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Double proton decay and H-H oscillations
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Baryon-number-violating (LB =2) processes are predicted by a variety of grand (or partially) uni-

fied theories of the fundamental interactions. In this paper we explore the double proton decay in-
side nuclei. We calculate the width I for the associated exotic nuclear decay and, by exploiting the
experimental data on nuclear stability, we are able to set an upper bound on the coupling constant E
of the corresponding effective Lagrangian. This, in turn, can be converted into a lower bound for
the time of oscillation of hydrogen into antihydrogen. The latter turns out to be much more
stringent than the one inferred from astrophysical observations.

I. INTRODUCTION

Baryon and lepton numbers violating processes are
common predictions of the grand (or partially) unified
theories of the fundamental interactions. In particular,
the occurrence of &8=2 and/or &L=2 processes is
characteristically predicted, at the level of experimental
observability, by some models, which furthermore allow
the proton to have a lifetime long enough to avoid conflict
with the present experimental data.

~=2 and/or &L=2 phenomena that have been con-
sidered most extensively in the recent literature are the
following:

(i) B-L conserving processes: p+ p~e++e+ (double
proton decay) and the related process H—=p+ e ~p
+e+ —=H (hydrogen-antihydrogen oscillations).

(ii) B-L violating processes: neutron-antineutron oscil-
lations (&&=2, &L=O), neutrinoless double beta decay
(kB=0, AI. =2}.

In the frame of the gauge models referred to above, the
occurrence of these reactions stems from an enlargement,
as compared to the standard (minimal) SU(5), of the
Higgs sector, which includes diquark and dilepton scalar
bosons; furthermore, interaction terms of higher orders
are introduced in the Higgs potential. '

For instance, in the case of && =&&-=2 transitions the
relevant diagram is a six-quark —two-lepton graph (Fig. 1)
in which three diquark Higgs particles are coupled to a
dilepton scalar boson through a quartic term in the Higgs
potential.

A thorough analysis of models for the ~ =&&-=2
processes in the context of effective low-energy
SU&(3 ) X SUL, (2) XU(1) interactions generated by partial-
ly or grand unified theories has recently been carried out
by Nieves and Shanker. A typical term of the effective
Lagrangian for the h& =&&-=2 interactions in these
models reads

at zero distance; furthermore,

~fqfi
GHH ——

for the case considered in Fig. 1 [here A, is the coefficient
of the quartic terin in the Higgs potential and fq (f~) the
diquark (dilepton) Higgs-fermion Yukawa coupling).

It should be noticed that in the general scheme of Ref.
4, terms involving right-handed components of the fer-
mion fields are present as well. However as far as the ob-
servables dealt with in the present paper are concerned
(rate of the double proton decay and H-H oscillation time)
these effective ~ =&I'=2 interactions are equivalent to
the phenomenological Lagrangian examined by Feinberg,
Goldhaber, and Steigman.

Therefore for definiteness, in the following we shall
consider Eq. (1} as the prototype Lagrangian for the~ =4& =2 interaction and introduce a dimensionless
coupling constant defined as

I{.=GHH i «0) i mp .

~=GHII I «0) I
'«..I. )'W.,r. (P,, L, )'0,, +H

where p, and g~ are the electron and proton fields, respec-
tively, and «0) is the quark wave function in the nucleon

FIG. 1. Quark diagram for double proton decay and H-H os-
cillations. b,„„{Q = —i ), h~ ( Q =

& ) are members of the di-

quark scalar boson h~, whereas EI++ is the doubly charged
dilepton Higgs boson EI (for other notations, see the text).
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In the gauge models we are considering, the ~=2,
&&.=0 processes take place with analogous mechanisms.
For instance, the n-n oscillations can occur either by spon-
taneous symmetry breaking (see Fig. 2) or by explicit sym-
metry breaking through cubic terms in the Higgs poten-
tial. Neutron-antineutron mixing in nuclei has been
analyzed by some of the present authors in the papers of
Ref. 8, where data on nuclear stability have been em-
ployed to obtain for the n-n oscillation time the lower
bound r & (5—7) X 10 sec. This limit is more stringent
than the present experimental bound v ~ 10 sec obtained
for free neutron oscillations and it substantially agrees,
within the theoretical uncertainties, with an independent
evaluation given by Dover, Gal, and Richard. '

In the present paper we shall be concerned with the
&R =&i-=2 processes originated by the Lagrangian (1)
and, in particular, with the double proton decay which
leads to a quite peculiar form of nuclear instability. For
this to happen, however, the two protons must come very
close to each other, a fact likely prevented by the short-
range, repulsive nucleon-nuclm)n correlations; therefore,
the latter are obviously going to play a crucial role in this
anomalous nuclear decay.

