequency closely synchronized with cell motility (Fig. 1, 

from Ref. 38). Dealing with neurons, it was to be expected that voltage dependent calcium channels 

would be deeply involved; indeed, interfering with calcium influx through N-type calcium channels 

by means of the specific inhibitor ω-conotoxin-GVIA (3 µM) reduced the migratory rate of granule 

neurons to about 25% of control values [36]. Remarkably, blocking other types of voltage 

dependent channels (Na+, L- and T-type Ca2+, and K+ channels) with specific inhibitors had no 

effect on radial migration, pointing to a selective role of calcium influx through N channels in the 

control of cell motility. In a subsequent paper [38] the same Authors showed that granule neurons 

migrating from microexplants displayed periodic oscillations in  [Ca2+] i, that were synchronous with 

the saltatory movement of granule cells; ω-conotoxin, in the same concentration range, reduced 

both the amplitude and frequency of the oscillations by about 50%, with a proportional decrease in 

motility. Reducing the extracellular calcium concentration reduced both amplitude and frequency of 

the calcium oscillations, together with the migratory rate; conversely, depolarizing cells with high 

KCl increased motility, thus providing further evidence for the involvement of  calcium influx 

through voltage dependent calcium channels.  

Addition of the N-Methyl-D-aspartate (NMDA) glutamatergic receptor antagonist D-AP5 (100 µM) 

to the extracellular medium induced a comparable reduction in all three parameters (amplitude and 

frequency of Ca2+ oscillations, migratory rate); on the other hand, abolishing release from 

intracellular stores with 1 µM thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic reticulum 

Ca2+ ATPase (SERCA), had a more limited effect on amplitude of oscillations and on movement, 

with no effect on the frequency of calcium signals.  

The possibility that the contribution of Ca2+ oscillations to neuronal motility could be explained in 

terms of an elevation of average  [Ca2+] i was ruled out: increasing basal  [Ca2+] i by means of the 

Ca2+ ionophore ionomycin (50 nM) had no effect on calcium oscillations and on neuronal motility. 

Adding all the above compounds together reduced oscillations and motility even more dramatically, 

notwithstanding the elevated basal [Ca2+] i. 

These observations were obtained thanks to reliable pharmacological agents, were confirmed by 

subsequent observations (see e.g. [10]), were extended to cortical neurons [40], and set the basis of 

our understanding of the calcium dependence of radial neuronal migration for the last two decades. 



Fig 2 (from Ref. 10)  presents a detailed description of the calcium transients observed in the 

different phases of granule cell migration, form tangential to radial, and shows that the loss of the 

calcium transients is the signal for completion of migration.  

What emerges from these studies is a complex and not yet fully resolved picture, in which influx 

from the extracellular medium plays a key role, but a contribution of  release form internal stores is 

also present. Moreover, blocking NMDA receptors may have a negative effect on the activation of 

N-type channels: the two pathways are deeply interwoven and are not easily evaluated separately. 

Other voltage-dependent calcium channels may be involved: in weaver mice, blocking L-type 

channels by means of 1-5 µM verapamil, a L–type  calcium channel blocker, rescued the neurite 

outgrowth of granule cells in culture, a process considered to be preliminary to neuronal migration 

along radial glia [41], pointing to a specific role for this channel subtype in a particular and still 

controversial neurological disorder [31]. Data about the involvement of N-type, but also of L-type 

channel homologues in neuronal migration have been obtained  in the nematode Caenorhabditis 

elegans by means of mutant analysis [33]. 

Calcium mobilizing mechanisms in radially migrating neurons may be modulated by other 

extracellular cues, in addition to classical neurotransmitters, and these effects may be dependent on 

a specific developmental stage. Somatostatin [42], Slit-2 [43] and pituitary adenylate cyclase-

activating enzyme (PACAP) [44] have been shown to modulate both calcium oscillations and 

motility in cerebellar neurons in in vitro experiments. 

