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EDITORIAL
Intracellular calcium signaling: holding the balance between health and disease.

Flexibility and conservation are two hallmarks of intracellular Ca?+ (Ca) signaling. These intriguing

features contributed to fix this ion as a prominent chemical regulator in cell physiology [1-5].

Calcium machinery, the entire toolkit of biomolecules generating and decoding Ca. events inside the
cell, includes a number of components, some ubiquitous and others specifically expressed by some tissues [3].
Several proteins, often clustered in multimers, compose ion channels that allow Ca?* fluxes into the cytosol.
They can be activated by mechanical forces, changes in membrane potential, intracellular or extracellular
chemical agonists, and depletion of intracellular Ca?* stores [3]. Nonetheless, some of them, typically
transient receptor potential channels (T'RPs), are multifunctional and can be simultaneously modulated

through multiple mechanisms [6, 7].

Calcium signaling is tightly coupled to cell metabolism in a reciprocal crosstalk. Consistently,
a number of diseases are linked to alterations in Cac signals, that can act as a cause as well as
secondary effects of the pathological progression [8-11]. Furthermore Ca. machinery, that shapes
Cac waves and decodes Cac 'signature', does not work as an isolated system, being integrated with
other cell signaling pathways and intracellular messengers. They include phosphoinositides (InsPs,
PIPy), gasotransmitters (NO, HoS and CO), bioactive lipids (arachidonic acid, ecosanoids,
dyacilglycerol), and cyclic nucleotides (c(AMP and cGMP) [5, 12-19]. cAMP is released during
stimulation with hormones and growth factors. It was the first intracellular messenger discovered in
1971, and, similarly to Ca?*, is universal and evolutionary conserved [20]. Recent research has
revealed that cAMP-mediated signaling is highly compartmentalized and relies on a complex
network of intracellular pathways, whose relative relevance depends on the specific extracellular

stimulus. Mutations or genetic polymorphism involving some cAMP-related components are



associated with a variety of human diseases including long QT syndrome, cardiac dysfunctions,
familial breast cancer and schizophrenia [20]. The review by A. Hofer focuses on the complex
crosstalk between Cac- and cAMP-dependent networks. It is well known that cAMP microdomains
modulate the activity of several Ca?* channels, either directly or indirectly, via phosphorylation by
cAMP-dependent protein kinase, PKA, and cAMP sensor Epac (exchange proteins activated
directly by cAMP) [18]. On the other hand, the cAMP pathway is subject to modifications by Ca?*
and its effectors at many levels. Consistently, the authors recently reported a mechanism of cAMP
release dependent on intracellular calcium store depletion, called ‘Store-Operated cAMP Signaling’
or ‘SOcAMPS’ [18-21]. Excessive activation of store-operated cAMP production has been proposed

to cause human progressive polycystic liver disease [22].

Specificity of Ca?*-dependent biological effects can be achieved through the selective
expression and targeting of given Ca?* channels and effectors. In addition, a great amount of data
point to the relevance of localized intracellular events, Ca. microdomains, due to ‘signalosomes’,
organized clusters of Ca®" channels, transporters and Ca?*-dependent interactors [23, 24]. The
review by Ambudkar provides a striking example of Cac signaling anisotropy: the exocrine function
in secretory epithelia. Salivary and pancreatic gland acinar cells secrete fluid, ions, and proteins in a
vectorial process that requires the coordinated regulation of ion and water channels and
transporters, as well as of signaling molecules and vesicles. Spatially restricted Cac signals play a
critical role in the regulation of this complex phenomenon [25]. The polarized co-localization of
both Cac signaling and secretory components accounts for the physiological vectorial secretion in
the exocrine salivary glands and pancreas. Pathological disruption of calcium handling is associated
with autoimmune inflammatory diseases such as acute pancreatitis and Sjogren's syndrome [26, 27].
This is a fascinating example that explains how the physiopathological implications of altered Cac

signaling at the single cell level depend on tissutal organization.



Among the major leading causes of death in the world, heart diseases are object of an impressive
amount of basic and clinical studies at both cellular and tissutal levels. On the basis of its calcium-dependent
excitability, it is not surprising that a number of cardiac dysfunctions in adults can be successfully related to
alterations occurring in the Ca. homeostasis of single cardiomyocytes [28, 29]. In this issue, Levi et al.
investigate in detail the role of Ca. signals in heart failure and protection from damage [30, 31]. Cardiac
development, growth and differentiation are physiologically controlled by the action of several growth
factors. It has been recently shown that the exogenous administration of these peptides protects the heart
from failure and ischemia/reperfusion (I/R) injury [32]. Moreover, cardioprotection involves the activation
of kinases, such as the so-called Reperfusion Injury Salvage Kinase (RISK) pathway, that includes
phopsphoinositide 3 kinase (PISK)/Akt and extracellular regulated signal kinases 1 and 2 (Erkl/2).
Unfortunately, continuous activation of RISK cascades can result in the loss of their cardioprotective effect,

hypertrophic responses and undesired secondary effects.