In Sec. II we calculate the decay rate for the double
proton decay in nuclei in the frame of the shell model. In
Sec. III we develop our approach to deal with proton-
proton correlations and in Sec. IV we obtain, from the ex-
perimental limits on the nuclear instability, an upper
bound on the effective coupling constant X. This limit is,
in turn, converted into a lower bound on the oscillation
time rHH for the hydrogen-antihydrogen oscillations. In-
terestingly, our bound on ~HH turns out to be considerably
more stringent than the experimental liinit obtained from
astrophysical data.

A pioneering analysis of this phenomenon was per-
formed in Ref. 7 in the approximation of constant nuclear
density. Recently Vergados" has implemented this treat-
ment by evaluating the nuclear effects with phenomeno-
logical short-range correlation functions, but allowing
only the outer nuclear protons to take part in the process;
his calculation has been carried out for some medium
weight nuclei and is mainly meant for detectors which in-

volve large quantities of Ni.
Our present analysis has been prompted partly by the

existence of new, more stringent bounds on different
modes of matter instability (coming from the big detectors
originally designed for proton decay) and partly by the
need of treating as accurately as possible the short-range
correlations, particularly for the nuclei relevant in the ex-
periments under consideration (' 0 and Fe), allowing all
the protons to take part in this exotic nuclear decay.

In Sec. V we finally present the conclusions of our in-
vestigation.

II. DOUBLE PROTON DECAY RATE
INSIDE A NUCLEUS

From the Lagrangian (1), the decay rate (per proton) of
the process

(A, Z) —+(A —2,Z —2)+e++e+

obtains

X I &f IQli& I'r 1X'
Z v ppy ZV f

(4)

(5)

where Vis the nuclear volume [=(—', )irriiA, ro 1.12 fm——]
and

Q = —,
' J dx dx'Q(x, x')g~(x) f~(x')

is the transition operator which annihilates two protons in
the ground state

~

i ) of the ( A,Z) nucleus.
In (6) f~(x) is the annihilation field for the proton and

the corresponding first quantized operator reads

Q= —,
' J dxdyp~(x)5(x —y)p~(y), (7)

p~(x) being the proton density.
For pointlike particles (7) reduces to

Z z
2 Xl ( i

—xj)= 2 Xl ( i» j)
l+J l+J

whereas, allowing for a finite nucleonic size, i.e., with the
proton density

3 ZM
pp(x) = e

sm,

(M=850 MeV being the cutoff mass of the dipole nu-
cleon form factor), one gets

M —M ~x.—x.
~

Z 3
Q= —,

l J',.~'. 64m

X f 1+M
/
x; —x, f

+ —,'Mz
f
x; —xj /

2j . (10)

FIG. 2. Quark diagram for n-n oscillations through spon-

taneous breaking of 8-L symmetry.

In (5), which can be more conveniently rewritten as
I

—=50X10 K mp g ~(f ~
Q[i)

~f
the summation over f is extended to the different states in
which the residual ( A —2, Z —2) nucleus is left.

In the following we shall use the harmonic oscillator
(HO) shell model, allowing however for two-body short-
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range correlations induced by the Reid potential. ' In this
frame the nuclear matrix element for the process we are
interested in reads:

&+A —2(al a2 ')
I
Q

I +~ &

= &g~ I f~)+(Z —2) /Z(Z —1)&0
I
Q

I aiaz),
(12)

where I%'z z(ai 'a2 ')) is the residual nucleus state,
which is obtained by annihilating, in the initial state

I
4'„), two protons in the single particle orbits (ai,a2) [a

is a shorthand notation for the quantum numbers (njl) in
the HO basis]. Formula (12) also implies that we treat the
neutrons as spectators. The Z-dependent factor on the
right-hand side of Eq. (12) accounts for the different nor-
malizations of the wave functions of the initial and final
nuclei.