 

4.2 Tangential migration 

In the case of tangential migration of cortical neurons,  the scenario is markedly different and seems 

to be dominated by neurotransmitter activated channels.  

Soria and Valdeolmillos [45] investigated the relationship between calcium signalling and 

tangential migration in rat cortical slices. The specific agonists NMDA, kainate (for AMPA 

glutamatergic receptors) and muscimol (for GABAA channels), all superfused at a concentration of 

50 µM, induced slow and long lasting increases in [Ca2+] i, providing evidence that glutamate, via 

both AMPA and NMDA receptors, and GABA, via GABAA receptors, modulate calcium signalling 

in these cells. The responses were abolished by specific inhibitors, respectively APV (200 µM), 

CNQX (50 µM), bicuculline (50 µM). It must be recalled that at early neuronal developmental 

stages, GABAA activation has a depolarizing and excitatory role, due to the low expression levels of 

the K+/Cl- cotransporter KCC2 and the consequent high [Cl-] i and relatively depolarizing Cl- 

reversal potential [46]. Interestingly, in this paper, calcium transients were not observed in 

migrating neurons and no frequency coding was reported.  



Blocking the generation of action potentials by 1� µM tetrodotoxin, a selective blocker of voltage 

activated Na+ channels, had no significant effect on the increases in [Ca2+] i induced by the 

glutamate analogues, while it nearly abolished responses to muscimol, thus showing that glutamate 

can induce calcium signals independently from the electrical activity, while the GABA-induced 

increases in [Ca2+] i require the generation of action potentials.  

 A different, and more complex picture emerges from the data provided by Bortone and Polleaux 

[47]. These Authors combined observation from acute medial ganglionic eminence (MGE) slices 

and 2-D cocultures of MGE explants on a layer of dissociated pyramidal neurons, and utilized a 

more sophisticated set of analysis tools to quantify motion parameters and calcium signals. During 

migration, a subpopulation of interneurons showed spontaneous Ca2+ transients, in the absence of 

any pharmacological intervention; this activity, as well migration, was enhanced by knocking down 

the KCC2 cotransporter and was suppressed by overexpressing the transporter or by blocking 

GABAA receptors with 10 µM bicuculline. Chelating intracellular calcium by means of 25 µM 

BAPTA-AM significantly reduced the percentage of migrating interneurons in acute telelencephalic 

slices. Blocking of L-type Ca2+ channels by means of 10 µM nifedipine reduced the migratory 

behaviour, while block of N-type channels resulted in a minor effect. A cooperative effect of  

GABAA and glutamate receptor activation on interneuron migration was also evidenced. 

These observations indicate that spontaneous [Ca2+] i oscillations are present also in tangentially 

migrating interneurons and that their modulation by the combined action of glutamate and GABA, 

both exerting a depolarizing effect and eliciting voltage-dependent Ca2+ influx, influences 

migration; at later stages, the increased expression of the KCC2 transporter and the ensuing 

establishment of a more negative Cl- reversal potential shifts the action of GABA from excitatory to 

inhibitory and serves a stop signal.  

Studies on hippocampal slices [48,49] have provided a partially different picture: tangential 

migration of interneurons is positively modulated by AMPA, but not by NMDA receptors, in 

contrast to radial migration that is influenced by both NMDA and GABAA receptors. 

As an added complexity, in the cerebral cortex activation of AMPA receptors has been reported to 

have an inhibitory effect on tangential migration [50]. These discrepancies may be explained by the 

different subunit composition (and consequent calcium permeability) of AMPA receptors in 

different regions of the CNS and at different developmental stages. 

Finally, other neurotrasmitters, such as serotonin, have been shown to affect tangential migration of 

cortical interneurons [51], but no data on their effect on calcium signalling is at present available. 