The authors discuss novel putative protective mechanisms that involve peptides acting through Ca. signaling
(i.e. neuregulin, urocortin and natriuretic peptides) and that, as in the case of the Neuregulin-1beta/ErbB
pathway, are reaching the clinical trial relevance. Particular attention is focused on SUMOylation, a novel

port-translational mechanism acting in cardioprotective processes and cardiac Cac handling [33].

Intracellular Ga?* signals drive morphogenetic processes at tissutal level that, in turn, exert a
feedback on single cells, giving rise to a functional loop between different biological scales [34, 35]. This issue
includes two reviews focused on the putative multiple roles of calcium in particular biological processes, such
as neuronal migration during central nervous system development and endothelial functions during the

formation of new blood vessels, angiogenesis.

Lovisolo et al. discuss the role of Ca. signaling on radial and tangential migration of neurons and
neuronal precursors during the development of the nervous system [36]. Deciphering the involvement of the
different Ca?+ influx pathways has been a major task for cellular neurobiologists, in which the main limiting
factor is the limited availability of reliable and selective pharmacological tools. The authors describe the

experimental strategies employed to investigate the poorly known role of Ca?* channels in diseases associated



with neuronal migration. An interesting example, recently clarified, is Fetal Minamata disease (FMD), caused
by exposure to methylmercury (MeHg) during development and associated with disrupted neuronal
migration, maturation, and growth. MeHg inhibits granule cell migration by reducing the frequency of somal
Ca?* spikes through alterations in Ga?*, cAMP, and insulin-like growth factor 1 (IGF1) signaling [37]. On the
other hand, Lovisolo et al. investigate the putative roles of Ca2*-dependent events that occur during postnatal
physiological neurogenesis in the olfactory system. A general and debated question, critically analysed in this
review, concerns the relative contribution of voltage-dependent and voltage-independent Ca?* channels in

the control of functional properties of neurosecretory cells and neuronal motility [38].

The review by Moccia et al. explores the debated involvement of endothelial progenitor cells (EPCs)
in tumor neovascularisation and progression [39]. This event is suggested to integrate the classical angiogenic
pathway due to sprouting from pre-existing vessels. Growing tumors may recruit EPCs from bone marrow to
trigger blood vessel formation through physical engrafting into the vessel lumen and/or paracrine release of
proangiogenic factors. Tumor cell-based therapy (CBT) is limited by the paucity of EPCs harvested from
peripheral blood and suffers from several drawbacks [40]. A better understanding of cell signaling that
controls EPC homing, proliferation and incorporation into injured tissues would help to improve this
strategy. In particular, the authors investigate the potential clinical relevance of store-operated Ca?* entry
(SOCE), a Ca2*-permeable membrane pathway that is activated upon depletion of intracellular Ca2+ pools.
SOCE may actually contribute to the proangiogenic effects exerted by vascular endothelial growth factor

(VEGF) in subpopulations of circulating EPCs.

The increasing amount of information on intracellular calcium dynamics clearly indicates that
human diseases are often associated with disorders in Ca. signaling. However, the assumption that
‘correlation implies causation’ should not be assumed «a prior: and warrants critical consideration. We are only
beginning to integrate the plethora of experimental evidences obtained both in vitro and i vivo by the use of
different models (from cell lines to animals, in healthy and altered tissues) and techniques (electrophysiology,
live cell imaging). The differential structure, expression, function or targeting of Ca2*-toolkit components can

truly concur to the pathogenesis of some disorders, as in the case of channelopathies, in which Ca. signals are



suitable selective targets for therapeutical approaches [11, 41-46]. Conversely, disease progression may often
lead to secondary effects involving Ca. signaling machinery. In this case, we could look at them as putative

diagnostic biomarkers, mostly when they are altered in the early phases of the disease.

The main aim of this issue is to provide some critical hints on the fascinating contribution of calcium
to the balance between health and disease, giving particular emphasis to the peculiarity of each biological

process.
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Figure legend.

Scheme showing the role of calcium in the finely tuned balance between health and disease (picture taken
from ancient Knossos palace, Krete, Greece).

Complex spatio-temporal calcium dynamics, tightly and specifically integrated with other intracellular
pathways, contribute to the regulation of physiology, or can concur to functional alterations, during
development, postnatal and adult life. Examples in the scheme refer to those described in more detail in the
present issue and are not exhaustive.