The specific nature of the operator (6) entails that only
protons with vanishing total spin (S) and angular momen-
tum (J) can undergo annihilation; in fact, some algebra
leads to

&0 I
Q

I aiaz SJ & =&so4o&i, iPJJ, ( —1) '«2)i+I) ~2&(Z —»y, (aia2)z=o
I IZ & &o

I
Q

I
nilin2l2, o&

where the radial matrix elements, for uncorrelated two-proton states, read4n.
&0 I

Q
I nilinzl2, 0) = dr i r, dr& r2R„ i (r, )R„,i,(r2)Qi, (ri, r2) . (14}

In the above, Qi(r, r') is the lth multipole of the operator
Q(r —r'), according to the standard decomposition

Q(r —r') = g Qi(r, r') g I'i' (r ) I'i (r ') .

equal to one for the operator (8} and still rather close to
unity for the interaction (10). How the dynamical correla-
tions in the two-body wave function will affect these nuin-
bers, we shall explore in the next section.

The analytic expression of the multipoles Qi, trivial for
the 5(r—r') but quite cumbersome for the operator (10), is
given in the Appendix. In formula (13) the probability for
two protons in the same orbit ji ——jz of being coupled to
J=O has been included through the two-particle fraction-
al parentage coefficients & (Z —2)y,'(aiaz) J—o I I Z; ) .

We remind one that the matrix elements (14) are simply

III. CORRELATED TWO-PROTON STATE

The nucleon-nucleon correlations are most conveniently
incorporated into the matrix element (13) utilizing the rel-
ative and center-of-mass coordinates of the two protons.
This is done, in the HO basis, by the method of the
Moshinsky transformation, which allows one to rewrite
(14}as follows

&OIQI "ili"2l2 0)=4irg &nONOOI nilinzlz, O) f dr r R o{r)Q(v2r) f dRR Rico(R)
n, N

the symbols &nONO, O
I
nilin212, 0) denoting the Moshin-

sky transformation brackets. The nucleon-nucleon corre-
lations can now be embodied in (16) by replacing the HO
wave function for the relative motion, R„o(r), with

g„o(r)=~1—C(r)]R„o(r), (17)

~ being a normalization factor and C(r) the two-body
correlation function. To obtain the latter we start with
the Bethe-Goldstone equation in the operator form

G(k, ko, K) = V(k, ko)

dq V(k, q)Q (q,K)G (q, k, K)
(2~)3 E(q,K) E(ko,K)—

(18)
~here g(q, K) is the angle averaged Pauli operator, k and
ko the final and initial three-momenta, K the modulus of
the center of mass momentum and

V(ki, k2)= f dre ' ''V(r)e' ''
(2m)
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the two-body potential in momentum space.
In the energy denominator

fi k
e( k)=, + Up for k & kp,

2@i

E(k,K)=e +k +e —kK K
2 2

(20)
iri k2

e(k)= for k &kF,2'

and the standard quadratic form for the single particle en-
ergies has been assumed, namely

with Up and m calculated self-consistently, utilizing as a
starting point the Reid soft-core potential.

By partial wave decomposition of (18), i.e., with

Gi(k, kp, K)= Vi(k, kp) ——J dq q2
0 e kp, q, K

(22)

and by projecting into configuration space the well-known
expression for the correlated wave function

(23)

~ y) being the uncorrelated two-body state, we finally ar-
rive at

which defines the two-body correlation function

C,(r)=+—. f dkk2 ~
ir jr(kpr) p e(k, K)

X Gi(k, k Kpj)I(kr) . (25)

2 ~
2 Q(kK)dk k ' G/(k, kp, Kj)/(«)

e k, K

=jI(kpr) —C](rj)/(kpr),

We have evaluated (25) for the l=0 case (the only one
needed in our problem) calculating the partial wave G-
matrix elements Gi(k, kp, K) along the lines of Ref. 13 and
for kz ——1.2 fm ' (likely to be a reasonable approximation
for ' 0 and Fe). We have also performed the calculation
with kF ——1.3 fm ' to ascertain the dependence upon the
density of Cp(r).

1.0

0.8

0,6

04

0.2

0 4 0.8 1.2 2.0 2.4 z.s (frn)

FIG. 3. S-wave two-body correlation function versus the relative distance r in the present calculation (continuous line). Also
shown are the correlation functions utilized by Vergados (Ref. 11).
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TABLE I. The matrix elements (16) for (a) ' 0 and (b) Fe. The correlation function has been
evaluated with two different values of k~ (in fm '); v is the oscillator parameter.