 



Other neurons migrate along pathways that have been classified as tangential: the best example are 

interneurons of the olfactory bulb and GnRH neurons. In mouse E11.5-E15.5 intact olfactory bulbs, 

the average velocity of migration of neuronal precursors was markedly reduced by chelating 

extracellular calcium with BAPTA and by application of 10 µM nifedipne, pointing to a role of 

calcium influx through voltage dependent L-type channels; on the other hand, 50 µM APV, blocker 

of NMDA channels, had no effect [52]. Interestingly, in olfactory bulb slices form postnatal mice, 

the L-type calcium channel blocker nimodipine (30 µM) strongly reduced spontaneous [Ca2+] i 

oscillations in neural precursors cells, without affecting migration [53]. Thus, the coupling of 

calcium signalling to the control of neuronal migrations appears to be stage- and age-dependent, at 

least in this system, characterized by postnatal neurogenesis. 

Another group [54] reported that the velocity of migration of neuronal precursors in the SVZ is 

reduced by ambient GABA via GABAA receptors, by showing that the specific blocker bicuculline 

(100 µM) increases this parameter, while Cd2+ and Ni2+, blockers of voltage dependent calcium 

channels, had no effect. The authors attributed this effect to a GABAA-mediated release from 

intracellular stores, although no description of the mechanism was provided. 

GnRH neurons migrate from the nasal placode in a partially parallel pathway, using olfactory 

neuron axons as a guide. Their migration has been extensively studied in nasal explants, and it has 

been shown to be reduced, at initial migratory stages, by removing extracellular calcium and by 

blocking N-type channels with ω-conotoxin-GVIA (100 nM), while nifedipine was not effective 

[55]. Since the effects of calcium removal were more marked than those induced by the N-type 

channel blocker, other, voltage-independent, influx pathways are probably involved.  

Neurotransmitters (GABA) have a role in this process, too [56,57]: but no data on calcium 

signalling are at present available. 

 

5. Other calcium mobilizing pathways 

5.1 Calcium release from intracellular stores 

From the data discussed so far, the role of calcium release from intracellular stores has emerged as 

marginal and at most secondary to calcium influx. However, in a few cases, this pathway has been 

shown to be the primary mechanism responsible for the calcium signals involved in the control of 

neuronal motility and migration, either directly or through activation of store operated calcium 

influx (SOCE), i.e. the mechanism of calcium entry from the extracellular medium gated by the 

emptying of the intracellular calcium stores, in particular in the endoplasmic reticulum [58]. 

Kumada et al. [59] reported that the autonomous turning of cerebellar granule cells, that can be 

observed in vitro, is dependent on both calcium influx (through voltage dependent and NMDA 



channels) and release from intracellular stores: stimulating the release through ryanodine receptors 

with caffeine (1 mM) or the IP3 receptors with the agonist thimerosal (5 µM) strongly increased the 

frequency of turning events.  

In ST14A cells, an immortalized line obtained from rat striatal primordia, Pregno et al. [60] 

investigated the migratory activity induced by Neuregulin1 and its calcium dependence. Chelating 

intracellular calcium with BAPTA-AM strongly reduced cell motility; Neuregulin1 induced long 

lasting increases in [Ca2+] i that were dependent on release from intracellular stores and ensuing 

activation of SOCE, as assessed in experiments with 100 µM thapsigargin, an inhibitor of calcium 

pumps of the endoplasmic reticulum plasmamembrane that causes the emptying of these stores. 

A final, and quite different, example comes from the analysis of the in vitro migration of a neural 

crest derivative, embryonic chick ciliary ganglion neurons.  

In dissociated cultures, it has been shown that non-random, directional movement of these neurons 

(that in these experimental conditions tend to form aggregates connected by highly fasciculated 

neurite bundles, [61]) is dependent on their association with glial cells [62]. Subsequently, the 

relationship between calcium signalling and migration was investigated [63]. Neurons showed 

spontaneous oscillations in [Ca2+] i, with fast spikes, abolished by the voltage dependent calcium 

channel blockers nifedipine and ω-conotoxin, superimposed onto slow waves; both components 

were independent from release from intracellular stores. Glial cells showed slow oscillations which 

were dependent on both release and influx and were unaffected by voltage dependent channel 

blockers; on the other hand, blocking release completely abolished oscillations. Interestingly, 

blockers of voltage dependent Ca2+ channels had no effect on the velocity of the neuronal-glial 

complexes, while stimulating release in glial cells with the IP3 receptor agonist thimerosal (0.2 µM) 

increased it. This is another case for the involvement of glial cells in neuronal migration: but, 

differently from what happens in the cortex, in this in vitro model it is the migrating glial cell that 

physically carries the neuron to its final location in the cell aggregate. 

 

5.2 A new entry in calcium dependent neuronal migration: the TRP channels  

A cell line derived from GnRH neurons has recently attracted interest as a model to study the role of 

calcium signalling by a different class of receptor activated channels, the TRP superfamily [11], in 

neuronal migration. The GN11 immortalized cell line is derived from a tumour induced in the 

olfactory bulb [54]; these cells show many properties of immature GnRH neurons, including a 

strong proliferative and migratory activity in the presence of foetal calf serum (FCS). Moreover, 

while primary GnRH neurons express voltage dependent calcium channels at least starting from 

stage E 12.5, GN11 cells do not express functional voltage dependent calcium channels [65,66]; 



therefore, they are a good model to investigate voltage-independent calcium signalling. Zaninetti et 

al. [34] combined pharmacological and overexpression approaches to show that activation of the 

TRPV4 channel induces increases in [Ca2+] i that are related to a reduction in cell migration and 

chemotaxis. TRPV4 channels display constitutive activity at 37 °C and a number of diverse stimuli 

can modulate their behavior: the activation of the TRPV4 channels in migrating cells could occur 

via both mechanical and osmotic stimuli [67,68].  

In a consistent percentage of these cells, 1 µM of the selective agonist 4a-phorbol 12,13 didecanoate 

(4α-PDD) [69] induced [Ca2+] i increases dependent on influx from the extracellular medium, while 

the nonspecific TRPV inhibitor Ruthenium Red (RR; 1 µM) abolished it. The agonist, and its 

analogue 4α-PDH [70] strongly reduced the percentage of cells migrating in response to a foetal 

calf serum (FCS) gradient, and this reduction was partially reverted by RR. TRPV4 overexpression 

provided converging results, reducing the migratory behaviour of GN11 cells. Interestingly, 

migration was also negatively modulated by two proposed TRPV4 activators [71], arachidonic acid 

(5 µM) and 5,6-epoxyeicosatrienoic acid (3 µM). Finally, another, not structurally related TRPV4 

agonist, GSK1016790A [72], reduced migration in a wound healing assay. 

The involvement of TRPC channels has been investigated in two recent papers, too, providing a 

more controversial picture. Ariano et al. [73] analyzed the spontaneous calcium oscillations in 

GN11 cells and their enhancement in the presence of FCS. The nonspecific TRPC inhibitors, 

SKF96365 (5 µM) and La2+ (1 mM), strongly reduced amplitude and frequency of the calcium 

oscillations and the migratory activity. A blocking function anti-TRPC1 antibody caused 

comparable reduction of calcium oscillations and migration, Partially contrasting results have been 

provided by Storch et al. [35]: they showed that in heterologous systems, TRPC1 assembly in 

heterotetramers reduced calcium permeation through the channels; in GN11 neurons, TRPC1 

downregulation increased calcium permeability and migratory velocity and directionality. These 

discrepancies can be explained by the fact that TRPC1 channels, as stated above, form 

heterotetramers with the other subunits (these cells express also TRPC2, 5 and, according to [35], 

TRPC6): the anti-TRPC1 Ab, by interfering with this subunit, may modify the permeability of the 

whole assembly, thus blocking the heterotetrameric channel. 