State
( n $1$ n2I2)

Without
correlation

kp ——1.2

With
correlation

kF ——1.36

Os Os

(a) ~ Q (&=0.336 fm )

0.9018 0.7799
0.8428 0.7347

0.7798
0.7378

(b) 56Fe (v=0.242 fm 2)

Os Os

Os 1s

Od Od
1s 1s
of of

0.9274
0.0549
0.8826
0.8405
0.8444
0.8008

0.8075
0.0558
0.7699
0.7333
0.7374
0.6962

0.8092
0.0563
0.7732
0.7376
0.7417
0.7008

Although, in principle, Co(r) is affected by the actual
value of the initial relative momentum ko of the two in-
teracting particles, this dependence turns out to be mild;
typically in (25) we have taken ko ——1.2 fm '. Our result
for the function [1—Co(r)] is displayed in Fig. 3. For the
sake of illustration the two phenomenological correlation
functions utilized by Vergados" are also shown.

The role played by the dynamical proton-proton corre-
lations in the nuclear decay we are considering is illustrat-
ed in Table I, where the matrix elements (16) without and
with correlations for the two-proton states of relevance
for ' 0 and Fe are reported.

A few comments are in order:
(i) The dependence upon kF of the matrix elements can

be safely ignored for the range of kz pertinent to our
problem.

(ii) The "off-diagonal" matrix elements (ni&n2) are
found to be at most 10%%uo of the diagonal ones.

(iii) The reduction associated with the short-range
dynamical correlations, although sizable, are not dramatic
owing to the finite range of the operator (10). Larger cut-
off masses M would sharply change the situation.

This is clearly seen in Table II where the matrix ele-
ments for protons artificially reduced in size, by taking
M=2000 MeV, are shown in the case of Fe. The
dramatic change occurring in the correlated matrix ele-
ments shows that the interplay between nucleonic size and
two-body correlations is critical for the occurrence of the
process we are considering here.

IV. RESULTS

A. Double proton decay

z l
&+f.-z(~i i"2 i) I&I+'& l2

la2

which turns out to be

P =6.7X10 for ' 0, (27a)

P =1.6X 10 for Fe . (27b)

In Table III the partial contributions to (27) arising
from each single particle level are reported, with the
separated geometrical and dynamical factors. It should be
remarked that while the dynamical correlations between
protons are treated, in the present framework, quite accu-
rately, the global nuclear wave function is kept within the
pure shell model, thus neglecting the residual interaction
and the associated configuration mixing. This could
change somewhat the "geometrical" probability of two-
particle states coupled to J=O as given by the fractional

According to formula (11), in order to obtain the decay
rate per proton we must evaluate

TABLE II. The same as in Table I(b), with M=2000 MeV in the operator (10).

State
( n ) II n2l2)

Os Os

Od Od
ls 1s
Of Of

Without
correlation

Fe (v=0.242 fm, M=2000 MeV)
0.9860
0.9769
0.9678
0.9679
0.9588

With
correlation

0.4265
0.4242
0.4215
0.4216
0.4173
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TABLE GI. The various terms contributing to Eq. (26). In
the second column the fractiona1 parentage coefficients are re-
ported.

E ~6~10
or, equivalently,

g~H&6&&10 yr .

Os i/2 Os ~/2 1.000000

Op)/2 Op)/g 1.000000
Op 3/2 Op 3/p 0.408 200

0.779 888
—0.734743
—0.734 743

y=0.336 fm P =0.006670

0.391002
0.347045
0.115654

By comparing Eqs. {32) and (34) it then follows that our
bound on K, derived from the new experimental results on
nuclear stability, is much more stringent than the limit
deduced from astrophysical data. From the bound of Eq.
(32) we obtain for the H-H oscillation time