These findings are a strong reminder that due to the lack of specificity of the available 

pharmacological and molecular tools, only a combination of experimental approaches can give 

unequivocal results, and are indicative of the problems encountered when studying this channel 

subfamily. While evidence of their role in neuronal migration is just beginning to be provided, they 

are considered among the main players in the game of another aspect of neuronal motility, neurite 

growth and orientation [11]; therefore, a digression on these problems may be useful. The 



limitations are both in the specificity of the available pharmacological tools and in the 

understanding of the activation mechanisms. When these channels began to be actively studied, it 

was widely accepted that they represented the molecular identities responsible for the so called 

store-operated calcium entry (SOCE). Further studies showed that they can be generally considered 

as receptor-activated channels downstream of the phospholipase C (PLC) pathway, with several 

lipidic second messengers, such as diacylglycerol (DAG) and free fatty acids as the main activators 

[74-76], even if there is evidence that some of them are involved in SOCE [77]. 

Their controversial nature is reflected in the poor specificity of the pharmacological inhibitors 

available. The case of the imidazole derivative SKF96365 is the best exemplification of this issue. 

Initially described as a generic blocker of receptor activated calcium influx and of SOCE [78,79], it 

has been widely used as a nonspecific blocker of TRPC channels, also in neurons (see e.g. [80,81]). 

In contrast, several reports [78, 82-84] have evidenced its poor selectivity, since it can block other 

types of calcium permeable channels, mainly voltage dependent ones, and interfere with other ionic 

mechanisms. However, most of these effects have been observed at concentrations in the 10-100 

µM range, while at concentrations of 5 µM or lower it can be considered a good preliminary tool to 

block TRPC-mediated influx. The lack of better options can explain its continued use in many 

studies, in particular in the field of neurite growth and orientation [80,85,86]. Inorganic ions, such 

as La3+ (and Gd3+), can block most of these channels [87], but with complex dose-response 

relationships; therefore, these tools have to be employed with caution. 

In summary, the lack of pharmacological tools has led some authors [88] to state that the study of 

TRPC channels must rely on knockdown and silencing techniques; however, even if a large amount 

of relevant data has been obtained thanks to these approaches, they still  present several limitations, 

since, because of the heteromeric nature of TRPC channels, and of compensatory mechanisms, data 

obtained form knockout and knockdown protocols are not always univocally interpreted; in some 

case double or multiple knockouts are necessary to get a full understanding of the role of single 

members (see e.g. [89]). The pharmacological approach is therefore still a reasonable option, in 

most cases as a complement to other tools. 

 

6. Calcium signalling and neuronal migration disorders 

Mutations in mice that affect the correct patterning of the cerebral cortex have provided relevant 

information about the role of neuronal migration in cortical development. The reeler mutant mice 

[20,26] are characterized by an “upside down” organization of the cortical layers, due to 

perturbations in pyramidal neuron migration; similar disturbances have been observed in other 

mutants, such as weaver mice [31,90]. The product of the reeler gene, Reelin, is an extracellular 



matrix protein that controls the exact positioning of radially migrating neurons and the correct 

organization of the six cortical layers [91]. In humans, mutations in several genes [92], including 

the gene encoding Reelin have been associated with some forms of lissencephaly [93], a 

developmental disorder dependent on impairment of neuronal migration that results in abnormal 

layering and reduction of cortical folds [94]. 

Despite the ample literature on the genetic bases of these cortical malformations, the knowledge of 

the molecular biology of the pathogenetic mechanisms is still far from being understood, and very 

little is known about the involvement of anomalies in calcium signalling. It has been shown that 

Reelin interacts, via membrane receptors, with motor and cytoskeletal proteins [94,95], likely 

targets of calcium dependent pathways. Actually, it has been shown that the product of the LIS1 

gene, whose mutation leads to Type I lissencephaly, regulates in a calcium influx-dependent way 

some RhoGTPases involved in cytoskeletal dynamics [96]. 

Calcium signalling has been involved in other aspects of reelin-and LIS1 function, not related to 

neuronal migration and reported in postnantal mice, such as NMDAR activation and LTP [97], and 

seizures and increased excitability [98]. 

However, a hint of the relevance of alterations in calcium signalling in cortical pathologies linked to 

impaired neuronal migration emerges not from genetic mutations, but from environmental 

perturbations: Kumada et al. [99] have shown that foetal alcohol syndrome (FAS), a serious 

disorder of brain development caused by maternal alcohol abuse during pregnancy, and other 

related disturbances, are linked to reduced calcium transients frequency and migratory activity of 

cerebellar granule cells;  caffeine (1mM), by stimulating release form intracellular stores, and 

NMDA (30 µM), by inducing Ca2+ influx, significantly reduced the effects of ethanol (25-100 mM) 

on the Ca2+ transients and on migration. Similar effects were observed following inhibition of the 

cAMP pathway. (Notably, migration is antagonistically regulated by Ca2+ and cAMP pathways not 

only in cerebellar granule cells [44] but also in ciliary ganglion glial cells [100]).   

Thus, alcohol appears to affect neuronal migration by interfering with multiple signal transduction 

pathways, among them multiple calcium mobilizing mechanisms.  

 

7. Conclusions and future developments 

The findings described in the preceding chapters point to a crucial role of calcium signalling not 

only in the physiology, but also in the pathology of neuronal migration, and prelude to further 

achievements in our understanding of the processes that lead to normal and abnormal development 

of the nervous system. 



From the neuropathological perspective, the picture of the genetic and epigenetic mechanisms that 

lead to migration-dependent neurological disorders is far from being complete, and this is 

particularly true for alterations in the calcium signalling mechanisms. It can be envisioned that 

future focus will be, more than on calcium signalling per se, on the field of calcium-dependent 

proteins involved in cytoskeletal organization and in organelle trafficking, as pointed by the Reelin-

lissencephaly case [94-96]. However, it cannot be excluded that the TRP channel superfamily, just a 

newcomer in this context, may provide some surprise – and some unexpected answers. The role of 

these channels in the control of neurite growth and orientation is now established [12,13,85,86], and 

they play crucial roles in many other aspects of neuronal function, from synaptic transmission 

[101,102] to sensory transduction [103]; on the other hand, many members are putatively involved 

in a wide spectrum of pathologies of the nervous system [104,105]. If this will be the case, the 

development of more specific and selective agonists and antagonists will become the critical issue.  
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Figure legends 

Fig. 1. Correlation between spontaneous calcium fluctuations and motility in migrating granule 

cells from microexplants cultures of P2-P5 mouse cerebella. 

Upper: time course of changes in Fluo-3/Fura-Red ratio signal. Upward deflections in Fluo- 

3/Fura-Red ratio signals represent elevations of [Ca2+]i and downward deflections indicate 

decreases of [Ca2+]i. 

Lower: The direction and distance traversed by the same cell during each 30 s of the testing 

period (From Komuro and Rakic, 1996) 

 

Fig. 2. Dynamic changes in the frequency of Ca2+ transients (blue lines) in migrating cerebellar 

granule cells are related to cell movement (red lines). The numbers at top of each graph represent 

the position of granule cells along the migratory pathway and the stage of the differentiation.  in 

order: (1-5) granule cell precursor migrating from top to bottom of the external granular layer 

(EGL); (6-8) radial migration along the Bergmann glial process in the molecular layer (ML); (9–10) 

stationary period in the Purkinje cell layer (PCL); (11–13) radial migration at the top and middle of 

the internal granular layer (IGL); (14) completion of migration at the bottom of the IGL; (15) post-

migratory granule cell at the bottom of the IGL. (From Komuro and Kumada, 2005).
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