&»&1~10' yr. (36)
0$1/2

Op

Op3/2

Od3/2

Odg/g

1$1/2

0f7n

0$1/2

Op 1/2

Op3/2

013/g
Od 5/2

1$1/2

0f7n

1.000000
1.000000
0.408 200
0.408 200
0.516400
1.000000
0.316200

0.807 525
—0.769 940
—0.769 940

0.733 288

0.733 288

0.737 400
—0.696 224

0.583 092
0.530077
0.176650
0.160232
0.384 652
0.486 218
0.173 343

v=0.242 frn 2 P =0.001591

parentage coefficient.
Finally, in order to set bounds on the coupling constant

K, we rewrite Eq. (11) as follows

L=6.8~10 "
P (~ryr)'" '

where ~=(I rZ)—' and the definition (26) has been used.
Then, from the NUSEX-collaboration lower limit'4

(28)

r& 3X10 ' yr (90% C.L. ) (29)

E &3&10 (30)

For ' 0 a preliminary estimate of the IMB-collaboration
lower bound'

~&10 yr (90% C.L. ) (31)

and the value of Eq. (27a) give

and our value of P for 6Fe [Eq. (27b)], the following
bound on E follows:

Finally our limit on E; can be immediately converted
into constraints on the parameters of specific gauge
models by considering Eq. (3) and expressions of the type
(2).

V. CONCLUSIONS

Baryon number violating processes (&&=2) are predict-
ed by a large variety of grand (or partially) unified
theories of the fundamental interactions. Their oc-
currence gives rise to peculiar forms of nuclear instabili-
ties.

In the present paper we have evaluated the nuclear ef-
fects which are relevant to the double proton decay, in the
case of the nuclei (' 0 and Fe) involved in the big exper-
imental apparatus originally designed to detect the proton
decay. Thus, using the most recent limits on nuclear in-
stability, we have set for the coupling constant K of the
effective ~ =&&-=2 interactions an upper bound which
is much more stringent than the astrophysical limit on the
H-H oscillations.

Our limit, converted into bounds on the parameters
(coupling constants and masses) of the grand unified
models, implements the constraints obtainable from the
analysis of flavor-changing processes and then provides
useful information on the possible structure of the unified
gauge theories.

%'e would like tq thank 13r. F. Gliozzi and J. M.
Richard for useful conversations. This work was support-
ed in part by Research Funds of the Italian Ministry of
Public Education.

E (8Q 10—30

B. H-H oscillations

(32) APPENDIX

We evaluate here the partial waves of the operator

As mentioned above, the Lagrangian (1) also gives rise
to H-H oscillations with an oscillation time

' —1

K ~e&
Ptl p

2 (33)

In Ref. 7 it is shown that an independent limit on K can
be set by considering that, if H-H oscillations occur, then
a neutral gas of hydrogen atoms, in the absence of exter-
nal perturbations, can be a source of y rays through the
conversion of a fraction of hydrogen into antihydrogen
and the subsequent H-H annihilation. From the data on
the y-rays flux from interstellar regions in our galaxy one
obtains the following bound

Q(x —y}= e I*—xi
I 1+I

I
x y I64~

+ —,'M2Ix —y I
~I . (Al)

It can be directly expanded in terms of Legendre polyno-
mials:

Q{x—y) = g, Qi(x,y)Pt(t),

where t =x y and

Qt(x,y)= I dtPt(t)Q(+x +y 2xyt ) . —M3 2I+1 +' 2 2

64~ 2
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With the change of variable z =M(x +y 2—xyt)'~
and setting c =Mx, d =My, one gets

r

c
Qi(x,y) =Qi

Finally, inserting in (A4) the following expression for the
Legendre polynomiaIs,

1!'~) 21 2—E&
&((&+» )=—,g ( —1)

6477 2cd I
c —~

I 3

2+d2 —z2
XI's

2cd

one ends up with

I —2K a I —2K —mb m&2m

X g ', (A5)
0 m!(I —2K —m)!

M3 2l+1 1
Q~(x,y)—

(2l —2')!

( —1)

0 m!(l —2X —m)!
( 2+d 2)l 2E —m—

(2 d)' 2x

&&
~

c —d
~

+'e ' I —'(2m+3)(2m+5)+
~

c —d
~

+ —,'(c —d)2

+ —,
'

(2m +3)(2m +5) g (2m+1 —n)! ~c —d ~"

—(c+d) +'e '+"'
—,(2m +3)(2m +5)+ —,(2m +6)(c+d)

+ —,
' (c+d) + —,

' (2m +3)(2m +5)

' +' (2m+1)! 1
X (2m+1 —n)l (c+d)n

'Permanent address: Instytut Fizyki Jadrowej, Krakow, Po-
land.
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